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Abstract

Automata theory has given rise to a variety of automata models that consist of a
finite-state control and an infinite-state storage mechanism. The aim of this work
is to provide insights into how the structure of the storage mechanism influences
the expressiveness and the analyzability of the resulting model. To this end, it
presents generalizations of results about individual storage mechanisms to larger
classes. These generalizations characterize those storage mechanisms for which
the given result remains true and for which it fails.

In order to speak of classes of storage mechanisms, we need an overarching
framework that accommodates each of the concrete storage mechanisms we wish
to address. Such a framework is provided by the model of valence automata, in
which the storage mechanism is represented by a monoid. Since the monoid
serves as a parameter to specifying the storage mechanism, our aim translates
into the question: For which monoids does the given (automata-theoretic) result hold?

As a first result, we present an algebraic characterization of those monoids
over which valence automata accept only regular languages. In addition, it turns
out that for each monoid, this is the case if and only if valence grammars, an anal-
ogous grammar model, can generate only context-free languages.

Furthermore, we are concerned with closure properties: We study which
monoids result in a Boolean closed language class. For every language class that
is closed under rational transductions (in particular, those induced by valence
automata), we show: If the class is Boolean closed and contains any non-regular
language, then it already includes the whole arithmetical hierarchy.

This work also introduces the class of graph monoids, which are defined by fi-
nite graphs. By choosing appropriate graphs, one can realize a number of promi-
nent storage mechanisms, but also combinations and variants thereof. Examples
are pushdowns, counters, and Turing tapes. We can therefore relate the structure
of the graphs to computational properties of the resulting storage mechanisms.

In the case of graph monoids, we study (i) the decidability of the empti-
ness problem, (ii) which storage mechanisms guarantee semilinear Parikh images,
(iii) when silent transitions (i.e. those that read no input) can be avoided, and
(iv) which storage mechanisms permit the computation of downward closures.
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Chapter 1

Introduction

1.1 Monoids as storage mechanisms

One of the main purposes of theoretical computer science is to understand the
principles of computation. In the field of automata theory, this goal is pursued
by studying mathematical models of computing devices with regard to what be-
havior they can exhibit and what we can infer about such a device when given a
description.

These two types of questions each have their own motivation. The first type
addresses expressiveness. This aspect is important to understand because it ex-
plains what we can compute with limited resources and what systems we can
describe with the respective models. The second type of questions explores the
analyzability of models. This perspective is instrumental when we want to algo-
rithmically verify properties of systems, which, due to the advent of increasingly
complex and concurrent systems, has become a task of significant weight.

The perspectives of expressiveness and analyzability are deeply intertwined:
They are conflicting qualities insofar as the more expressive a model is, the more
difficult it usually is to analyze. For these reasons, it has become a strong driving
force of today’s research in theoretical computer science to understand how we
can provide models that are expressive enough for a given type of systems and
yet are simple enough to be amenable to analysis.

In a tradition initiated by Turing in the introduction of the eponymous ma-
chine, automata theory yielded a rich variety of models that comprise a finite-
state control and a potentially infinite data repository. The models are obtained
by imposing restrictions on how the data can be stored, manipulated, and re-
trieved, while permitting arbitrary use of the finite-state control. In terms of
hard- and software systems that can be represented by such models, this means
we can precisely reflect arbitrary control flows, but we abstract from certain as-
pects of data access. For example, pushdown automata can correctly imitate the
control flow and calling stack of a recursive program, but heap memory cannot
be represented. A form of data repository, together with the permitted modes
of access, is called a storage mechanism. Examples of storage mechanisms include
Turing machine tapes, pushdown storages, and various kinds of counters.

Instead of investigating the properties of a concrete model of computation,
the present work attempts to provide general insights on how expressiveness

1
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Chapter 1. Introduction

and analyzability of a model of computation are affected by the structure of the
storage mechanism. To this end, it presents generalizations of results about con-
crete storage mechanisms to larger classes of storage mechanisms. These gener-
alizations will characterize those storage mechanisms for which the given result
remains true and for which it fails.

Storage mechanisms as monoids In order to speak of classes of storage mech-
anisms, we need an overarching framework that accommodates each of the con-
crete storage mechanisms we wish to address. Such a framework is provided by
interpreting storage mechanisms as monoids. Suppose a storage mechanism con-
sists of a (potentially infinite) set of states, a finite set of functions representing
its available operations, an initial state, and a collection of valid final states. To
account for operations that are not always applicable, such as a pop operation
for a stack symbol that is not currently at the top, the functions can be partial
functions. For example, a pushdown storage with stack alphabet Γ consists of
the set Γ∗ as its set of states, the operations pusha and popa for each a ∈ Γ , and
the empty word ε as its initial state and its final state (assuming that it accepts
with an empty stack). As partial functions, the operations pusha and popa are
defined as

pusha : Γ
∗ → Γ∗, popa : Γ

∗ 9 Γ∗,
w 7→ wa wa 7→ w.

(here, we denote partial functions by 9). Note that popa is defined on precisely
those words that end in a. Another example is the Minsky counter, which has
N, the set of natural numbers, as its set of states and has inc (increment), dec
(decrement), and zero (zero test) as its operations:

inc : N→N, dec : N 9 N, zero : N 9 N,
n 7→ n+ 1, n 7→ n− 1, 0 7→ 0.

Note that here, the decrement operation is undefined for state 0 and the zero test
operation is defined only in state 0.

To such a storage mechanism, we can associate the monoid of all composi-
tions of available operations. Let us examine what this yields in the case of a
pushdown store as above. If we compose pusha and popb for a 6= b, we obtain
the function 0, which is defined nowhere: After pushing an a, popping b cannot
be defined. Moreover, composing 0 with any other operation yields 0 again. If,
however, we only consider compositions where such incompatible push and pop
do not occur, the reader can verify that we always get functions of the form Pu,v
for u, v ∈ Γ∗, where

Pu,v : Γ
∗ 9 Γ∗,

wu 7→ wv,

is defined on precisely those words with suffix u. Therefore, the resulting mon-
oid has the elements {0}∪ {Pu,v | u, v ∈ Γ∗}. Let us consider the case of a Minsky
counter. Any composition of just the increment and decrement operations yields
an element Cr,s such that

Cr,s : N 9 N,
n+ r 7→ n+ s,

2
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1.2. Outline and main contributions

which is defined on all numbers> r. If the composition involves a zero test, then
it is either 0 as above or it is defined on only one element r ∈ N and of the form
Dr,s, for which

Dr,s : N 9 N,
r 7→ s.

Hence, the corresponding monoid comprises the set {0,Cr,s,Dr,s | r, s ∈N}.

Monoids as storage mechanisms The advantage of interpreting storage mech-
anisms as monoids is that we can go in the other direction and interpret monoids
as storage mechanisms: The elements of the monoid determine the set of states as
well as the set of operations and the identity element is the final state. This allows
us to use algebraic constructions to synthesize similar storage mechanisms and
thus identify what structural traits of the mechanism are responsible for which com-
putational properties. For example, we will define monoids by graphs that may
contain loops. We will then see that graphs with no loops or edges correspond
to pushdown storages. If the graph has no loops, but is otherwise a clique, it
is equivalent to counters without zero tests (that cannot go below zero). This is
usually called a set of partially blind counters. Moreover, if the graph is a clique
and has loops everywhere, we obtain counters that can go below zero and are
only zero tested in the end of the computation, hence a set of blind counters. See
Section 2.4 for details and more examples.

This means we can regard these concrete storage as points on a spectrum and
examine where exactly the computational properties remain true and where they
cease to hold. For example, it is known that automata with a pushdown or with
blind counters accept languages with semilinear Parikh images, which is not true
of partially blind counters. We can now study which graphs exactly guarantee
semilinearity of the accepted languages (see Chapter 7 for a characterization).

Valence automata We investigate monoids as storage mechanisms by deploy-
ing them in the framework of valence automata. A valence automaton over a mon-
oid M is a finite automaton in which each edge carries an input word and an
element of M. The language accepted by such an automaton consists of those
words spelled by paths whose composition of monoid elements is the identity.

Valence automata are not a new concept and have been studied before by sev-
eral authors from various perspectives (see Section 2.9 for an overview). What
distinguishes this work from earlier ones is that it systematically generalizes re-
sults for concrete models of automata with storage. Specifically, for each of a
series of results about concrete storage mechanisms, it presents a broader class
of monoids and identifies those members of the class to which the result carries
over.

1.2 Outline and main contributions

Let us give an overview of the main contributions of this work. Since the results
of this thesis roughly correspond to the chapters, this also serves as an outline of
the structure of this work.

3
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Chapter 1. Introduction

Graph monoids In order to generalize statements about concrete storage mech-
anisms, we present a class of monoids that accommodates a number of
well-known storage mechanisms. These monoids are defined by graphs
and are therefore dubbed graph monoids. In addition to the abovemen-
tioned pushdown automata, partially blind multicounter automata, and
blind multicounter automata, by choosing appropriate graphs, one can also
realize Turing machine tapes and combinations of all these mechanisms,
such as pushdowns with partially blind counters. As part of Chapter 2, which
introduces the main concepts needed in later chapters, Section 2.4 intro-
duces graph monoids.

Increasing expressiveness Chapter 3 presents an algebraic characterization of
those monoids that increase the expressiveness in the following sense: With-
out the storage mechanism, finite automata only accept regular languages.
Hence, we describe those monoids M for which valence automata over M
can accept non-regular languages. In fact, we show that this also char-
acterizes those monoids for which deterministic valence automata are ex-
pressively weaker and those for which valence grammars can generate
non-context-free languages. Valence grammars are a concept related to
valence automata and equip context-free grammars with a monoid stor-
age. While the characterization of monoids that increase expressiveness in
valence automata has been obtained independently by Render in her the-
sis [Render2010], the latter characterization for valence grammars answers
an open problem posed by Fernau and Stiebe [FernauStiebe2002a].

Emptiness problem In Chapter 4, we turn to the decidability of the emptiness
problem. Using graph monoids, one can realize a pushdown storage with
partially blind counters, for which the decidability of the emptiness prob-
lem remains a long-standing open question [Reinhardt2008].

However, if we forbid the subgraphs corresponding to these mechanisms,
we can characterize those with a decidable emptiness problem. The result
generalizes the decidability for pushdown automata and for partially blind
counter automata (or equivalently, Petri nets). Moreover, this extends a re-
sult of LohreySteinberg2008, which characterizes those graph groups with
a decidable rational subset membership problem. Where LohreySteinberg2008
rely on semilinearity arguments, we use a reduction to the reachability
problem of priority multicounter machines, which has been proven decid-
able by Reinhardt2008 [Reinhardt2008].

Boolean closure Chapter 5 is concerned with closure properties of the languages
accepted by valence automata. Since it is well-known that the regular lan-
guages are closed under the Boolean operations (union, intersection, and
complementation), we ask for which monoids M, the class of languages
accepted by valence automata over M is closed under the Boolean operations.
Our result is a very negative answer and goes beyond valence automata. It
is shown here that every language class that is closed under the Boolean op-
erations and rational transductions and contains an arbitrary non-regular
language already includes the whole arithmetical hierarchy. It follows in
particular that every language class induced by valence automata beyond
the regular languages either fails to be closed under the Boolean operations
or lacks virtually all decidability properties.

4
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1.2. Outline and main contributions

Context-freeness In Chapter 6, we compare the expressiveness of storage mech-
anisms with that of pushdown automata. Specifically, we ask which mon-
oids cause valence automata to only accept context-free languages. We
characterize those graph productsM of monoids for which valence autom-
ata over M accept only context-free languages. This means, in particular,
that we extend a group-theoretic result of Lohrey and Sénizergues [LohreySenizergues2007],
which characterizes those graph products of groups where the resulting
group is virtually free.

Semilinearity Chapter 7 addresses generalizations of Parikh’s Theorem, which
states that the Parikh image of each context-free language is semilinear.
The first presented result is a characterization of those graph monoids that
guarantee semilinear Parikh images. As explained above, this generalizes
the semilinearity results for pushdown automata and blind multicounter
automata. Moreover, we identify stacked counters as expressively complete
among those mechanisms with semilinearity. They constitute a new type
of storage mechanism that, as shown in later chapters, exhibits a range of
properties desirable for analysis. Furthermore, they offer a way to model
recursive programs with numeric data types.

Furthermore, it is shown that if G is a torsion group, every language ac-
cepted by valence automata over G have a semilinear Parikh image. More-
over, since this semilinearity is not always effective, we characterize those
torsion groups for for which semilinear representations are computable.

Silent transitions A silent transition is one that reads no input but can manipu-
late the storage content. For every storage mechanism, it is an important
question whether silent transitions are necessary to accept all languages.
Indeed, if silent transitions can be eliminated, we can decide the member-
ship status of a given input word by examining a finite number of paths
through the automaton. Therefore, in Chapter 8, we ask for which mon-
oids we can avoid silent transitions. We show that among a class of stor-
age mechanisms, stacked counters are those where this is possible. Again,
this generalizes the corresponding fact for pushdown automata and blind
multicounter automata, which have both been established by Greibach [Greibach1978].

Computing downward closures Chapter 9 is concerned with the computation
of downward closures. It is well-known that the downward closure, i.e.
the set of (not necessarily contiguous) subwords, of every language is reg-
ular. Moreover, computing a finite automaton for the downward closure
of a given language would make a range of analysis techniques applica-
ble. However, this cannot be done in general. In fact, there are only few
known methods for computing downward closures for languages. It is
shown here that for all those storage mechanisms that guarantee semilin-
earity, downward closures can be computed. This generalizes the com-
putability of downward closures for context-free languages, as obtained by
vanLeeuwen1978 [vanLeeuwen1978] and Courcelle1991 [Courcelle1991].

The computability result is obtained using the new technique of Parikh an-
notations, for which two other applications are presented.

Non-expressibility Assessing the expressiveness of automata models requires
techniques for proving that certain languages cannot be accepted. There-

5
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Chapter 1. Introduction

fore, in Chapter 10, we establish non-expressibility results. The main result
is that the hierarchy of languages that is obtained by alternating two trans-
formations of storage mechanisms, building stacks and adding blind counters,
is strict at every level. These are precisely the transformations by which
stacked counters are constructed.

This is the fourth application of Parikh annotations.

Arising language classes Finally, in Chapter 11 we examine the limits of valence
automata in their ability to model automata with storage. Specifically, we
prove general results on the classes of languages that arise from valence
automata. The first main result of this section states that every language
class defined by valence automata either (i) satisfies a Parikh-type theorem,
(ii) contains the partially blind one-counter languages, or (iii) contains the
blind one-counter languages.

The second main result establishes that it is not possible in general to add
zero-tests. More precisely, there is no transformation that turns a monoid
M into a monoid M̃ such that valence automata over M̃ have exactly the
capabilities of valence automata overM plus a zero test.

How to read this thesis In order to accommodate readers interested in a spe-
cific type of results, this thesis is organized with the aim of minimizing depen-
dencies among chapters.

Chapter 2 introduces almost all concepts that are necessary for understand-
ing each of the remaining chapters. We will sometimes define concepts in the
later chapters, but these usually require little explanation and can be looked up
quickly. The only exception to this rule are the results on non-expressibility in
Chapter 10, which rely on the concept of Parikh annotations. These are intro-
duced and explained in Section 9.2.

Related work Since each mention of related work pertains to a specific chapter,
we refer the reader to the conclusion sections therein. In particular, a general
overview on related work on valence automata can be found in the conclusion
section of the chapter on basic concepts, Section 2.9.

Regarding the introduction, it should be mentioned that the general idea of
associating monoids to storage mechanisms as above is old and well-known,
see [Gilman1996] for a similar approach and references.

6
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Chapter 2

Basic concepts

In this chapter, we settle notation and introduce most of the concepts that are
used in the remaining chapters.

Sections 2.1 and 2.2 mostly recall standard terminology on formal languages
and monoids. In Section 2.3, we define valence automata and present founda-
tional results. In Section 2.4, we introduce the new concept of graph monoids,
which will be used throughout this work as a framework to capture storage
mechanisms.

Sections 2.5 and 2.6 are devoted to two operators on language classes that
capture the change in expressiveness of two particular constructions of storage
mechanisms. These two operators are then used in Section 2.7 to define a hier-
archy of language classes that describes the capacity of various types of storage
mechanisms in this thesis.

Finally, in Section 2.8, we recall the concept of well-quasi-orderings, which
will be used frequently in later chapters.

2.1 Automata and Languages

Sets We denote the set of integers by Z and the set of non-negative integers by
N. To express that the set A is the disjoint union of B and C, we write A = B]C.
In order to denote inclusion, we write A ⊆ B and for strict inclusion, we write
A ( B. The power set of A is denoted by P(A).

Monoids In this work, a few notions pertaining to formal languages will be
defined using monoids. We will therefore begin with some basic concepts for
the latter. For further notions concerning monoids, see Section 2.2. For general
information about semigroup theory, see [Grillet1995].

A monoid is a set M together with a binary associative operation such that
M contains a neutral element. The neutral element is called identity. Unless the
monoid at hand warrants a different notation, we will denote the neutral element
by 1 and the product of x,y ∈M by xy.

If M and N are monoids, a morphism is a map ϕ : M → N with ϕ(1) = 1 and
ϕ(xy) = ϕ(x)ϕ(y) for any x,y ∈ M. A subset N ⊆ M is a submonoid of M if
it contains the neutral element of M and satisfies xy ∈ N whenever x,y ∈ N.
For a subset S ⊆ M, the submonoid generated by S, denoted 〈S〉, is the smallest
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Chapter 2. Basic concepts

submonoid of M that includes S. It consists of the neutral element of M and all
products s1 · · · sn of elements s1, . . . , sn ∈ S. If there is no danger of confusion,
we will also write S∗ instead of 〈S〉 and in the case of commutative monoids, we
sometimes write S⊕.

Words and multisets While we define all necessary notions, we assume ba-
sic familiarity with formal language theory. For more information, we refer the
reader to introductory texts such as [Kozen1997, Berstel1979, AutebertBerstelBoasson1997].

Finite sets of symbols are called alphabets. For a set X of symbols, we will
write X∗ for the set of words over X. The empty word is denoted by ε ∈ X∗.
Together with the concatenation as its operation, X∗ is a monoid. For a symbol
x ∈ X and a word w ∈ X∗, let |w|x be the number of occurrences of x in w.
If Y is a subset of X, we write |w|Y =

∑
x∈Y |w|x. By |w|, we will refer to the

length of w. Given an alphabet X and a monoid M, subsets of X∗ and X∗ ×M
are called languages and transductions, respectively. For a language L ⊆ X∗ and a
transduction T ⊆ X∗ ×M, we define

TL = {m ∈M | (w,m) ∈ T for some w ∈ L}.

Given an alphabet X and languages L,K ⊆ X∗, the shuffle product of L and K is
defined as

L�K = {u0v1u1 · · · vnun |u0, . . . ,un, v1, . . . , vn ∈ X∗,
u0 · · ·un ∈ L, v1, . . . , vn ∈ K}.

For a subset Y ⊆ X, we define the projection morphism πY : X
∗ → Y∗ by setting

πY(y) = y for y ∈ Y and πY(x) = ε for x ∈ X \ Y.
Given a set X of symbols, we write X⊕ for the set of maps α : X → N. The

elements of X⊕ are called multisets. By way of pointwise addition, written α+β,
X⊕ is a commutative monoid. We write 0 for the empty multiset, i.e. the one that
maps every x ∈ X to 0 ∈N. For α ∈ X⊕, let |α| =

∑
x∈X α(x).

For each alphabet X, the Parikh map is the map Ψ : X∗ → X⊕ defined by
Ψ(w)(x) = |w|x for all w ∈ X∗ and x ∈ X. The map Ψ is lifted to sets in the
usual way: Ψ(L) = {Ψ(w) | w ∈ L}. The set Ψ(L) is then called the Parikh image
of L. Two languages are said to be Parikh equivalent if they have the same Parikh
image. For morphisms ϕ : X⊕ → Y⊕ and words w ∈ X∗, we sometimes abuse
notation and write ϕ(w) instead of ϕ(Ψ(w)). Similarly, if ψ : X∗ → Y∗ is a mor-
phism and µ ∈ X⊕, then ψ(µ) is defined as Ψ(ψ(w)), where w ∈ X∗ satisfies
Ψ(w) = µ. Note that this is well-defined.

Rational sets Let M be a monoid. An automaton over M consists of a tuple
A = (Q,M,E,q0, F), in which

• Q is a finite set of states,

• E is a finite subset of Q×M×Q called the set of edges or transitions,

• q0 ∈ Q is the initial state, and

• F ⊆ Q is the set of final states.
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2.1. Automata and Languages

The step relation →A of A is a binary relation on Q ×M, for which we have
(q,m) →A (q ′,m ′) if and only if there is an edge (q, r,q ′) ∈ E with m ′ = mr.
The set accepted by A is then

L(A) = {m ∈M | (q0, 1)→∗A (f,m) for some f ∈ F}.

A set R ⊆M is called rational if it can be written as R = L(A) for some autom-
aton A over M. The set of rational subsets of M is denoted by Rat(M). Given
two subsets S, T ⊆ M, we define ST = {st | s ∈ S, t ∈ T }. A classic result by
Kleene [Kleene1956] states that Rat(M) is the smallest set of subsets of M that
contains every finite subset of M and if S, T ∈ Rat(M), then S∗ ∈ Rat(M) and
ST ∈ Rat(M). This means, in particular, the operation (S, T) 7→ ST makes Rat(M)
a monoid itself. Rational languages are also called regular. By Reg, we denote the
class of regular languages.

Let C be a commutative monoid for which we write the composition addi-
tively. For n ∈ N and c ∈ C, we use nc to denote c + · · · + c (n summands).
Of course, if we write the composition of C additively, we also write S+ T for
{s+ t | s ∈ S, t ∈ T } and abbreviate {s}+ T and S+ {t} as s+ T and S+ t, respec-
tively.

A subset S ⊆ C is called linear if there is an element s ∈ C and a finite set
F ⊆ C such that S = s + 〈F〉. A set S ⊆ C is called semilinear if it is a finite
union of linear sets. If S =

⋃n
i=1 si + 〈Fi〉, then the tuple (s1, F1, . . . , sn, Fn) is

called a semilinear representation of S. By SL(C), we denote the set of semilinear
subsets of C. It is well-known that Rat(C) = SL(C) for commutative monoids
C [EilenbergSchutzenberger1969]. We will, however, sometimes still use SL(C)
to make explicit that the sets at hand are semilinear. Clearly, by way of the prod-
uct (S, T) 7→ S+ T , SL(C) constitutes a commutative monoid. If the set Ψ(L) is
semilinear for a language L, we will also call L itself semilinear.

The first-order logic (with equality) over the structure (N,+) is called Pres-
burger arithmetic, its formulae Presburger formulae. Here, + is the binary function
yielding the sum of its arguments. For a Presburger formula ϕ(x1, . . . , xn) with
n free variables x1, . . . , xn we write |= ϕ(s1, . . . , sn) if ϕ is satisfied in (N,+)
for a variable assignment σ with σ(xi) = si for 1 6 i 6 n. For such a for-
mula ϕ, we say ϕ defines the set S ⊆ Nn if for each (s1, . . . , sn) ∈ Nn, we have
|= ϕ(s1, . . . , sn) if and only if (s1, . . . , sn) ∈ S. A subset S ⊆ Nn is said to be
Presburger definable if it is defined by some Presburger formula.

A classic result by Ginsburg and Spanier [GinsburgSpanier1966] states that
the Presburger definable subsets of Nn are precisely the semilinear ones. More-
over, this equivalence is effective, meaning that given a Presburger formula, one
can effectively determine a semilinear representation for the set it defines. If X is
an alphabet, then a linear order on X induces an isomorphism X⊕ ∼= Nn, where
n = |X|, by way of which the notion of Presburger definability carries over to
subsets of X⊕. It is clearly independent of the chosen linear order.

Language classes and closure properties This work studies, among other as-
pects, the expressive power of valence automata, which is measured by the lan-
guages they accept. In order to discuss the resulting language classes, we need
a few fundamental notions. A rational transduction is a rational subset T of the
monoid X∗× Y∗ for alphabets X and Y. IfA = (Q,X∗× Y∗,E,q0, F) is an automa-
ton over X∗×Y∗, we also writeA = (Q,X, Y,E,q0, F) and instead of L(A), we also
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Chapter 2. Basic concepts

use the notation T(A). For rational transductions T ⊆ X∗ × Y∗ and U ⊆ Y∗ ×Z∗,
we define

T ◦U = {(u,w) ∈ X∗ ×Z∗ | (u, v) ∈ T , (v,w) ∈ U for some v ∈ Y∗}.

A classic result by Elgot and Mezei [ElgotMezei1965] states that U ◦ T is again a
rational transduction.

A substitution is a map σ : X → P(Y∗), where X and Y are alphabets. Given
L ⊆ X∗, we write σ(L) for the set of all words v1 · · · vn, where vi ∈ σ(xi),
1 6 i 6 n, for x1 · · · xn ∈ L and x1, . . . , xn ∈ X. If σ(x) ⊆ Y for each x ∈ X,
we call σ a letter substitution.

A language class is a set of languages that is closed under isomorphism and
contains at least one non-empty member. A language class C is called a full trio
if it is closed under rational transductions, that is, for each L ∈ C, L ⊆ X∗, and
each rational transduction T ⊆ X∗ × Y∗, we have TL ∈ C. It follows from the
definition that every full trio includes the regular languages. Moreover, it is a
simple exercise to show that for L ∈ C, L ⊆ X∗, regular languages R ⊆ X∗ and
morphisms h : X∗ → Y∗, and g : Y∗ → X∗, one has

L∩ R ∈ C, L� R ∈ C, h(L) ∈ C, g−1(L) ∈ C. (2.1)

We denote the smallest full trio containing L by T(L). Since T ◦U is rational when
T and U are rational transductions, T(L) consists of all languages of the form TL,
where T is a rational transduction; unless L = ∅, in which case T(L) coincides
with the regular languages. If a language class is of the form T(L) (i.e. generated
by one language), it is said to be a principal full trio.

A full trio is called a full semi-AFL1 if it is also closed under finite unions, i.e.
if K,L ∈ C, then K ∪ L ∈ C. Furthermore, a semi-AFL is said to be a full AFL
if for each L ∈ C, we have L∗ ∈ C. For more information on these concepts,
see [Berstel1979]. A language class is said to be semilinear if each of its languages
is semilinear.

Certain constructions in this work rely on a somewhat unusual combination
of closure properties, which makes it convenient to give it a name. First, we say
that a language class C is Presburger closed2 if for each language L ∈ C, L ⊆ X∗,
and each semilinear set S ⊆ X⊕, we have L ∩ Ψ−1(S) ∈ C. Moreover, a rational
transduction T ⊆ X∗ × Y∗ is called locally finite if the set TL is finite for each finite
L ⊆ X∗. Second, we say that a language class is a full semi-trio if it is closed
under locally finite transductions. Just as full trios always include the regular
languages, full semi-trios always include the finite languages. Note also that if
we require g to be non-erasing, i.e. g(y) 6= ε for y ∈ Y, then (2.1) still holds
for L ∈ C, where C is a full semi-trio. An example of a full semi-trio that is
also Presburger closed is the class of finite languages. See Section 9.2 for the
aforementioned constructions that require the input languages to belong to a
Presburger closed full semi-trio.

A note on effectiveness We will often say that a language class is effectively
closed under some operation. By this we mean that given representations of lan-
guages in the class, one can effectively determine a representation of the resulting

1In the terms semi-AFL and AFL, the abbreviation “AFL” stands for Abstract Family of Lan-
guages [Berstel1979].

2The name stems from the fact that the semilinear sets are precisely those defined by Presburger
formulae; see p. 9.
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2.1. Automata and Languages

language. For example, a language class C is effectively closed under rational trans-
ductions if there is an algorithm that, given a representation of some language
L ∈ C and a rational transduction T , computes a representation of the language
TL ∈ C. It is effectively Presburger closed if, given a representation of a language
L ∈ C and a semilinear representation of a set S, one can compute a representa-
tion of L∩Ψ−1(S), etc. This convention carries over to types of language classes:
An effective full trio is a language class that is effectively closed under rational
transductions, etc.

It will always be clear from the definition of a language class how its members
are represented. For example, a blind multicounter language is described by a
blind multicounter automaton. A language in Alg(C) (see Section 2.6 for a defini-
tion) is represented by a C-grammar together with descriptions of its right-hand
sides, which will again be clear how to represent.

Pushdown automata and context-free languages A pushdown automaton is a
tupleA = (Q,X, Y,E,q0, F), whereQ is a finite set of states, X and Y are alphabets,
E ⊆ Q×X∗×Y∗×Y∗×Q is a finite set of edges (or transitions), q0 ∈ Q is the initial
state, and F ⊆ Q is the set of final states. The alphabet X is called its input alphabet
and Y its stack alphabet. A configuration of A is a triple (q,u, v), where q ∈ Q,
u ∈ X∗, and v ∈ Y∗. For such a pushdown automaton A and configurations
(q,u, v) and (q ′,u ′, v ′), we write

(q,u, v)→A (q ′,u ′, v ′) if u ′ = ux, v = wy1, and v ′ = wy2
for some w ∈ Y∗ and (q, x,y1,y2,q ′) ∈ E.

The language accepted by A is then

L(A) = {w ∈ X∗ | (q0, ε, ε)→∗A (f,w, ε) for some f ∈ F}.

Note that this definition deviates slightly from the usual textbook definition [Berstel1979].
In the latter, every edge (p, x,y1,y2,q) has |y1| = 1. This means in particular that
in the initial configuration, the stack has to consist of some designated bottom
symbol. Moreover, in our definition, a computation has to end in a configuration
where both a final state is reached and the stack is empty. The textbook defini-
tion usually has two variants: One accepts on final state and one accepts with an
empty stack. In terms of the class of accepted languages, it is easy to see that all
three definitions are equivalent.

The languages accepted by pushdown automata are called context-free and
we use CF to denote the class of context-free languages. An important tool for
proving that a certain language is not context-free is the Iteration Lemma by
Ogden [Ogden1968].

Theorem 2.1.1 (Ogden [Ogden1968]). For each context-free language L, there is an
integer m such that for any word z ∈ L and any choice of at least m distinct marked
positions in z, there is a decomposition z = uvwxy such that:

1. w contains at least one marked position.

2. Either u and v both contain marked positions, or x and y both contain marked
positions.

3. vwx contains at mostm marked positions.
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Chapter 2. Basic concepts

4. uviwxiy ∈ L for every i > 0.

Another tool to examine context-freeness of languages is Parikh’s theorem. It
is useful for proving that particular languages are not context-free, but also for
decision problems involving context-free languages. For some examples of its
numerous applications, see Chapter 7.

Theorem 2.1.2 (Parikh [Parikh1966]). For each context-free language L, Ψ(L) is ef-
fectively semilinear.

An important characterization of the context-free languages is the theorem of
Chomsky and Schützenberger [ChomskySchutzenberger1963] (see also [Berstel1979]).
In order to formulate it, we have to define Dyck languages. For each n ∈ N,
let Xn be the alphabet {ai, āi | 1 6 i 6 n}. The Dyck language (over n pairs of
parentheses) is the smallest language Dn ⊆ X∗n containing ε such that for each
uv ∈ Dn, Dn also contains uaiāiv and uāiaiv. The semi-Dyck language (over n
pairs of parentheses) is the smallest languageD ′n ⊆ X∗n that contains ε and for each
uv ∈ D ′n, D ′n also contains uaiāiv.

Theorem 2.1.3 (Chomsky-Schützenberger [ChomskySchutzenberger1963]). CF = T(D2) = T(D ′2).

Counter automata Let n ∈ N and S be a subset of Zn. An S-restricted counter
automaton is a tuple A = (Q,X,E,q0, F), where Q is a finite set of states, X is
an alphabet, E is a finite subset of Q× X∗ ×Zn ×Q for some n ∈ N, q0 ∈ Q
is the initial state, and F ⊆ Q is the set of final states. A configuration of A is a
triple (q,u,µ) with q ∈ Q, u ∈ X∗, and µ ∈ S. For such an automaton and
configurations (q,u,µ) and (q ′,u ′,µ ′), we write

(q,u,µ)→A (q ′,u ′,µ ′) if u ′ = ux and µ ′ = µ+ κ for some (q, x, κ,q ′) ∈ E.

The language accepted by A is then

L(A) = {w ∈ X∗ | (q0, ε, 0)→∗A (f,w, 0) for some f ∈ F}.

A Zn-restricted counter automaton is called a blind (multi)counter automaton
and an Nn-restricted counter automaton is called a partially blind (multi)counter
automaton. While we will not formally introduce the model of Petri nets in this
work, let us mention that, when operated with labels and final markings [Jantzen1979],
they are essentially equivalent3 to partially blind multicounter automata.

2.2 Monoids

Since in this work, we represent storage mechanisms by monoids, they constitute
a central concept. This section recalls basic notions.

Let M be a monoid. A congruence is an equivalence relation ≡ on M such
that x ≡ y implies uxv ≡ uyv for every u, v ∈ M. Given a congruence ≡, we
can define the quotient monoid M/≡, whose elements are the equivalence classes
with respect to ≡. The operation on M/≡ is given by [x]≡[y]≡ = [xy]≡. The fact

3Strictly speaking, Petri nets do not have states, but this is usually without consequence because
they can be compensated with additional places. This does, however, mean that partially blind multi-
counter automata with n counters correspond to Petri nets with n unbounded places.
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that ≡ is a congruence guarantees that this operation is well-defined. The trivial
monoid is the monoid that contains just one element and is denoted 1. A bijective
morphism is called isomorphism and we say that two monoids are isomorphic if
there is an isomorphism between them.

If M1, . . . ,Mn are monoids, then their direct product consists of the Cartesian
product M1 × · · · ×Mn and the operation that applies Mi’s product in the i-th
component. We writeMn for the direct productM× · · · ×M (n factors).

In each monoidM, we have the subsets

R1(M) = {x ∈M | xy = 1 for some y ∈M},
L1(M) = {x ∈M | yx = 1 for some y ∈M},
H1(M) = {x ∈M | xy = yx = 1 for some y ∈M},
J1(M) = {x ∈M | yxz = 1 for some y, z ∈M}.

It should be noted that R1(M), L1(M), and J1(M) are the R-, L-, H- and J-class,
respectively, of the identity inMwith respect to the well-known Green’s relations
R, L, H, and J [Grillet1995]. Green’s relations are an important concept in the
theory of semigroups and monoids. For our purposes, however, it suffices to
consider the sets R1(M), L1(M),H1(M), and J1(M). Observe that R1(M), L1(M),
and H1(M) are each a submonoid ofM.

The elements of R1(M), L1(M), andH1(M) are also called right-invertible, left-
invertible, and invertible, respectively. If every element of M is invertible, then M
is a group. A subgroup of a monoid M is a submonoid4 that is a group. Note that
H1(M) is always a subgroup ofM.

Presentations and free products One way to describe a monoid is to define its
set of elements and specify the product of any given pair of them. Another ap-
proach is the following. Instead of explicitly providing the product for any pair,
one writes down a set of generators and indicates what equations are to hold
among their products. While the direct product of monoids is simple from the
former perspective, the free product is very natural from the second. A descrip-
tion of a monoid by generators and equations is called a presentation. Let A be a
(not necessarily finite) set of symbols and R ⊆ A∗ ×A∗. The pair (A,R) is called
a (monoid) presentation. The smallest congruence of A∗ containing R is denoted
by ≡R and we will write [w]R for the congruence class of w ∈ A∗. The monoid
presented by (A,R) is defined as A∗/≡R. Hence, two words u, v ∈ A∗ represent
the same element of the monoid if u can be transformed into v by repeatedly
replacing factors x by y for (x,y) ∈ R or (y, x) ∈ R.

Note that since we did not impose a finiteness restriction onA, every monoid
M has a presentation (up to isomorphism): Take a set of symbols A in bijection
with M and let ϕ : A∗ → M be the morphism extending this bijection. With
R = {(u, v) ∈ A∗ ×A∗ | ϕ(u) = ϕ(v)}, the presentation (A,R) presents a monoid
isomorphic toM.

Furthermore, for monoids M0, M1 we can find presentations (A0,R0) and
(A1,R1) such that A0 ∩A1 = ∅. We define the free product M0 ∗M1 to be pre-
sented by (A0 ∪A1,R0 ∪ R1). Note that this definition of the free product de-
pends on the chosen presentation. However, it is easy to see that M0 ∗M1 is

4Note that here, a subgroup being a submonoid implies that the identity of the subgroup coincides
with the identity of M. In the literature on semigroup theory, subgroups are usually only required
to be subsemigroups, meaning that the subgroup’s identity can be any idempotent.
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well-defined up to isomorphism: If (Ai,Ri) and (A ′i,R
′
i) present the same mon-

oid for i = 0, 1, then there are morphisms ϕi : A∗i → A ′∗i such that u ≡Ri v if
and only if ϕi(u) ≡R ′i ϕi(v) for i = 0, 1 and for each w ∈ A ′∗i , i ∈ {0, 1}, there
is a v ∈ A∗i with ϕ(v) ≡R ′i w. If ϕ : (A0 ∪A1)∗ → (A ′0 ∪A

′
1)
∗ is the morphism

extending ϕ0 and ϕ1, then the induced map

(A0 ∪A1)∗/≡R0∪R1 −→ (A ′0 ∪A
′
1)
∗/≡R ′0∪R ′1

[w]R0∪R1 7−→ [ϕ(w)]R ′0∪R
′
1

is well-defined and an isomorphism.
Since A0 and A1 are disjoint, the morphisms defined by [w]Ri 7→ [w]R0∪R1 ,

w ∈ A∗i for i = 0, 1, are injective. By way of these, we will regard M0 and M1
as subsets of M0 ∗M1. Since every word w ∈ (A0 ∪ A1)∗ can be written as
w = u0v1u1 · · · vnun with ui ∈ A∗0, 0 6 i 6 n, and vi ∈ A∗1, 1 6 i 6 n, we
can write every element ofM0 ∗M1 as a product x0y1x1 · · ·ynxn with xi ∈M0,
0 6 i 6 n, and yi ∈ M1, 1 6 i 6 n. These decompositions are not always
unique: If, for example, xj = 1, then

x0y1x1 · · ·ynxn = x0y1x1 · · ·yj−1xj−1yjxjyj+1xj+1 · · ·ynxn
= x0y1x1 · · ·yj−1xj−1 (yjyj+1)︸ ︷︷ ︸

∈M1

xj+1 · · ·ynxn.

However, this is the only situation in which the decomposition is not unique.
With the requirement xi 6= 1 for 0 6 i 6 n and yi 6= 1 for 1 6 i 6 n, the elements
x0, . . . , xn and y1, . . . ,yn are uniquely determined.

The definition of the free product also implies that for every pair of mor-
phisms ψi : Mi → N, i = 0, 1, for some monoid N, there is a unique morphism
ψ : M0 ∗M1 → N extending ψ0 and ψ1, i.e. ψ restricted to Mi agrees with ψi
for i = 0, 1. Furthermore, it is immediate from the definition that the free product
is associative, i.e. (M ∗N) ∗ P ∼=M ∗ (N ∗ P) for monoids M,N,P. Therefore, we
may define the n-fold free product ofM byM(n) =M ∗ · · · ∗M (n factors).

The bicyclic monoid One of the central monoids in this work is the bicyclic
monoid. We define it by a presentation: Let X = {x, x̄} and R = {(xx̄, ε)}. Then
we call the monoid presented by (X,R) the bicyclic monoid and denote it by B.
The elements [x]R and [x̄]R of B are also denoted a and ā, respectively. They are
called the positive and negative generator, respectively. Observe that every element
of B has a unique representation āman form,n ∈N.

2.3 Valence automata

The aim of this work is to generalize insights about automata with storage. More
specifically, we want to generalize results about concrete storage mechanisms
and then, for some larger class of mechanisms, characterize those mechanisms
for which the result still holds and for which it fails.

In order to discuss classes of storage mechanisms, we need a formal model of
automata with storage in which the storage mechanism is given by some parame-
ter. This means by choosing suitable values for the parameter, one can instantiate
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2.3. Valence automata

concrete automata models. With such a model, it is possible to ask: For which
parameter values does the result hold?

A model that turns out to be suitable for this endeavor is the model of valence
automata. Such an automaton consists of a finite state control and a storage
mechanism that is defined by a (possibly infinite) monoid. Here, both the current
content of the storage and the operations thereon are represented as elements of
this monoid: In the beginning, the storage content is the neutral element of the
monoid and in each step, the automaton operates on the storage by multiplying
an element indicated on the used transition.

Valence automata Let us define the model formally. Let M be a monoid. A
valence automaton overM is a tuple A = (Q,X,M,E,q0, F), where

• Q is a finite set of states,

• X is an alphabet, called its input alphabet,

• M is a monoid,

• E ⊆ Q×X∗ ×M×Q is a finite set of edges or transitions,

• q0 ∈ Q is its initial state, and

• F ⊆ Q is its set of final states.

A configuration is a triple (q,u, x) ∈ Q×X∗ ×M. For configurations (q,u, x) and
(q ′,u ′, x ′), let

(q,u, x)→A (q ′,u ′, x ′) if u ′ = uw and x ′ = xz
for some (q,w, z,q ′) ∈ E.

The term ‘valence automaton’ stems from the analogous concept of valence
grammars, which were introduced by Paun1980 [Paun1980]. Details on the lat-
ter can be found in Chapter 3. However, the concept of valence automata had
been known and studied before the work [Paun1980]. Some authors also say
M-automata instead of valence automata over M. For information on related
work on valence automata and other unifying models, the reader is referred to
Section 2.9.

In this work, we measure the expressive power of valence automata by the
class of languages they can accept. The language accepted by A is defined as

L(A) = {w ∈ X∗ | (q0, ε, 1)→∗A (f,w, 1) for some f ∈ F}.

In other words, the automaton accepts all words that label paths from an initial
state to a final state such that the product of the monoid elements is the identity.

The class of languages accepted by valence automata over M is denoted by
VA(M). Sometimes, we will consider all valence automata over monoids from a
class M. We will then write VA(M) for the class of languages accepted by some
valence automaton overMwithM ∈M.

Example 2.3.1. Consider the valence automata A and B in Figs. 2.1a and 2.1b. The
former is a valence automaton over B and the latter is one over Z ×Z. We denote
a transition (p,w,m,q) by drawing an edge labeled w|m from p to q. Initial states
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q0 q1
ε|1

a|[x], b|[x̄] ε|[x̄]

(a) Valence automatonA over B

q0 q1 q2
ε|1

a|(1, 0) b|(0, 1) c|(−1,−1)

ε|1

(b) Valence automaton B over Z2

Figure 2.1: Examples of valence automata

and final states are marked by an incoming and an outgoing arrow, respectively. The
languages accepted by our example automata are

L(A) = {w ∈ {a,b}∗ | |u|a > |u|b for each prefix u of w},
L(B) = {anbncn | n ∈N}.

Before we see in Section 2.4 how to realize concrete storage mechanisms with
monoids, we presents here some basic observations concerning valence autom-
ata with respect to expressive power and decidability. Among other applica-
tions, these will be helpful for understanding how the monoids in Section 2.4
correspond to storage mechanisms.

For the description of the languages accepted by valence automata over a cer-
tain monoid, the identity languages play an important role. An identity language
of M is a language of the form ϕ−1(1), where ϕ : X∗ → M is a morphism and X
is an alphabet.

Example 2.3.2. Consider the additive group Z and the morphism ϕ : X∗ → Z with
X = {a,b} and ϕ(a) = 1 and ϕ(b) = −1. Here, of course, 1 is the usual integer
and not the neutral element of Z. Then the identity language of Z with respect to ϕ is
{w ∈ {a,b}∗ | |w|a = |w|b}.

Suppose ϕi : X∗i →Mi is a morphism for i = 0, 1 such that X0 ∩X1 = ∅. Then the
language ϕ−1

0 (1)�ϕ−1
1 (1) is an identity language of the monoidM0 ×M1.

The class of languages accepted by valence automata over M can be charac-
terized in terms of the identity languages of M. This has been observed, for ex-
ample, by GilmanShapiro1998 [GilmanShapiro1998] and Kambites2009 [Kambites2009].

Theorem 2.3.3. LetM be a monoid. The following are equivalent.

1. L ∈ VA(M)

2. L is a rational transduction of some identity language ofM.

In other words, VA(M) is the smallest full trio containing all identity languages ofM.

Proof. Let A = (Q,X,M,E,q0, F) be a valence automaton over M. Let S ⊆ M
be the finite set of those m ∈ M for which there is a transition (p,w,m,q) in
E. Moreover, let Y be an alphabet in bijection with S and let ϕ : Y∗ → M be the
morphism extending this bijection. Then the transducer B = (Q, Y,X,E ′,q0, F)
with

E ′ = {(p,ϕ−1(m),w,q) | (p,w,m,q) ∈ E}

is easily seen to satisfy L(A) = T(B)ϕ−1(1) (note that T(B) ⊆ Y∗ ×X∗).
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On the other hand, if ϕ : Y∗ →M is a morphism and A = (Q, Y,X,E,q0, F) is
a transducer, then letting

E ′ = {(p,w,ϕ(v),q) | (p, v,w,q) ∈ E}

defines a valence automaton B = (Q,X,M,E ′,q0, F) with L(B) = T(A)ϕ−1(1).

Since the class of rational transductions is closed under composition, the fore-
going fact implies that VA(M) is a full trio for each monoid M. It is also easy to
see that each VA(M) is closed under union. This implies the following, which
has also been mentioned by Fernau and Stiebe [FernauStiebe2002a].

Corollary 2.3.4. For each monoidM, VA(M) is a full semi-AFL.

Using a finitely generated monoid as a storage monoid means that there is a
fixed finite set S that generatesM. We can then write every monoid element on a
transition as a product of elements of S. Intuitively, this means there is a globally
fixed number of operations one can apply to the storage. This is the case, for
example, in the class of pushdown automata with a fixed pushdown alphabet; or
in the class of multicounter automata with a fixed number of counters. Note that
in the case of pushdown automata, confining oneself to two pushdown symbols
does not affect the class of accepted languages. For blind multicounter automata,
on the other hand, the number of counters induces a strict hierarchy of languages
(Theorem 10.1.1).

If we are interested in whether a fixed number of operations suffices in this
sense, the following provides a necessary and sufficient condition for the result-
ing language class. Interestingly, this means whether “a finite subset of opera-
tions suffices” does not depend on the monoid M or a chosen generating set for
M: It only depends on the structure of the resulting language class.

Corollary 2.3.5. For each monoidM, the following conditions are equivalent:

1. There is a finitely generated submonoid N ofM with VA(N) = VA(M).

2. VA(M) is a principal full trio.

Proof. For the direction “1⇒ 2”, we show that VA(N) is a principal full trio if N
is finitely generated. In this case, there is a surjective morphism ϕ : X∗ → N. We
claim that VA(N) is generated, as a full trio, by the identity language L = ϕ−1(1).
By Theorem 2.3.3, it suffices to show that every identity language ofN belongs to
T(L). Suppose K = ψ−1(1) is another identity language for ψ : Y∗ → N. Since ϕ
is surjective, there is for each y ∈ Y a word wy ∈ X∗ with ϕ(wy) = ψ(y). Hence,
if ψ ′ : Y∗ → X∗ is the morphism with y 7→ wy for y ∈ Y, then the language

K = ψ−1(1) = ψ ′−1(ϕ−1(1)) = ψ ′−1(L)

clearly belongs to T(L).
Let us prove “2⇒ 1”. Suppose VA(M) is a principal full trio. Then there is a

language L ∈ VA(M) such that every K ∈ VA(M) can be written as K = TL for
some rational transduction T . In the valence automaton A over M for L, only a
finite set S of elements ofM occurs on the transitions. This means, for the finitely
generated submonoidN = 〈S〉, we have L ∈ VA(N). Since VA(N) is a full trio, we
have VA(M) ⊆ VA(N) and thus VA(N) = VA(M).
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Suppose the two monoidsM0 andM1 each realize a particular storage mech-
anism. Then it is easy to see that the monoid M0 ×M1 realizes the mechanism
in which one has access to both factors independently and simultaneously. The
next theorem describes the effect of such a construction on the expressive power.
It appeared first in [Kambites2009] and can be shown using a simple product
construction.

Theorem 2.3.6 (Kambites2009 [Kambites2009]). LetM1, . . . ,Mn be monoids. Then
the language class VA(M1× · · · ×Mn) consists of precisely those languages of the form

h(L1 ∩ · · · ∩ Ln),

where Li ∈ VA(Mi) for 1 6 i 6 n and h is a morphism.

An immediate consequence of the previous theorem is the following.

Corollary 2.3.7. If VA(Ni) ⊆ VA(Mi) for i = 0, 1, then

VA(N0 ×N1) ⊆ VA(M0 ×M1).

The next lemma is also a consequence of Theorem 2.3.6 and will mostly be
used in contraposition: If we already know that for some n, the class VA(M)
differs from VA(M×Nn), it allows us to conclude VA(M) 6= VA(M×N).

Lemma 2.3.8. Let M and N be monoids. If VA(M×N) = VA(M), then for every
n ∈N, we have VA(M×Nn) = VA(M).

Proof. Suppose VA(M×N) = VA(M) and L ∈ VA(M×Nn). By Theorem 2.3.6,
this means L = h(K ∩ L1 ∩ · · · ∩ Ln) for some K ∈ VA(M), Li ∈ VA(N) for
1 6 i 6 n, and a morphism h. By induction on i, it follows that the intersec-
tion K∩ L1 ∩ · · · ∩ Li belongs to VA(M): For i = 0 this is trivial and if it holds for
i, then

K∩ L1 ∩ · · · ∩ Li+1 = (K∩ L1 ∩ · · · ∩ Li)∩ Li+1 ∈ VA(M×N) ⊆ VA(M)

by Theorem 2.3.6. In particular, K ∩ L1 ∩ · · · ∩ Ln ∈ VA(M) and hence L belongs
to VA(M).

We close this section by presenting two transformations of monoids that can
be easily interpreted in terms of the storage mechanisms they yield.

Direct products and independent mechanisms Suppose a valence automaton
A hasM0×M1 as its storage monoid. This means, every transition ofA holds an
element of M0 and an element of M1 and applies them to the respective storage
components. In the end, it accepts if both components contain the identity.

This means, taking direct products corresponds to using both mechanisms indepen-
dently. For example, since Z is essentially one blind counter, using the monoid
M×Z instead ofMmeans we add a blind counter.
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2.4. Graph monoids

(a)C4 (b) P4 (c) C4, drawn
differently

Figure 2.2: Graphs C4 and P4.

Free products and building stacks Let us consider what happens when we go
from M to B ∗M. By the definition of the free product and the bicyclic monoid,
it is easy to see that if m ∈ M, m 6= 1, then amā cannot occur in a product that
yields the identity: Any word obtained by applying the equations will contain
the symbols a and ā and a word representingm 6= 1 in between them. Similarly,
an element māx with m ∈M and x ∈ B ∗M is not right-invertible. This implies
that every right-invertible element of B ∗M is of the form m0am1 · · ·amn, in
whichm0, . . . ,mn ∈M are uniquely determined.

We interpret this as a stack of entries in M, where a is the separator between
entries. Observe that multiplying ā yields a right-invertible element if and only
if mn = 1 and if that is the case, we arrive at m0am1 · · ·amn−1. Hence, ā acts
as a pop operation. Furthermore, multiplying a is a push operation that starts a
new entry on the top. Moreover, multiplying an element of M manipulates the
topmost entry. Finally, m0am1 · · ·amn is the identity of B ∗M if and only if
n = 0 andm0 = m1 = 1, meaning that the stack is empty.

Therefore, taking the free product with B corresponds to building stacks. In
particular, in the caseM = 1, we build stacks of trivial elements and hence obtain
a partially blind counter. IfM = B, then we have a stack of partially blind counters,
which is precisely a pushdown over two symbols.

2.4 Graph monoids

This section introduces a class of monoids that accommodates a variety of storage
mechanisms. We call these monoids graph monoids5.

Aside from realizing a number of storage mechanisms, they have the advan-
tage that they are closely related to Mazurkiewicz traces [DiekertRozenberg1995]
and that they generalize graph groups (which are also known under the name
right-angled Artin groups) [Charney2007]. The connections to Mazurkiewicz
traces and graph groups allow us to use ideas and results from these areas to un-
derstand valence automata over graph monoids. On the other hand, the language-
and automata-theoretic perspective sometimes simplifies difficult proofs about
graph groups (see, for example, Theorem 2.6.3).

Graphs Graph monoids are defined by graphs. A graph is a pair Γ = (V ,E)
where V is a finite set and E is a subset of {S ⊆ V | 1 6 |S| 6 2}. The elements

5They are not to be confused with the related, but different concept of trace mon-
oids [DiekertRozenberg1995], i.e. monoids of Mazurkiewicz traces, which some authors also call
graph monoids.
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of V are called vertices and those of E are called edges. This means, in our def-
inition of graphs, edges are undirected, but we allow loops. We call Γ simple if
it has no loops, i.e. |S| = 2 for every S ∈ E. Vertices v,w ∈ V are adjacent if
{v,w} ∈ E. If {v} ∈ E for some v ∈ V , then v is called a looped vertex, otherwise it
is unlooped. Given a graph Γ = (V ,E), we write Γ− for its underlying simple graph,
that is, the graph Γ ′ = (V ,E ′), where E ′ = E ∩ {S ⊆ V | |S| = 2}. We call graphs
Γ0 = (V0,E0) and Γ1 = (V1,E1) isomorphic if there is a bijection ϕ : V0 → V1 such
that {v,w} ∈ E0 if and only if {ϕ(v),ϕ(w)} ∈ E1.

A subgraph of Γ is a graph (V ′,E ′) with V ′ ⊆ V and E ′ ⊆ E. Such a subgraph
is called induced (by V ′) if E ′ = {S ∈ E | S ⊆ V ′}, i.e. E ′ contains all edges
from E whose incident vertices are in V ′. By Γ \ v, for v ∈ V , we denote the
subgraph of Γ induced by V \ {v}. For a vertex v ∈ V , the elements of the set
N(v) = {w ∈ V | {v,w} ∈ E} are called neighbors of v.

A looped clique is a graph in which E = {S ⊆ V | 1 6 |S| 6 2}. Moreover, a
clique is a loop-free graph in which any two distinct vertices are adjacent. Finally,
an anti-clique is a graph with E = ∅. A simple path (of length n) is a sequence
x1, . . . , xn of pairwise distinct vertices such that {xi, xi+1} ∈ E for 1 6 i < n. If,
in addition, we have {xn, x1} ∈ E, it is called a cycle (of length n). ByC4, we denote
the graph with four vertices that constitute a cycle such that C4 has a minimal
set of edges. Similarly P4 is the graph with four vertices that constitute a simple
path such that P4 has a minimal set of edges (see Figs. 2.2a and 2.2b).

In slight abuse of terminology, we say the graph Γ has the graph ∆ as an
induced subgraph if Γ has an induced subgraph that is isomorphic to ∆.

Graph monoids With each graph Γ = (V ,E), we associate the presentation
TΓ = (XΓ ,RΓ ) over the alphabet XΓ = {av, āv | v ∈ V}. The set RΓ ⊆ X∗Γ × X

∗
Γ

consists of the following pairs:

(avāv, ε) for each v ∈ V , and (2.2)
(xy,yx) for each x ∈ {av, āv}, y ∈ {aw, āw} with {v,w} ∈ E. (2.3)

This means in particular, we have (avāv, āvav) ∈ RΓ whenever v ∈ V is looped.
To simplify notation, the congruence ≡TΓ is also denoted by ≡Γ and [w]TΓ is also
denoted [w]Γ . With each graph Γ , we associate the monoid

MΓ = X∗Γ/≡Γ .

Hence, MΓ is generated by {[av]Γ , [āv]Γ | v ∈ V} and these elements always
satisfy [av]Γ [āv]Γ = 1, where 1 = [ε]Γ is the identity of MΓ . Moreover, an edge
{v,w} means that the each element of {[av]Γ , [āv]Γ } commutes with each element
of {[aw]Γ , [āw]Γ }. Monoids of the form MΓ are called graph monoids.

If every vertex of Γ is looped, we have avāv ≡Γ āvav ≡Γ ε for v ∈ V
and thus MΓ is a group. Groups that arise as MΓ for such graphs are called
graph groups [Droms1987, LohreySteinberg2008]. They are also known under
the name right-angled Artin groups [Charney2007], partially commutative groups [Diekert1990b,
Wrathall1988], or semifree groups [Baudisch1981]. For more information on these
groups, see [Charney2007].

Examples Before we explain how concrete storage mechanisms can be realized
by graph monoids, let us become familiar with how the graph structure impacts
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the resulting monoid. If Γ consists of one unlooped vertex v, then RΓ contains
only the pair (avāv, ε). By the definition of B, we have MΓ ∼= B in this case.
Moreover, if Γ consists of one looped vertex v, then it is easy to see that MΓ ∼= Z.

Suppose V = V0 ] V1. Let Γi = (Vi,Ei) be the subgraph of Γ induced by
Vi for i = 0, 1. We write Xi = XΓi . If for each v0 ∈ V0 and v1 ∈ V1, we have
{v0, v1} ∈ E, then [x0x1]Γ = [x1x0]Γ for xi ∈ X∗i and hence the map

MΓ0 ×MΓ1 −→MΓ ,
([x]Γ0 , [y]Γ1) 7−→ [xy]Γ

is easily seen to be well-defined and an isomorphism. Furthermore, if there is no
edge {v0, v1} ∈ Ewith v0 ∈ V0 and v1 ∈ V1, then the map

MΓ0 ∗MΓ1 →MΓ

extending the maps MΓi → MΓ with [x]Γi 7→ [x]Γ for i = 0, 1 is again well-
defined and an isomorphism.

Let n = |V |. The isomorphisms above imply that if Γ is a looped clique, then
MΓ ∼= Zn. Furthermore, if Γ contains no edges, then MΓ ∼= B(n). Finally, if Γ is
a clique, then clearly MΓ ∼= Bn.

Storage mechanisms as graph monoids The class of graph monoids accom-
modates several storage mechanisms. Here, we describe some examples. See
Table 2.1 for an overview. Suppose Γ contains at least two vertices and no edges
at all (not even loops). We have seen that then MΓ ∼= B(n), where n = |V |. Ac-
cording to the explanation in Section 2.3, valence automata over B(n) correspond
to pushdown automata (with n stack symbols).

The fact that in this case, valence automata over MΓ are equivalent to push-
down automata can also be seen as follows: The identity language of MΓ with
respect to the generating set {[x]Γ | x ∈ XΓ } is the semi-Dyck language over the
pairs (av, āv) of parentheses. Hence, VA(MΓ) consists of all rational transduc-
tions of a semi-Dyck language over at least two pairs of parentheses. By the the-
orem of Chomsky and Schützenberger (Theorem 2.1.3), VA(MΓ) coincides with
the context-free languages.

As a second example, suppose MΓ is a looped clique. We have seen above
that then MΓ ∼= Zn, where n = |V |. It is obvious that in this case valence autom-
ata over such monoids MΓ are just a syntactic variant of blind counter automata.

For our third example, suppose Γ is a clique. As explained above, we have
MΓ ∼= Bn for n = |V |. This means, MΓ is the direct product of n copies of
the bicyclic monoid, each of which realizes a partially blind counter. Therefore,
valence automata over MΓ are essentially partially blind multicounter automata.

Now suppose Γ is the graph C4. Drawing C4 as in Fig. 2.2c reveals that
MΓ ∼= B(2) ×B(2): The left pair of vertices and the right pair of vertices each
forms the monoid B(2). Moreover, there is an edge from each vertex on the left
to each vertex on the right. Hence MΓ ∼= B(2) ×B(2). Since taking the direct
product of monoids corresponds to combining two storage mechanisms such
that they can be used independently and simultaneously, valence automata over
MΓ are automata with two pushdowns. Since a Turing tape can be realized us-
ing two pushdowns, it is clear that VA(MΓ) is the class of recursively enumerable
languages.
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Graph Γ Monoid MΓ Storage mechanism

B(3) Pushdown (with three symbols)

B3 Three partially blind counters

Z3 Three blind counters

B(2) ×Z2 Pushdown (with two symbols) and
two blind counters

B(2) ×B3 Pushdown and three partially blind counters

B(2) ×B(2) Two pushdowns (with two symbols each)

Table 2.1: Examples of storage mechanisms
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Of course, using direct products, we can realize every combination of storage
mechanisms mentioned above. As a notable example, suppose |V | = n > 2 and Γ
has no loops and is one edge short of being a clique. Then the two non-adjacent
vertices {v,w} together form the monoid B(2) and V \ {v,w} is a clique. Hence,
we have MΓ ∼= B(2) × Bn−2. This means, a valence automaton over MΓ has
access to a pushdown and n− 2 partially blind counters. Such automata are, of
course, equivalent to Petri nets with a pushdown, for which we will also use the
term pushdown Petri net. It is a well-known open problem whether these models
have a decidable reachability problem [Reinhardt2008].

If Γ consists of two non-adjacent looped vertices, then MΓ ∼= Z ∗Z. The ex-
pressive power of valence automata over Z ∗Z is described by the following
reformulation of the theorem of Chomsky and Schützenberger (Theorem 2.1.3).
The reformulation has been proved by Corson [Corson2005] and Kambites [Kambites2009],
the latter of whom observed the equivalence to the theorem of Chomsky and
Schützenberger. The group Z ∗Z is also known as the free group of rank 2.

Theorem 2.4.1 (Chomsky-Schützenberger/Corson/Kambites). VA(Z ∗Z) equals
the class of context-free languages.

2.5 Semilinear intersections and powers of Z

Since we will occasionally find ourselves in the situation that we understand the
languages in VA(M) and want to describe the languages in VA(M ×Zn), this
section introduces an operator on language classes that provides such a descrip-
tion. This means, in particular, we describe the effect of adding blind counters on
the resulting language class.

Semilinear intersections Let C be a language class. Then SLI(C) denotes the
class of languages of the form

h(L∩Ψ−1(S)),

where L ⊆ X∗ is in C, the set S ⊆ X⊕ is semilinear, and h : X∗ → Y∗ is a morphism.

Proposition 2.5.1. Let C be an effective full semi-AFL. Then SLI(C) is an effective Pres-
burger closed full semi-AFL. In particular, SLI(SLI(C)) = SLI(C).

Proof. Let L ∈ C, L ⊆ X∗, S ⊆ X⊕ semilinear, and h : X∗ → Y∗ be a morphism.
If T ⊆ Y∗ × Z∗ is a rational transduction, then Th(L ∩Ψ−1(S)) = U(L ∩Ψ−1(S)),
where U ⊆ X∗ ×Z∗ is the rational transduction

U = {(u, v) ∈ X∗ ×Z∗ | (h(u), v) ∈ T }.

We may assume that X∩Z = ∅. Construct a regular language R ⊆ (X∪Z)∗ with
U = {(πX(w),πZ(w)) | w ∈ R}. With this, we have

U(L∩Ψ−1(S)) = πZ

(
(R∩ (L�Z∗))∩Ψ−1(S+Z⊕)

)
.

Since C is an effective full semi-AFL, and thus R∩ (L�Z∗) is effectively in C, the
right-hand side is effectively contained in SLI(C). This proves that SLI(C) is an
effective full trio.
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Let us prove effective closure under union. Now suppose Li ⊆ X∗i , Si ⊆ X⊕i ,
and h : X∗i → Y∗ for i = 1, 2. If X̄2 is a disjoint copy of X2 with bijection
ϕ : X2 → X̄2, then

h1(L1 ∩Ψ−1(S1))∪ h2(L2 ∩Ψ−1(S2)) = h((L1 ∪ϕ(L2))∩Ψ−1(S1 ∪ϕ(S2))),

where h : X1 ∪ X̄2 → Y is the map for which h(x) = h1(x) for x ∈ X1 and
h(x) = h2(ϕ(x)) for x ∈ X̄2. This proves that SLI(C) is effectively closed un-
der union.

It remains to be shown that SLI(C) is Presburger closed. Suppose L ∈ C,
L ⊆ X∗, S ⊆ X⊕ is semilinear, h : X∗ → Y∗ is a morphism, and T ⊆ Y⊕ is another
semilinear set. Let ϕ : X⊕ → Y⊕ be the morphism with ϕ(Ψ(w)) = Ψ(h(w)) for
every w ∈ X∗. Moreover, consider the set

T ′ = {µ ∈ X⊕ | ϕ(w) ∈ T } = {Ψ(w) | w ∈ X∗, Ψ(h(w)) ∈ T }.

It is clearly Presburger definable (because T is) and hence effectively semilinear.
Furthermore, we have

h(L∩Ψ−1(S))∩Ψ−1(T) = h(L∩Ψ−1(S∩ T ′)).

This proves that SLI(C) is effectively Presburger closed.

We will often use the following fact to show that certain language classes are
semilinear.

Proposition 2.5.2. If C is semilinear, then so is SLI(C). Moreover, if C is effectively
semilinear, then so is SLI(C).

Proof. Since morphisms effectively preserve semilinearity, it suffices to show that
Ψ(L ∩Ψ−1(S)) is (effectively) semilinear for each L ∈ C, L ⊆ X∗, and semilinear
S ⊆ X⊕. This, however, is easy to see since Ψ(L ∩ Ψ−1(S)) = Ψ(L) ∩ S and the
semilinear subsets of X⊕ are closed under intersection (they coincide with the
Presburger definable sets). Furthermore, if a semilinear representation of Ψ(L)
can be computed, this is also the case for Ψ(L)∩ S.

We are now ready for our description of the languages in VA(M ×Zn) in
terms of VA(M) and the operator SLI(·).

Proposition 2.5.3. Let M be a monoid. Then SLI(VA(M)) =
⋃
n>0 VA(M×Zn).

Moreover, this equality is effective.

Proof. We start with the inclusion “⊆”. Since the right-hand side is closed under
morphisms and union, it suffices to show that for each L ∈ VA(M), L ⊆ X∗, and
semilinear S ⊆ X⊕, we have L ∩ Ψ−1(S) ∈ VA(M×Zn) for some n > 0. Let
n = |X| and pick a linear order on X. This induces an embedding X⊕ → Zn, by
way of which we consider X⊕ as a subset of Zn.

Suppose L = L(A) for a valence automaton A over M. The new valence au-
tomatonA ′ overM×Zn simulatesA and, ifw is the input read byA, adds Ψ(w)
to the Zn component of the storage monoid. When A reaches a final state, A ′

nondeterministically changes to a new state q1, in which it nondeterministically
subtracts an element of S from the Zn component. Afterwards, A ′ switches to
another new state q2, which is the only accepting state in A ′. Clearly, A ′ accepts
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a word w if and only if w ∈ L(A) and Ψ(w) ∈ S, hence L(A ′) = L(A) ∩Ψ−1(S).
This proves “⊆”.

Suppose L = L(A) for some valence automaton A = (Q,X,M×Zn,E,q0, F).
We construct a valence automatonA ′ overM as follows. The input alphabetX ′ of
A ′ is the set of pairs (w,µ) ∈ X∗ ×Zn for which there is an edge (p,w, (m,µ),q)
in E for some p,q ∈ Q,m ∈M. A ′ has edges

E ′ = {(p, (w,µ),m,q) | (p,w, (m,µ),q) ∈ E}.

In other words, whenever A reads w and adds (m,µ) ∈ M ×Zn to its stor-
age monoid, A ′ adds m and reads (w,µ) from the input. Let ψ : X ′⊕ → Zn

be the morphism that projects the symbols in X ′ to the right component and let
h : X ′∗ → X∗ be the morphism that projects the symbols in X ′ to the left com-
ponent. Note that the set S = ψ−1(0) ⊆ X ′⊕ is Presburger definable and hence
effectively semilinear. We clearly have L(A) = h(L(A ′)∩Ψ−1(S)) ∈ SLI(VA(M)).
This proves “⊇”. Clearly, all constructions in the proof can be carried out effec-
tively.

2.6 Algebraic extensions

This section is devoted to a language theoretic concept, algebraic extensions.
They will be used here to describe how taking the free product (and a more gen-
eral product construction) affects the class of languages accepted by valence au-
tomata. In particular, we will describe the effect of building stacks on the resulting
language class.

Algebraic extensions were invented by van Leeuwen [vanLeeuwen1974] in
an effort to generalize Parikh’s theorem (see Theorem 2.6.7).

Algebraic extensions Let C be a class of languages. A C-grammar is a quadruple
G = (N, T ,P,S) where N and T are disjoint alphabets and S ∈ N. The symbols
in N and T are called the nonterminals and the terminals, respectively. P is a finite
set of pairs (A,M) with A ∈ N and M ⊆ (N ∪ T)∗, M ∈ C. A pair (A,M) ∈ P is
called a production of G and also denoted by A →M. The set M is the right-hand
side of the production A→M.

We write x ⇒G y if x = uAv and y = uwv for some u, v,w ∈ (N ∪ T)∗ and
(A,M) ∈ P with w ∈ M. A word w with S ⇒∗G w is called a sentential form of G
and we write SF(G) for the set of sentential forms of G. The language generated by
G is L(G) = SF(G)∩ T∗. Languages generated by C-grammars are called algebraic
over C. The class of all languages that are algebraic over C is called the algebraic
extension of C and denoted Alg(C). We say a language class C is algebraically closed
if Alg(C) = C. The grammars G and H are equivalent if L(G) = L(H). If C is the
class of finite languages, C-grammars are also called context-free grammars and are
known to generate precisely the context-free languages.

A nonterminal A ∈ N is called reachable if there are u, v ∈ (N ∪ T)∗ with
S ⇒∗G uAv. It is said to be productive if there is a word w ∈ T∗ with A ⇒∗G w.
The C-grammar G is called reduced if each of its nonterminals is reachable and
productive. Of course, every C-grammar has a reduced equivalent. If C is an
effective full semi-trio and emptiness is decidable for languages in C, then a re-
duced equivalent can be determined effectively: First, we compute the set of
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productive nonterminals. We initialize N0 = ∅ and then successively compute

Ni+1 = {A ∈ N | L∩ (Ni ∪ T)∗ 6= ∅ for some A→ L in P}.

Then at some point,Ni+1 = Ni andNi contains precisely the productive nonter-
minals. Using a similar method, one can compute the set of reachable nontermi-
nals. Hence, one can compute the set N ′ ⊆ N of nonterminals that are reachable
and productive. The new grammar is then obtained by replacing each produc-
tionA→ LwithA→ (L∩ (N ′ ∪ T)∗) and removing all productionsA→ Lwhere
A /∈ N ′.

Our first observation concerning algebraic extensions is that they have useful
closure properties, provided that C satisfies some mild closure properties.

Proposition 2.6.1. Let C be an effective full semi-trio. Then Alg(C) is an effective full
semi-AFL.

Proof. Since Alg(C) is clearly effectively closed under union, we only prove effec-
tive closure under rational transductions.

Let G = (N, T ,P,S) be a C-grammar and let U ⊆ T∗ × X∗ be a rational trans-
duction. Since we can easily construct a C-grammar for aL(G) (just add a pro-
duction S ′ → {aS}) and the rational transduction (a, ε)U = {(au, v) | (u, v) ∈ U},
we may assume that L(G) ⊆ T+.

Let U be given by the automaton A = (Q, T ,X,E,q0, F). We may assume that

E ⊆ Q× ((T × {ε})∪ ({ε}×X))×Q

and F = {f}. We regard Z = Q× T ×Q and N ′ = Q×N×Q as alphabets. For
each p,q ∈ Q, let Up,q ⊆ (N ∪ T)∗ × (N ′ ∪ Z)∗ be the transduction such that for
w = w1 · · ·wn, w1, . . . ,wn ∈ N∪ T , n > 1, the set Up,q(w) consists of all words

(p,w1,q1)(q1,w2,q2) · · · (qn−1,wn,q)

with q1, . . . ,qn−1 ∈ Q. Moreover, let Up,q(ε) = {ε} if p = q and Up,q(ε) = ∅
if p 6= q. Observe that Up,q is a locally finite rational transduction. The new
grammar G ′ = (N ′,Z,P ′, (q0,S, f)) has productions (p,B,q)→ Up,q(L) for each
p,q ∈ Q and B → L ∈ P. Let σ : Z∗ → P(X∗) be the regular substitution defined
by

σ((p, x,q)) = {w ∈ X∗ | (p, (ε, ε))→∗A (q, (x,w))}.

We claim that U(L(G)) = σ(L(G ′)). First, it can be shown by induction on the
number of derivation steps that SF(G ′) = Uq0,f(SF(G)). In particular, we have
the equation L(G ′) = Uq0,f(L(G)). Since for every language K ⊆ T+, we have
σ(Uq0,f(K)) = UK, we may conclude σ(L(G ′)) = U(L(G)).

Alg(C) is clearly effectively closed under Alg(C)-substitutions. Since C con-
tains the finite languages, this means Alg(C) is closed under Reg-substitutions.
Hence, we can construct a C-grammar for U(L(G)) = σ(L(G ′)).

2.6.1 Free products with amalgamation

As mentioned above, we wish to describe the languages in VA(M0 ∗M1) in terms
of algebraic extensions and of the languages in VA(M0) and VA(M1). In fact, this
description is also available for a more general product, in which the two factors
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are “glued together” along a common submonoid. This product is called free
product with amalgamation. It will be used in Chapter 6, which characterizes
those graph products that admit only context-free languages.

Let M0, M1 be monoids with M0 ∩M1 = ∅ and let θi : N →Mi be an injec-
tive morphism for each i ∈ {0, 1}. Moreover, let ≈ be the smallest congruence in
M0 ∗M1 such that θ0(a) ≈ θ1(a) for every a ∈ N. Then the monoid

M0 ∗NM1 = (M0 ∗M1)/≈

is called a free product with amalgamation. Since the notation M0 ∗NM1 does not
make the maps θ0, θ1 explicit, they will always be clear from the context. Clearly,
if N is the trivial monoid, thenM0 ∗NM1 ∼=M0 ∗M1.

If [m] denotes the equivalence class of m ∈ M0 ∗NM1 with respect to ≈,
then the morphisms ψi : Mi → M0 ∗NM1 for i ∈ {0, 1} with ψi(m) = [m] for
m ∈Mi are called the canonical morphisms. Here, we will only be concerned with
the situation where N is a group, in which case the following holds. For a proof,
we refer the reader to [LohreySenizergues2008].

Lemma 2.6.2. Let θi : N → Mi for i ∈ {0, 1} be injective morphisms. If N is a group,
then the following holds.

1. The canonical morphismsMi →M0 ∗NM1 are injective.

2. Suppose t1, . . . , tn ∈ M0 ∪M1 such that tj ∈ Mi if and only if tj+1 ∈ M1−i
for 1 6 j < n and i ∈ {0, 1}. Then t1 · · · tn ≈ 1 implies that for some index
1 6 j 6 n, we have tj ∈ θ0(N)∪ θ1(N).

We are now ready to describe the languages in VA(M0 ∗NM1) in terms of lan-
guages in VA(M0) and VA(M1). The following result appeared in [BuckheisterZetzsche2013a]
and in the special case of the free product in [Zetzsche2013a].

Theorem 2.6.3. Let F be a finite group and θi : F →Mi be an injective morphism6 for
i = 0, 1. Then VA(M0 ∗FM1) ⊆ Alg(VA(M0)∪VA(M1)).

We will see later (Theorem 2.6.7) that algebraic extensions preserve semilin-
earity. Therefore, Theorem 2.6.3 implies that the properties of VA(M) being semi-
linear or context-free are each preserved under taking free products with amal-
gamation over a finite identified subgroup. In the case where the factors are
residually finite groups, the preservation of semilinearity was already shown by
LohreySteinberg2008 [LohreySteinberg2008].

Proof of Theorem 2.6.3. Since the algebraic extension of a full trio is again a full
trio (Proposition 2.6.1), it suffices to show that with respect to some generat-
ing set S ⊆ M0 ∗FM1, the identity language of M0 ∗FM1 is algebraic over
VA(M0)∪VA(M1).

For i ∈ {0, 1}, let Si ⊆Mi be a finite generating set forMi such that θi(F) ⊆ Si.
Furthermore, let Xi be an alphabet in bijection with Si and let ϕi : X∗i → Mi be
the morphism extending this bijection. Moreover, let Yi ⊆ Xi be the subset with
ϕi(Yi) = θi(F). Let ψi : Mi → M0 ∗FM1 be the canonical morphism. Since
F is a group, ψ0 and ψ1 are injective by Lemma 2.6.2. Let X = X0 ∪ X1 and

6Recall that here, morphisms are always monoid morphisms (as opposed to semigroup mor-
phisms), which means that θi(1) has to be the identity ofMi.
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let ϕ : X∗ → M0 ∗FM1 be the morphism extending ψ0ϕ0 and ψ1ϕ1. Then the
identity language of M0 ∗FM1 is ϕ−1(1) and we shall prove the theorem by
showing that ϕ−1(1) is algebraic over the language class VA(M0)∪VA(M1).

For each i ∈ {0, 1} and f ∈ F, we define Li,f = ϕ−1
i (θi(f)) and write yi,f for the

symbol in Yi with ϕi(yi,f) = θi(f
−1). Since θi(1) = 1, we have Li,1 ∈ VA(Mi).

Furthermore, since F is a group, the equation ϕi(w) = θi(f) is equivalent to
θi(f

−1)ϕi(w) = θi(1). This means we have

Li,f = {w ∈ X∗i | yi,fw ∈ Li,1}

and can thus obtain Li,f from Li,1 using a rational transduction. Hence, we have
Li,f ∈ VA(Mi).

Let C = VA(M0)∪VA(M1). Since for each C-grammar G, it is clearly possible
to construct a C-grammar G ′ such that L(G ′) consists of all sentential forms of G,
it suffices to construct a C-grammar G = (N, T ,P,S) withN∪ T = X and S⇒∗G w
if and only if ϕ(w) = 1 for w ∈ X∗. We construct G = (N, T ,P,S) as follows. Let
N = Y0 ∪ Y1 and T = (X0 ∪X1) \ (Y0 ∪ Y1). As productions, we have y→ L1−i,f
for each y ∈ Yi, where θi(f) = ϕi(y). Since 1 ∈ θi(F), there is an ei ∈ Yi with
ϕi(ei) = 1. As the start symbol, we choose S = e0. We claim that for w ∈ X∗, we
have S⇒∗G w if and only if ϕ(w) = 1.

The “only if” follows from the fact that ϕ(u) = ϕ(v) whenever u ⇒G v for
u, v ∈ X∗. Thus, let w ∈ X∗ with ϕ(w) = 1. We write w = w1 · · ·wn such that
wj ∈ X∗0 ∪ X

∗
1 for all 1 6 j 6 n such that wj ∈ X∗i if and only if wj+1 ∈ X∗1−i for

i ∈ {0, 1} and 1 6 j < n. We show by induction on n that S⇒∗G w. For n 6 1, we
have w ∈ X∗i for some i ∈ {0, 1}. Since 1 = ϕ(w) = ψi(ϕi(w)) and ψi is injective,
we have ϕi(w) = 1 = θi(1) and hence w ∈ Li,1. This means S = e0 ⇒G w or
S = e0 ⇒G e1 ⇒G w, depending on whether i = 1 or i = 0.

Now let n > 2. Since ϕ(w1 · · ·wn) = 1, Lemma 2.6.2 provides a j ∈ {1, . . . ,n}
and an i ∈ {0, 1} with wj ∈ X∗i and ϕi(wj) ∈ θi(F). Thus, with θi(f) = ϕ(wj)
we have wj ∈ Li,f. Hence, if we choose y ∈ Y1−i with ϕ1−i(y) = θi(f), then
w ′ = w1 · · ·wj−1ywj+1 · · ·wn ⇒G w. For w ′ the induction hypothesis holds,
meaning S⇒∗G w

′ and thus S⇒∗G w.

Theorem 2.6.3 tells us that the languages in VA(M0 ∗FM1) are confined to
the algebraic extension of VA(M0) ∪ VA(M1). The rest of this section comple-
ments Theorem 2.6.3 by describing monoids N such that the algebraic extension
of VA(M) is confined to VA(N). We need two auxiliary lemmas, for which the
following notation will be convenient. We write M ↪→ N for monoids M,N if
there is a morphism ϕ : M→ N such that ϕ−1(1) = {1}. Clearly, if M ↪→ N, then
VA(M) ⊆ VA(N): Replacing in a valence automaton over M all elements m ∈M
with ϕ(m) yields a valence automaton over N that accepts the same language.

Lemma 2.6.4. IfM ↪→M ′ and N ↪→ N ′, then we haveM ∗N ↪→M ′ ∗N ′.

Proof. Suppose ϕ : M → M ′ and ψ : N → N ′ are morphisms with ϕ−1(1) = {1}
and ψ−1(1) = {1}. Then defining κ : M ∗N→M ′ ∗N ′ as the morphism with
κ|M = ϕ and κ|N = ψ clearly yields κ−1(1) = 1.

Lemma 2.6.5. Let M be a monoid with R1(M) 6= {1}. Then B(n) ∗M ↪→ B ∗M for
every n > 1. In particular, VA(B ∗M) = VA(B(n) ∗M) for every n > 1.
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Proof. Observe that if B(n) ∗M ↪→ B ∗M and B ∗B ∗M ↪→ B ∗M, then

B(n+1) ∗M ∼= B ∗ (B(n) ∗M) ↪→ B ∗ (B ∗M) ↪→ B ∗M.

Therefore, it suffices to prove B ∗B ∗M ↪→ B ∗M.
Let Bs = 〈s, s̄ | ss̄ = 1〉 for s ∈ {p,q, r}. We show Bp ∗Bq ∗M ↪→ Br ∗M. Sup-

pose M is presented by (X,R). We regard the monoids Bp ∗Bq ∗M and Br ∗M
as embedded into Bp ∗Bq ∗Br ∗M, which by definition of the free product, has
a presentation (Y,S), where Y = {p, p̄,q, q̄, r, r̄} ∪ X and S consists of R and the
equations ss̄ = 1 for s ∈ {p,q, r}. Forw ∈ Y∗, we write [w] for the class ofw in the
congruence generated by S. Since R1(M) 6= {1}, we find u, v ∈ X∗ with [uv] = 1
and [u] 6= 1. and let ϕ : ({p, p̄,q, q̄} ∪ X)∗ → ({r, r̄} ∪ X)∗ be the morphism with
ϕ(x) = x for x ∈ X and

p 7→ rr, p̄ 7→ r̄r̄,
q 7→ rur, q̄ 7→ r̄vr̄.

We show by induction on |w| that [ϕ(w)] = 1 implies [w] = 1. Since this is
trivial for w = ε, we assume |w| > 1. Now suppose [ϕ(w)] = [ε] for some
w ∈ ({p, p̄,q, q̄} ∪ X)∗. If w ∈ X∗, then [ϕ(w)] = [w] and hence [w] = 1. Other-
wise, we have ϕ(w) = xryr̄z for some y ∈ X∗ with [y] = 1 and [xz] = 1. This
means w = fsys ′g for s, s ′ ∈ {p,q} with ϕ(fs) = xr and ϕ(s ′g) = r̄z. If s 6= s ′,
then s = p and s ′ = q; or s = q and s ′ = p. In the former case

[ϕ(w)] = [ϕ(f) rr y r̄vr̄ ϕ(g)] = [ϕ(f)rvr̄ϕ(g)] 6= 1

since [v] 6= 1 and in the latter

[ϕ(w)] = [ϕ(f) rur y r̄r̄ ϕ(g)] = [ϕ(f)rur̄ϕ(g)] 6= 1

since [u] 6= 1. Hence s = s ′. This means 1 = [w] = [fsys̄g] = [fg] and also
1 = [ϕ(w)] = [ϕ(fg)] and since |fg| < |w|, induction yields [w] = [fg] = 1.

Hence, we have shown that [ϕ(w)] = 1 implies [w] = 1. Since, on the other
hand, [u] = [v] implies [ϕ(u)] = [ϕ(v)] for all u, v ∈ ({p, p̄,q, q̄} ∪ X)∗, we can lift
ϕ to a morphism witnessing Bp ∗Bq ∗M ↪→ Br ∗M.

The following result is the announced counterpart of Theorem 2.6.3. Observe
that since VA(B ∗ B) is the class of languages accepted by pushdown autom-
ata and Alg(Reg) = Alg(VA(1)) is clearly the class of languages generated by
context-free grammars, its first statement generalizes the equivalence between
pushdown automata and context-free grammars. Moreover, the second state-
ment describes the language class that is obtained when we go from one storage
mechanism to the other by building stacks.

Theorem 2.6.6. For every monoid M, VA(B ∗B ∗M) = Alg(VA(M)). Moreover, if
R1(M) 6= {1}, then VA(B ∗M) = Alg(VA(M)).

Proof. It suffices to prove the first statement: If R1(M) 6= {1}, then Lemma 2.6.5
implies VA(B ∗M) = VA(B ∗B ∗M). Since VA(B) ⊆ CF, Theorem 2.6.3 yields

VA(B ∗N) ⊆ Alg(VA(B)∪VA(N)) ⊆ Alg(VA(N))
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for every monoid N. Therefore,

VA(B ∗B ∗M) ⊆ Alg(VA(B ∗M)) ⊆ Alg(Alg(VA(M))) = Alg(VA(M)).

It remains to be shown that Alg(VA(M)) ⊆ VA(B ∗B ∗M).
Suppose G = (N, T ,P,S) is a reduced VA(M)-grammar and let X = N ∪ T .

Since VA(M) is closed under union, we may assume that for each B ∈ N, there is
precisely one production B→ LB in P. For each nonterminal B ∈ N, there is a va-
lence automatonAB = (QB,X,M,EB,qB0 , FB) overMwith L(AB) = LB. We may
clearly assume that QB ∩QC = ∅ for B 6= C and that for each (p,w,m,q) ∈ EB,
we have |w| 6 1.

In order to simplify the correctness proof, we modify G. Let b and c be new
symbols and let G ′ be the grammar G ′ = (N, T ∪ {b, c},P ′,S), where P ′ consists
of the productions B→ bLc for B→ L ∈ P. Moreover, let

K = {v ∈ (N∪ T ∪ {b, c})∗ | u⇒∗G ′ v, u ∈ LS}.

Then L(G) = πT (K∩ (T ∪ {b, c})∗) and it suffices to show K ∈ VA(B ∗B ∗M).
LetQ =

⋃
B∈NQB. For each q ∈ Q, let Bq = 〈q, q̄ | qq̄ = 1〉 be an isomorphic

copy of B. Let M ′ = Bq1 ∗ · · · ∗ Bqn ∗M, where Q = {q1, . . . ,qn}. We shall
prove K ∈ VA(M ′), which implies K ∈ VA(B ∗ B ∗M) by Lemma 2.6.5 since
R1(B ∗M) 6= {1}.

Let E =
⋃
B∈N EB, F =

⋃
B∈N FB. The new set E ′ consists of the following

transitions:

(p, x,m,q) for (p, x,m,q) ∈ E, (2.4)

(p, b,mq,qB0 ) for (p,B,m,q) ∈ E, B ∈ N, (2.5)
(p, c, q̄,q) for p ∈ F, q ∈ Q. (2.6)

We claim that with A ′ = (Q,N∪ T ∪ {b, c},M ′,E ′,qS0 , F), we have L(A ′) = K.
Let v ∈ K, where u⇒nG ′ v for some u ∈ LS. We show v ∈ L(A ′) by induction

on n. For n = 0, we have v ∈ LS and can use transitions of type (2.4) inherited
from AS to accept v. If n > 1, let u ⇒n−1

G ′ v ′ ⇒G ′ v. Then v ′ ∈ L(A ′) and
v ′ = xBy, v = xbwcy for some B ∈ N, w ∈ LB. The run for v ′ uses a transition
(p,B,m,q) ∈ E. Instead of using this transition, we can use (p, b,mq,qB0 ), then
execute the (2.4)-type transitions forw ∈ LB, and finally use (f, c, q̄,q), where f is
the final state in the run for w. This has the effect of reading bwc from the input
and multiplying mq1q̄ = m to the storage monoid. Hence, the new run is valid
and accepts v. Hence, v ∈ L(A ′). This proves K ⊆ L(A ′).

In order to show L(A ′) ⊆ K, consider the morphisms ϕ : (T ∪ {b, c})∗ → B,
ψ : M ′ → B with ϕ(x) = 1 for x ∈ T , ϕ(b) = a, ϕ(c) = ā, ψ(q) = a for q ∈ Q,
ψ(q̄) = ā, and ψ(m) = 1 for m ∈ M. The transitions of A ′ are constructed such
that (p, ε, 1) →∗A ′ (q,w,m) implies ϕ(w) = ψ(m). In particular, if v ∈ L(A ′),
then π{b,c}(v) is a semi-Dyck word with respect to b and c.

Let v ∈ L(A ′) and let n = |w|b. We show v ∈ K by induction on n. If
n = 0, then the run for v only used transitions of type (2.4) and hence v ∈ LS.
If n > 1, since π{b,c}(v) is a semi-Dyck word, we can write v = xbwcy for some
w ∈ (N∪ T)∗. Since b and c can only be produced by transitions of the form (2.5)
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and (2.6), respectively, the run for v has to be of the form

(qS0 , ε, 1)→∗A ′ (p, x, r)

→A ′ (qB0 , xb, rmq)
→∗A ′ (f, xbw, rmqs)

→A ′ (q ′, xbwc, rmqsq ′)
→∗A ′ (f

′, xbwcy, rmqsq ′t)

for some p,q,q ′ ∈ Q, B ∈ N, (p,B,m,q) ∈ E, f, f ′ ∈ F, r, t ∈ M ′, and s ∈ M
and with rmqsq ′t = 1. This last condition implies s = 1 and q = q ′, which
in turn entails rmt = 1. This also means (p,B,m,q ′) = (p,B,m,q) ∈ E and
(qB0 , ε, 1) →∗A ′ (f,w, s) = (f,w, 1) and hence w ∈ LB. Using the transition
(p,B,m,q ′) ∈ E, we have

(qS0 , ε, 1)→∗A ′ (p, x, r)
→A ′ (q ′, xB, rm)

→∗A ′ (f
′, xBy, rmt).

Hence xBy ∈ L(A ′) and |xBy|b < |v|b. Thus, induction yields xBy ∈ K and since
xBy⇒G ′ xbwcy, we have v = xbwcy ∈ K. This proves L(A ′) = K.

2.6.2 Parikh images

When establishing semilinearity of certain classes VA(M), we will often rely on
the following result of van Leeuwen. Essentially the same fact was shown by
Greibach in her work [Greibach1972], which formulates it using nested iterated
substitutions instead of algebraic extensions.

Theorem 2.6.7 (van Leeuwen [vanLeeuwen1974]). If C is semilinear, then so is
Alg(C).

On the one hand, this can be derived from Parikh’s Theorem: In a C-grammar,
replace each right-hand side by a Parikh equivalent regular language; this is pos-
sible since C is semilinear. The language of the new grammar is Parikh equivalent
and context-free. Hence, it is semilinear by Parikh’s Theorem. On the other hand,
van Leeuwen deduces it from a (slight variant) of the following relative version.

Theorem 2.6.8 (vanLeeuwen1974 [vanLeeuwen1974]). For each substitution closed
full semi-AFL C, we have Ψ(Alg(C)) = Ψ(C). Moreover, if C exhibits these closure
properties effectively, then this equality is effective7 as well.

The generality of Theorem 2.6.8 allowed van Leeuwen to provide a very el-
egant inductive proof. Since the same principle will shape the construction of
Parikh annotations in Section 9.2, this proof is instructive and therefore included
here. Its key idea is a decomposition of C-grammars and since we will use it
again later on, we give it a name.

7This means given a language in Alg(C), one can construct a Parikh equivalent language in C.
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Van Leeuwen decomposition Let C be a substitution closed language class and
G = (N, T ,P,S) be a C-grammar with |N| > 2. We choose an A ∈ N \ {S} and
define

GA = ({A}, T ∪N \ {A},PA,A), where PA = {B→ L ∈ P | B = A}.

In other words, PA contains all productions of Gwhose left-hand side is A. Con-
sider the substitution σ : (T ∪N)∗ → P((T ∪N \ {A})∗) with σ(A) = L(GA) and
σ(x) = {x} for x ∈ T ∪N \ {A}. Let G ′ be the C-grammar with

G ′ = (N \ {A}, T ,P ′,S), where P ′ = {B→ σ(L) | B→ L ∈ P}.

The two grammarsGA andG ′ together constitute a van Leeuwen decomposition. It
is easy to see that L(G ′) = L(G), which justifies the term ‘decomposition’.

What makes the van Leeuwen decomposition useful is that GA has just one
nonterminal and G ′ has one less nonterminal than G. Hence, using induction,
the decomposition allows us to concentrate on substitutions and grammars with
one nonterminal.

We will use the fact that grammars preserve Parikh equivalence.

Lemma 2.6.9. Let C be any language class. If G is a C-grammar and Ḡ is obtained
from G by replacing each right-hand side with a Parikh-equivalent language, then we
have Ψ(L(Ḡ)) = Ψ(L(G)). In particular, if σ, τ : X∗ → P(Y∗) are substitutions with
Ψ(σ(x)) = Ψ(τ(x)) for each x ∈ X and Ψ(L) = Ψ(K), then Ψ(σ(L)) = Ψ(τ(K)).

Lemma 2.6.10. Suppose C is a substitution closed full semi-AFL. If G is a C-grammar
with one nonterminal, then Ψ(L(G)) ∈ Ψ(C).

Proof. Since C is closed under finite unions, we may assume thatG = ({S}, T ,P,S)
comprises just one production S → L. Using simple rational transductions, one
can obtain the languages L0 = L∩ T∗ and

L1 = {uv | u, v ∈ (T ∪ {S})∗, uSv ∈ L}

from L, meaning L0,L1 ∈ C. Observe that we have Ψ(L(G)) = Ψ(σ(SL∗1)), where
σ : (T ∪ {S})∗ → P(T∗) is the substitution for which σ(S) = L0 and with σ(x) = {x}
for x ∈ T . Since C is closed under substitution (and in particular under Kleene
iteration, since every full semi-AFL contains a∗), this provesΨ(L(G)) ∈ Ψ(C).

The proof of Theorem 2.6.8 is now a matter of a simple induction.

Proof of Theorem 2.6.8. Since the inclusion “⊇” is clear, we prove “⊆”. We show
by induction on the number n of nonterminals in a grammarG that if each right-
hand side L of G satisfies Ψ(L) ∈ Ψ(C), then Ψ(L(G)) ∈ Ψ(C).

Suppose n = 1. According to Lemma 2.6.9, we may assume that the right-
hand sides of G are in C. By Lemma 2.6.10, we have Ψ(L(G)) ∈ Ψ(C).

Suppose n > 1. Let GA and G ′ be a van Leeuwen decomposition of G.
By the already established case n = 1, we have Ψ(L(GA)) ∈ Ψ(C). Hence,
by Lemma 2.6.9 and since C is substitution closed, each right-hand side L of
G ′ satisfies Ψ(L) ∈ Ψ(C). Since G ′ has n − 1 nonterminals, induction yields
Ψ(L(G)) = Ψ(L(G ′)) ∈ Ψ(C).
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2.7 A hierarchy of language classes

Based on the operators SLI(·) and Alg(·) from the previous sections, we introduce
a hierarchy of language classes that will be a recurring theme in this work. Let
F0 be the class of finite languages and let

Gi = Alg(Fi), Fi+1 = SLI(Gi) for each i > 0, F =
⋃
i>0

Fi.

Then we clearly have the inclusions F0 ⊆ G0 ⊆ F1 ⊆ G1 ⊆ · · · . Furthermore, G0
is the class of context-free languages, F1 is the smallest Presburger closed class
containing CF, G1 the algebraic extension of F1, etc. In particular:

Theorem 2.7.1. F is the smallest Presburger closed and algebraically closed language
class containing the context-free languages.

One might wonder why F0 is not chosen to be the regular languages, which
would have lead to the same class F. While this would be a natural choice, we
want the following to hold. Note that the regular languages are not Presburger
closed.

Proposition 2.7.2. For each i > 0, the class Fi is an effective Presburger closed full
semi-trio. Moreover, for each i > 0, Gi is an effective full semi-AFL. Furthermore, there
is a uniform algorithm that, given i ∈N, a language in Fi (Gi), and one of the mentioned
closure operators, computes the resulting language in Fi (Gi).

Note that the third statement of the proposition means that not only each
of the levels admits an algorithm for the closure operators but that there is one
algorithm that can apply the closure operators for all levels (and it always yields
a language on the same level as the input language). Proposition 2.7.2 follows
from Proposition 2.5.1 and Proposition 2.6.1. The uniform algorithm recursively
applies the transformations described in Proposition 2.5.1 and Proposition 2.6.1.

Proposition 2.7.3. The class F is semilinear. Moreover, Parikh images of languages in
F are effectively computable.

The semilinearity follows from the fact that both Alg(·) (Theorem 2.6.7) and
SLI(·) (Proposition 2.5.2) preserve semilinearity. Moreover, applying the proce-
dure outlined in the remarks after Theorem 2.6.7 and the procedure in Proposi-
tion 2.5.2 yields a recursive algorithm to compute Parikh images of languages in
the class F.

2.8 Well-quasi-orderings

In this work, we will often use well-quasi-orderings, which are a useful combi-
natorial tool for proving various finiteness conditions and structural properties.

A quasi-ordering on a set S is a binary reflexive transitive relation 6. Let S be
a set and 6 be a quasi-order. A subset T ⊆ S is upward closed if s ∈ T and s 6 t
imply t ∈ T . It is called downward closed if s ∈ T and t 6 s imply t ∈ T . For a
subset T ⊆ S, its upward closure, denoted T↑, is the smallest upward closed set
T ′ ⊆ S containing T . The smallest downward closed set T ′ ⊆ S containing T is
called its downward closure and is denoted T↓.
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There are several common equivalent definitions of well-quasi-orderings, a
concept which has been rediscovered several times; see [Kruskal1972] for an
historical overview.

Theorem 2.8.1. Let 6 be a quasi-ordering on the set S. The following conditions are
equivalent:

1. For every infinite sequence s1, s2, . . . of elements in S, there are indices i < j such
that si 6 sj.

2. For every sequence T1 ⊆ T2 ⊆ · · · of upward closed subsets of S, there is an index
n such that Tm = Tn form > n.

3. Every upward closed subset T ⊆ S can be written as T =
⋃n
i=1{ti}↑ for some

t1, . . . , tn ∈ T .

4. Every non-empty subset T ⊆ S has a finite non-empty set of minimal elements.

A well-quasi-ordering is a quasi-order satisfying the equivalent conditions of
Theorem 2.8.1. As a key ingredient in the so called well-structured transition sys-
tems of Finkel and Schnoebelen [FinkelSchnoebelen2001], well-quasi-orderings
are an important concept in the area of verification of infinite state systems. They
have also been applied to the rational subset membership problem of wreath
products by Lohrey, Steinberg, and the author of this work [LohreySteinbergZetzsche2015a].

Here, we will employ the fact that two particular quasi-orderings are in fact
well-quasi-orderings. Let X be an alphabet. For α,β ∈ X⊕, we write α 6 β if
α(x) 6 β(x) for all x ∈ X.

Theorem 2.8.2 (Dickson [Dickson1913]). For each alphabet X, the quasi-order 6 on
X⊕ is a well-quasi-ordering.

The following lemma is a consequence of the fact that since 6 is a well-quasi-
order for multisets, downward closed sets can be represented by finitely many
forbidden submultisets and are therefore recognizable.

Corollary 2.8.3. For a given semilinear set S ⊆ X⊕, the set Ψ−1(S↓) is an effectively
computable regular language.

Proof. Since S is Presburger-definable, the set S ′ = X⊕ \ (S↓) is as well and hence
effectively semilinear. Moreover, since 6 is a well-quasi-ordering on X⊕, S ′ has
a finite set F of minimal elements. Again, F is Presburger-definable because S ′ is
and hence F is computable. Since S ′ is upward closed, we have S ′ = F↑. Clearly,
given µ ∈ X⊕, the language Rµ = {w ∈ X∗ | µ 6 Ψ(w)} is an effectively com-
putable regular language. Since w ∈ Ψ−1(S↓) if and only if w /∈ Ψ−1(F↑), we
have X∗ \Ψ−1(S↓) =

⋃
µ∈F Rµ. Thus, we can compute a finite automaton for the

complement, Ψ−1(S↓).

Higman1952 [Higman1952] and (apparently independently) Haines1969 [Haines1969]
have shown that the subword ordering on words is a well-quasi-ordering as well.
For words u, v ∈ X∗, we write u � v if there are words u1, . . . ,un ∈ X∗ and
v0, . . . , vn ∈ X∗ such that u = u1 · · ·un and v = v0u1v1 · · ·unvn. In this case, u
is called a subword of v.

Theorem 2.8.4 (Higman [Higman1952] / Haines [Haines1969]). For each alphabet
X, the quasi-order � on X∗ is a well-quasi-ordering.
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Corollary 2.8.5. If L ⊆ X∗ is upward closed or downward closed, then L is regular.

Proof. Suppose L is upward closed. By condition 3 in Theorem 2.8.1, L is a finite
union of sets of the form {w}↑, which are easily seen to be regular. Furthermore,
if L is downward closed, then its complement is upward closed and thus regular.

This means in particular, that for any language L ⊆ X∗ whatsoever, the lan-
guages L↑ and L↓ are regular. In Chapter 9, we will study for which monoids
M one can effectively compute a finite automaton for the downward closure of
members of VA(M).

2.9 Conclusion

We have introduced the basic concepts that are needed for the remaining chap-
ters. Aside from defining notation and recalling the notion of valence automata,
we presented the new concept of graph monoids, which will be used through-
out this work to characterize monoids with certain computational properties.
As demonstrated already in this chapter, they accommodate a range of different
storage mechanisms. Furthermore, we have defined a hierarchy of languages
that will conveniently subdivide the languages accepted by a new class of stor-
age mechanisms (stacked counters) in later chapters.

While introducing these fundamental concepts, this chapter also presented
some technical contributions. These are mainly a description of the languages
accepted by free products with amalgamation in terms of algebraic extensions
(Theorem 2.6.3) and the result that taking the free product with two copies of
B yields the whole algebraic extension (Theorem 2.6.6). Hence, the latter result
complements the former and gives a precise account of the effect of building stacks
on the expressive power.

The results in this chapter have appeared in [Zetzsche2013a] and in [BuckheisterZetzsche2013a].

Related work Let us use this opportunity to survey some related work on the
general concepts of this thesis.

Unifying automata frameworks Of course, there are many other frameworks
that unify automata with storage. Very general frameworks are Balloon Au-
tomata of HopcroftUllman1967 [HopcroftUllman1967], Abstract Families of
Acceptors of GinsburgGreibach1967 [GinsburgGreibach1967], and Autom-
ata with Storage of Engelfriet2014 [Engelfriet2014]. These models roughly
mimic what in the introduction is called storage mechanism: One has arbi-
trary partial functions on sets of states and has to arrive in a prescribed set
of final states. This means, in particular, that they subsume valence autom-
ata. In fact, Greibach has obtained a result analogous to Theorem 2.6.6 in
terms of Abstract Families of Acceptors [Greibach1970].

However, as this work attempts to demonstrate, restricting attention to
monoids, or further to graph monoids, allows for explanatory character-
izations of computational properties. Consider, for example, the question
of which storage mechanism admit a decision procedure for the emptiness
problem. While there is no (complete) characterization of decidability of

35

cf7212f0 2016-06-29 03:26:35 +0200



Chapter 2. Basic concepts

the emptiness problem for graph monoids as of yet (see Section 4.3), a de-
scription of those graphs would certainly be illuminating. With models as
general as the above, it is not clear whether a meaningful characterization,
that does not essentially reformulate decidability, is possible at all.

The strength of these general frameworks seems to lie within their ability to
capture general ideas that hold for arbitrary storage mechanisms. For ex-
ample, EngelfrietHoogeboom1993 [EngelfrietHoogeboom1993] have ob-
tained connections between acceptance types of automata over infinite words
that are independent of the storage mechanism.

A mathematical area that formalizes computing devices with a far broader
scope than valence automata is that of coalgebra [Rutten2000]. A range of
concepts of theoretical computer science has counterparts in coalgebra, and
recent work of GoncharovMiliusSilva2014 [GoncharovMiliusSilva2014]
introduces the framework of T-automata, which subsumes valence autom-
ata, albeit without ε-transitions. While ε-transitions can occur syntactically,
a semantic of the corresponding coalgebra that mimics their behavior in va-
lence automata is currently under development.

Another recent framework is that of Auxiliary Storage with Bounded Tree-
Width of MadhusudanParlato2011 [MadhusudanParlato2011]. Its purpose
is, however, to explain a number of recent decidability results for empti-
ness problems. It is therefore tailored to guarantee decidability of empti-
ness rather than to cover a wide variety of mechanisms. It seems likely that
it is incomparable in its modeling capacity to valence automata (see Sec-
tion 7.4). Since MadhusudanParlato2011 also obtain a Parikh’s theorem,
we compare not only our results on decidability of the emptiness problem
with their framework, but also those on semilinearity. We therefore refer
the reader to the conclusion sections 4.4 and 7.4.

A different model that also equips finite automata with an algebraic struc-
ture, namely semirings, is that of Weighted Automata [DrosteKuichVogler2009].
However, the semirings are not meant to represent storage mechanisms,
but rather to specify a quantitative notion of behavior for the automaton.

Valence automata The research on valence automata conducted so far can be
roughly divided into three directions:

• Investigating valence automata over monoids that either arise nat-
urally in the theory of groups or semigroups or model a particular
concrete storage mechanism. This has been done, for example, by
IbarraSahniKim1976 [IbarraSahniKim1976], MitranaStiebe2001 [MitranaStiebe2001],
FernauStiebe2002a [FernauStiebe2002a], Corson2005 [Corson2005],
RenderKambites2009 [RenderKambites2009], Kambites2009 [Kambites2009],
Render2010 [Render2010], and Sorokin2014 [Sorokin2014].

• Studying the utility of valence automata to describe groups by accept-
ing their identity languages. The type of questions is motivated by a
celebrated theorem of Muller, Schupp, and Dunwoody [Dunwoody1985].
It characterizes those groups described by context-free grammars and
can be stated as follows: The identity language of a group G is ac-
cepted by a valence automaton over some free group if and only if G
is virtually free. Here, virtually means that G has a free subgroup of
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finite index (see Section 6.3 for details). This raises the following ques-
tion. For which classes G of groups is the following true: Every group
G whose identity language is accepted by a valence automaton over
some H ∈ G, is itself virtually in G (meaning that G has a finite index
subgroup contained in G).
Representatives for this line of research are Kambites2006 [Kambites2006],
ElstonOstheimer2004 [ElstonOstheimer2004], ElderKambitesOstheimer2008 [ElderKambitesOstheimer2008],
GilmanShapiro1998 [GilmanShapiro1998], and ClearyElderOstheimer2006 [ClearyElderOstheimer2006].
While the latter works sometimes assume determinism or a slightly
different acceptance condition, they all use storage mechanisms de-
fined by monoids.

• Using valence automata for decision procedures concerning groups
or monoids. For example, valence automata have been used explicitly
by KambitesSilvaSteinberg2007 [KambitesSilvaSteinberg2007] and
implicitly by LohreySteinberg2008 [LohreySteinberg2008] to solve
the rational subset membership problem for particular groups.

Graph monoids There are several notions of monoids similar to graph monoids.
As described in Section 2.4, our graph monoids generalize the concept of
graph groups [Charney2007]. Similar but different ways of defining mon-
oids have been studied by Silva2008 [Silva2008] and Wrathall1991 [Wrathall1991].
Silva2008 defines monoids by designating certain generators of a monoid
to be invertible, some only one-sided invertible and some not invertible at
all. However, his definition does not allow commutation among the gener-
ators. Wrathall1991, on the other hand, defines commutation by edges, but
each of her generators is either invertible in both directions or not invertible
at all.

Counters and semilinear intersection The idea that adding blind counters pre-
serves semilinearity appears often in the literature. It is sometimes formu-
lated for reversal-bounded counters, which are in most contexts equivalent
to blind counters (see [Greibach1978]; for a translation that is economic
in the number of counters, see [JantzenKurganskyy2003]). That reversal-
bounded counters and blind counters alone guarantee semilinearity was
shown by Ibarra1978 [Ibarra1978] and Greibach1978 [Greibach1978], re-
spectively.

The preservation of semilinearity has been observed in a similar setting by
HarjuIbarraKarhumakiSalomaa2002 [HarjuIbarraKarhumakiSalomaa2002]
and applied to language theoretic decision problems. Recently, this preser-
vation was used by LohreySteinberg2008 [LohreySteinberg2008] in a de-
cision procedure for the rational subset membership of graph groups (see
Theorem 4.3.9).

Building stacks and grammars A result that is analogous to our generalization
of the equivalence between building stacks and grammars (Theorem 2.6.6)
was obtained by Greibach1970 [Greibach1970]. It should be mentioned
that the transformation of building stacks is similar but crucially different
from the way Higher-Order Pushdown Automata [Damm1982, Engelfriet1991]
work. While our stacks only allow push, pop if empty, and a manipulation
of the topmost entry, higher-order pushdowns can replicate their topmost
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entry. This leads to very different computational properties. For example,
building stacks in our sense preserves semilinearity, while higher-order
pushdown automata lack semilinearity just above the level of ordinary
pushdowns [DammGoerdt1982].
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about valence automata over groups and Sergey Goncharov and Stefan Milius
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38

cf7212f0 2016-06-29 03:26:35 +0200



Chapter 3

Valence models vs. classical
models

3.1 Introduction

Whenever we add a storage mechanism to a model of computation, one of the
most fundamental questions is whether the extended model exhibits new behav-
ior. In the context of monoid-defined storage mechanisms, this translates into
the question of which monoids increase the possible behaviors of a model when
employed as a storage mechanism.

In this work, we measure the expressiveness and behavior of valence autom-
ata and other models by the class of languages they induce. Therefore, the above
question becomes: Which monoids cause the extended model to yield more lan-
guages than the model without the storage mechanism?

We study this question for valence automata and for valence grammars. The
latter model extends context-free grammars in the same way valence automata
extend finite automata: In a valence grammar, each production carries an ele-
ment of a monoid. As in the case of valence automata, a derivation is valid if the
product of the monoid elements (multiplied in the same order as the productions
were applied) is the identity.

The concrete questions studied in this chapter therefore ask (i) for which mon-
oids M can valence automata over M only accept regular languages and (ii) for
which monoid monoids M can valence grammars over M generate only con-
text-free languages. The main result of this chapter (Theorem 3.1.2) states that
these conditions are equivalent and provides an algebraic characterization: It is
shown that the conditions are satisfied if and only if R1(N) is finite for every
finitely generated submonoid N of M. In the case of valence automata, the al-
gebraic characterization has been obtained independently by Render2010 in her
PhD thesis [Render2010]. If the monoid at hand is a group, it is a simple conse-
quence of an early result of Anisimov1971 [Anisimov1971] (see Theorem 3.3.1)
and has been observed by MitranaStiebe2001 [MitranaStiebe2001].

While it is not hard to see that the monoids with finite sets R1(N) cause no in-
crease of expressiveness in valence automata, this is non-trivial for valence gram-
mars. This is due to the fact that in order to arrive at the monoid identity, one
has to take into account the order of productions that are applied far apart in the
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derivation tree. To illustrate the difficulty, we remark that with a slight varia-
tion in the definition, finite monoids produce far more than the context-free lan-
guages: Allowing finite monoids and target sets in valence grammars, meaning
instead of the identity, one has to reach an element of a specified subset T ⊆ M,
yields the class of matrix languages [FernauStiebe2001]. Furthermore, it was an
open question by Fernau and Stiebe [FernauStiebe2002a] whether all languages
generated by valence grammars over finite monoids are context-free and our re-
sult settles this question affirmatively.

In fact, it turns out that the conditions above are also equivalent to another
behavioral property of valence automata: They are satisfied if and only if ev-
ery valence automata over M has an equivalent that is deterministic in a strong
sense. Here, we call a valence automaton deterministic if each of its moves is
determined by the current state and input symbol. This again generalizes a re-
sult of MitranaStiebe2001 [MitranaStiebe2001], who have shown that valence
automata over a group cannot be determinized if the group contains at least one
element of infinite order. Finally, we also observe that the conditions above also
characterize those monoids over which valence transducers perform only ratio-
nal transductions. Before we state the main result formally, we define the rele-
vant notions.

Valence grammars Let M be a monoid. A valence grammar over M is a tuple
G = (N, T ,M,P,S), where

• N, T are disjoint alphabets, called the nonterminal and terminal alphabet, re-
spectively,

• P is a finite subset of N× (N∪ T)∗ ×M, called the set of productions, and

• S ∈ N is the start symbol.

Instead of (A,w,m) ∈ P, we also write (A → w;m). The derivation relation is a
binary relation on (N∪ T)∗ ×M, for which

(u,a)⇒G (u ′,a ′) if u = rAs, u ′ = rws, a ′ = am
for some (A→ w;m) ∈ P.

The language generated by G is then

L(G) = {w ∈ T∗ | (S, 1)⇒∗G (w, 1)}.

The class of languages generated by valence grammars over M is denoted by
VG(M).

Valence grammars were introduced by Paun1980 [Paun1980]. A thorough
treatment, including normal form results and a classification of the resulting lan-
guage classes for commutative monoids, has been carried out by FernauStiebe2002a [FernauStiebe2002a].

Example 3.1.1. Let n ∈ N and let G = (N, T , Zn,P,S) be the valence grammar with
N = {S}, T = {ai, āi | 1 6 i 6 n}, and where P consist of the productions

(S→ S; (1, . . . , 1)),
(S→ SaiSāiS; (0, . . . , 0,−1, 0, . . . , 0)), for 1 6 i 6 n,
(S→ ε; (0, . . . , 0)),
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where in the last production, the −1 is in the i-th component. Then the first production
allows adding (k, . . . ,k) to the storage for k ∈ N. Whenever the second production is
applied, we decrement the i-th component. Hence, we arrive at (0, . . . , 0) if and only
if the second production has been applied the same number of times for each i (and the
first production has also been applied this often). Moreover, the context-free productions
guarantee that every generated word is in Dn, the semi-Dyck language. Therefore,

L(G) = {w ∈ Dn | |w|ai = |w|aj for all i, j ∈ {1, . . . ,n}}.

Deterministic valence automata A valence automaton A = (Q,X,M,E,q0, F)
is called deterministic if

E ⊆ Q×X×M×Q,

(meaning that in each step, precisely one input symbol is read) and for each pair
(q, x) ∈ Q×X, there is at most one edge (q, x,m,q ′) ∈ E for m ∈M and q ′ ∈ Q.
The class of languages accepted by deterministic valence automata over M is
denoted by detVA(M).

Note that sometimes, valence automata over M are equivalent (with respect
to accepted languages) to some automata model, but deterministic valence au-
tomata do not correspond to the usual deterministic variant of the model. This
is because in these deterministic variants, a step may depend on the storage con-
tent. In our case, each step must be determined by the current state and input,
necessitating in particular the requirement that every edge read input. For ex-
ample, while valence automata over B(2) are equivalent to pushdown automata,
deterministic valence automata over B(2) are less powerful than deterministic
pushdown automata: The language L = a∗c ∪ {anbn | n > 0} is determinis-
tic context-free (and even accepted by the weak variant that accepts with empty
stack and final state [AutebertBerstelBoasson1997]). However, it is easy to see
that L is not in detVA(B(2)): After reading an, a deterministic valence automaton
would have to be in a configuration from which c leads to a final configuration.
Hence, if am and an lead to the same state, they already lead to the same config-
uration, which is clearly a contradiction.

Valence transducers Let M be a monoid. A valence transducer is an automaton
over X∗ ×M× Y∗, where X and Y are alphabets. As an automaton X∗ ×M× Y∗,
a valence transducer has a step relation→A on Q× X∗ ×M× Y∗, which allows
us to define

T(A) = {(u, v) ∈ X∗ × Y∗ | (q0, ε, 1, ε)→∗A (q,u, 1, v) for some q ∈ F}.

T(A) is called the transduction performed by A. Intuitively, a valence transducer
over M is a valence automaton over M where each edge also carries an output
word. The class of transductions performed by valence transducers over M is
denoted by VT(M).

We are now ready to state the main result of this chapter.

Theorem 3.1.2. LetM be a monoid. The following conditions are equivalent:

1. VA(M) contains only regular languages.

2. VG(M) contains only context-free languages.
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3. VT(M) contains only rational transductions.

4. detVA(M) = VA(M).

5. R1(N) is finite for every finitely generated submonoid N ofM.

The rest of this chapter devoted to the proof of Theorem 3.1.2. In Section 3.2,
we prove an algebraic dichotomy of monoids: It is shown that each monoid satis-
fies precisely one of two conditions that can be employed for language theoretic
arguments. In Section 3.3, we show the equivalence among conditions 1 and 3
to 5. Section 3.4 then completes the proof of Theorem 3.1.2 by establishing the
equivalence between condition 2 and condition 5.

The results of this chapter have appeared in [Zetzsche2011b].

3.2 A dichotomy of monoids

In this section, we prove a dichotomy of monoids (Corollary 3.2.3). Its two cases
will be exploited in Sections 3.3 and 3.4 to deduce language theoretic properties.
After submission of [Zetzsche2011b], the author learned that this dichotomy had
been well known to semigroup theorists (see Section 3.5 for details).

Lemma 3.2.1. Let r, s ∈ M with rs = 1 and sr 6= 1. Then 〈r, s〉 is isomorphic to the
bicyclic monoid.

Proof. First, we claim that rk = r` implies k = `. Suppose rk = r` for k < `. Then

sr = rksksr = r`sksr = r`−ksr = r`−k−1r = r`−k = r`sk = rksk = 1,

a contradiction proving the claim. Furthermore, skrk = 1 implies k = 0. Indeed,
if skrk = 1 with k > 0, then

sr = skrksr = skrk−1r = skrk = 1.

Suppose skr` = smrn. Without losing generality, we assume k 6 m. Mul-
tiplying rm from the left yields rm−k+` = rn and hence m − k + ` = n. This
means n− ` = m− k > 0. Therefore

sm−krn−` = rk(smrn)s` = rk(skr`)s` = 1

and thusm = k and n = `.
Let X = {x, x̄}. The morphism ϕ : X∗ → 〈r, s〉 with ϕ(x) = r and ϕ(x̄) = s

satisfies ϕ(xx̄) = 1 and can therefore be lifted to a morphism ϕ̂ : B → 〈r, s〉.
It is clearly surjective and and an equality ϕ̂([x̄]k[x]`) = ϕ̂([x̄]m[x]n) implies
skr` = smrn, meaning k = m and ` = n as shown above. Thus, ϕ̂ is also in-
jective.

The following proposition is a first dichotomy that we will use to derive
Corollary 3.2.3.

Proposition 3.2.2. For each monoidM, exactly one of the following holds:

1. J1(M) is a subgroup ofM.
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2. M contains a copy of the bicyclic monoid as a submonoid.

Proof. If M contains a copy of the bicyclic monoid as a submonoid, this copy is
included in J1(M), meaning J1(M) contains elements x and y with xy = 1 and
yx 6= 1, which cannot happen in a group. Thus, the two conditions are mutually
exclusive.

Suppose M does not contain a copy of the bicyclic monoid. By Lemma 3.2.1,
this means whenever rs = 1, we also have sr = 1. For a ∈ J1(M), there are
x,y ∈ M with xay = 1. Therefore, we also have ayx = 1 and yxa = 1. This
implies that yx is a two-sided inverse of a and lies in J1(M).

The subset J1(M) is also closed under composition. Indeed, let a,b ∈ J1(M)
and let s be a two-sided inverse of a and t be a two-sided inverse of b. Then
sabt = 1 and hence ab ∈ J1(M).

In order to formulate our dichotomy, we need to define some notation. For
each x ∈ R1(M) and x ′ ∈ L1(M), we define

−→
I (x) = {y ∈M | xy = 1},

←−
I (x ′) = {y ′ ∈M | y ′x ′ = 1}.

The elements in
−→
I (x) are called right inverses of x and the elements of

←−
I (x ′) are

called left inverses of x ′.

Corollary 3.2.3. For each monoidM, exactly one of the following holds:

1. The subsets R1(M), L1(M), and J1(M) coincide and constitute a finite group.

2. There are infinite sets S ⊆ R1(M) and S ′ ⊆ L1(M) such that
−→
I (s) ∩

−→
I (t) = ∅

for s, t ∈ S, s 6= t, and
←−
I (s ′)∩

←−
I (t ′) = ∅ for s ′, t ′ ∈ S ′, s ′ 6= t ′.

Proof. If M contains a copy 〈r, s〉 of the bicyclic monoid as a submonoid, the
infinite sets {ri | i > 0} ⊆ R1(M) and {si | i > 0} ⊆ L1(M) satisfy our second
condition. Indeed, if x ∈

−→
I (ri) ∩

−→
I (rj) for i 6 j, then rj−i = rj−irix = rjx = 1

and hence i = j. Similarly, we can show that
←−
I (si)∩

←−
I (sj) = ∅ for i 6= j.

Otherwise, by Proposition 3.2.2, J1(M) is a group, meaning that the three
subsets R1(M), L1(M), and J1(M) coincide. If J1(M) is finite, M satisfies our
first condition. If J1(M) is infinite, we can choose S = S ′ = J1(M) as infinite sets
for our second condition.

3.3 Valence automata vs. finite automata

In this section, we show that the following conditions are equivalent:

1. VA(M) contains only regular languages.

2. VT(M) contains only rational transductions.

3. detVA(M) = VA(M).

4. R1(N) is finite for every finitely generated submonoid N ofM.
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The equivalence of the first and the last condition has been obtained indepen-
dently by Render [Render2010].

Note that VA(M) is included in the regular languages if and only if every
identity language of M is regular (see Theorem 2.3.3). The class of finitely gen-
erated groups for which each identity language is regular was understood early
on. The following is easy to see (and follows from Lemmas 3.3.3 and 3.3.4).

Theorem 3.3.1 (Anisimov [Anisimov1971]). Let G be a finitely generated group.
Then every identity languages of G is regular if and only if G is finite.

Translated to our setting, this means that for a finitely generated group G,
VA(G) contains only regular languages if and only if G is finite. This has also
been observed by MitranaStiebe2001 [MitranaStiebe2001].

Lemma 3.3.2. For each monoidM, the following conditions are equivalent:

1. VA(M) contains only regular languages.

2. VT(M) contains only rational transductions.

Proof. Since VT(M) contains precisely those transductions that are homomorphic
images of languages in VA(M), the first condition clearly implies the second. On
the other hand, if VA(M) contains a non-regular language L, the transduction
{ε}× L is contained in VT(M) and is clearly not rational.

The following is a simple consequence of Corollary 3.2.3.

Lemma 3.3.3. Let R1(N) be finite for every finitely generated submonoidN ofM. Then,
all languages in VA(M) are regular.

Proof. Let A = (Q,X,M,E,q0, F) be a valence automaton over M. Since E is
finite, the set of m ∈ M for which there is some edge (p, (w,m),q) in E is finite.
If N is the submonoid of M generated by these m ∈ M, we can regard A as a
valence automaton over N. Thus, let A = (Q,X,N,E,q0, F).

Removing edges of the form (p, (w,m),q) such that m /∈ J1(N) will not
alter the accepted language, since such edges cannot be used in a successful
run. According to Corollary 3.2.3, J1(N) is a finite group and we may assume
A = (Q,X, J1(N),E,q0, F). Since J1(N) is finite, a finite automaton accepting
L(A) can easily be constructed by incorporating the monoid elements into the
states.

MitranaStiebe2001 [MitranaStiebe2001] have shown that valence automata
over groups with at least one element of infinite order cannot be determinized.
We can use a similar idea and the dichotomy of monoids to provide a character-
ization of those monoids over which valence automata can be determinized.

Lemma 3.3.4. Let M contain a finitely generated submonoid N such that R1(N) is
infinite. Then, detVA(M) is strictly included in VA(M). In particular, VA(M) contains
a non-regular language.

Proof. Let N be generated by the finite set {a1, . . . ,an} and let X = {x1, . . . , xn},
Y = {y1, . . . ,yn} be disjoint alphabets. Let ϕ : (X∪ Y)∗ → N be the epimorphism
defined by ϕ(xi) = ϕ(yi) = ai and K = X∗ ∪ {w ∈ X∗Y∗ | ϕ(w) = 1}. Then, K is
clearly contained in VA(M).
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Suppose K were accepted by a deterministic valence automaton A over M.
Let S ⊆ R1(N) be the infinite set provided by Corollary 3.2.3. The infinity of S im-
plies that we can find an infinite set T ⊆ X∗ such that ϕ(T) = S and ϕ(u) 6= ϕ(v)
for u, v ∈ T with u 6= v. Since A is deterministic and T ⊆ L(A), each word w ∈ T
causes A to enter a configuration (q(w), 1) where q(w) is a final state.

Choose u, v ∈ T such that u 6= v and q(u) = q(v). Find a word u ′ ∈ Y∗
such that ϕ(u)ϕ(u ′) = 1. This is possible since ϕ(u) ∈ R1(N) and ϕ is surjective
when restricted to Y∗. The word u ′ causes A to go from (q(u), 1) = (q(v), 1) to
(q, 1) for some final state q, since uu ′ ∈ K. Thus, vu ′ is also contained in K and
hence ϕ(v)ϕ(u ′) = 1, but

−→
I N(ϕ(u))∩

−→
I N(ϕ(v)) = ∅, a contradiction. Hence, K

is not contained in detVA(M).

3.4 Valence grammars vs. context-free grammars

In this section, it is shown that the following conditions are equivalent:

1. VG(M) contains only context-free languages.

2. R1(N) is finite for every finitely generated submonoid N ofM.

In one of the directions, we have to construct a context-free grammar for valence
grammars over monoids that fulfill the second condition. Because of the limited
means available in the context-free case, the constructed grammar can simulate
only a certain fragment of the derivations in the valence grammar. Thus, we
will have to make sure that every word generated by the valence grammar has
a derivation in the aforementioned fragment. These derivations are obtained by
considering the derivation tree of a given derivation and then choosing a suitable
linear extension of the tree order. The construction of these linear extensions can
already be described for a simpler kind of partial order, valence trees.

Valence trees and excursiveness Let X be an alphabet and U ⊆ X a subset.
Then, each wordw ∈ X∗ has a unique decompositionw = y0x1y1 · · · xnyn such
that y0,yn ∈ (X\U)∗, yi ∈ (X\U)+ for 1 6 i 6 n−1, and xi ∈ U+ for 1 6 i 6 n.
This decomposition is called theU-decomposition ofw and we define ρ(w,U) = n.

A tree is a finite partially ordered set (T,6) that has a least element and where,
for each t ∈ T, the set {t ′ ∈ T | t ′ 6 t} is totally ordered by 6. The least element
is called the root and the maximal elements are called leaves. A valence tree T over
M is a tuple (T,6,ϕ), where (T,6) is a tree and ϕ : T∗ → M is a morphism1

assigning a valence to each node. An evaluation defines an order in which the
nodes in a valence tree can be traversed that is compatible with the tree order.
Thus, an evaluation of T is a linear extension � of (T,6). Let w ∈ T∗ correspond
to �, i.e., let T = {t1, . . . , tn} such that t1 � · · · � tn and w = t1 · · · tn. Then,
the value of � is defined to be ϕ(w). An element v ∈ M is called a value of
T if there exists an evaluation of (T,6) with value v. Given a node t ∈ T, let
Ut = {t ′ ∈ T | t 6 t ′}. If w = y0x1y1 · · · xnyn is the Ut-decomposition of w,
then ϕ(x1), . . . ,ϕ(xn) is called the valence sequence of t in w and n its length. By
the excursiveness of an evaluation, we refer to the maximal length of a valence
sequence. Hence, the excursiveness of an evaluation is the maximal number of

1We will often assume, without loss of generality, that T is an alphabet.
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times one has to enter any given subtree when traversing the nodes in the order
given by the evaluation.

The simulated fragment of the derivations of the valence grammar consists
of those derivations whose derivation tree admits an evaluation of bounded ex-
cursiveness. Hence, proving completeness of this fragment amounts to finding
evaluations of valence trees with small excursiveness.

Of course, for every valence tree, there are evaluations with excursiveness one
(take, for example, the order induced by a preorder traversal), but these might
not be able to exhaust all possible values. However, we will see in Lemma 3.4.3
that, in the case of a finite group, there exists a bound m such that every value
can be attained by an evaluation of excursiveness of at most m. Combining this
with the fact that a restriction to finite groups means no loss of generality will
then complete the proof.

In order to show Lemma 3.4.3, we need two combinatorial facts. The first one
will allow us to conclude that certain rearrangements of an evaluation do not
alter its value.

Lemma 3.4.1. For each finite group G, there is a constant m ∈ N with the following
property: For elements gi,hi ∈ G, i = 1, . . . ,n, n > m, there are indices k, ` ∈ N,
1 6 k < ` 6 n, such that

gkhkgk+1hk+1 · · ·g`h` = gkgk+1 · · ·g`hkhk+1 · · ·h`.

Proof. Letm = 2(|G|3+ 1) andD ⊆ {1, . . . ,n} be the set of odd indices. Define the
map α : D → G3 by α(i) = (g1 · · ·gi, h1 · · ·hi, g1h1 · · ·gihi) for i ∈ D. Since
|D| > |G|3 + 1, there are indices i, j ∈ D, i < j, such that α(i) = α(j). This means
that gi+1 · · ·gj = 1, hi+1 · · ·hj = 1, and gi+1hi+1 · · ·gjhj = 1. Since i, j are both
odd, letting k = i+ 1 and ` = j implies k < ` and yields the desired equality.

The next lemma guarantees that certain rearrangements nowhere increase the
length of valence sequences.

Lemma 3.4.2. Let X be an alphabet and U,V ⊆ X subsets such that either U ⊆ V ,
V ⊆ U, or U ∩ V = ∅. Furthermore, let r ∈ X∗U, x ∈ U+, y ∈ (X \ U)+, and
s ∈ X∗ \UX∗. Then, we have ρ(rxys,V) 6 ρ(ryxs,V).

Proof. Suppose V ⊆ U. Since y does not contain any symbols in V , we have

ρ(ryxs,V) = ρ(r,V) + ρ(x,V) + ρ(s,V),
ρ(rxys,V) = ρ(rx,V) + ρ(s,V).

Thus,

ρ(rxys,V) = ρ(rx,V) + ρ(s,V)
6 ρ(r,V) + ρ(x,V) + ρ(s,V)
= ρ(ryxs,V).

In the case U∩ V = ∅, x does not contain any symbol in V . Hence,

ρ(ryxs,V) = ρ(r,V) + ρ(y,V) + ρ(s,V),
ρ(rxys,V) = ρ(r,V) + ρ(ys,V),
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which implies

ρ(rxys,V) = ρ(r,V) + ρ(ys,V)
6 ρ(r,V) + ρ(y,V) + ρ(s,V)
= ρ(ryxs,V).

Now suppose U ⊆ V . Since the rightmost letter of r is in V and x lies in V+, we
have ρ(rxys,V) = ρ(rys,V). Thus, ρ(rxys,V) = ρ(rys,V) 6 ρ(ryxs,V).

The following states that the simulated fragment of derivations, namely those
with bounded excursiveness, is in fact complete.

Lemma 3.4.3. For each finite group G, there is a constant m such that every value of a
valence tree over G has an evaluation of excursiveness of at mostm.

Proof. To each evaluation w of (T,6), we assign the multiset µw ∈ T⊕ that is
defined by µw(t) = ρ(w,Ut) for every t ∈ T. That is, µw(t) is the length of the
valence sequence of t in w.

Let m be the constant provided by Lemma 3.4.1 and let w ∈ T∗ be an evalu-
ation of (T,6) such that µw is minimal with respect to 6 among all evaluations
with the value v. If we can prove that µw(t) 6 m for all t ∈ T, the lemma fol-
lows. Therefore, suppose that there is a t ∈ T with n = µw(t) > m. Specifically,
letw = y0x1y1 · · · xnyn be the Ut-decomposition ofw. Use Lemma 3.4.1 to find
indices 1 6 k < ` 6 nwith

ϕ(xk)ϕ(yk) · · ·ϕ(x`)ϕ(y`) = ϕ(xk) · · ·ϕ(x`)ϕ(yk) · · ·ϕ(y`). (3.1)

Furthermore, let

w ′ = (y0x1y1 · · · xk−1yk−1)(xk · · · x`yk · · ·y`)(x`+1y`+1 · · · xnyn). (3.2)

That is, we obtain w ′ from w by replacing xkyk · · · x`y` with xk · · · x`yk · · ·y`.
Then, (3.1) means that ϕ(w ′) = ϕ(w). We shall prove that w ′ is an evaluation of
(T,6) and obeys µw ′ 6 µw and µw ′ 6= µw, which contradicts the choice of w.

First, we prove that w ′ is an evaluation. Let u1,u2 ∈ T be nodes with
u1 6 u2. If u1 < t, then u1 appears in y0, and thus u2 is on the right side of u1
in w ′. If u1 > t, then each of the nodes u1,u2 appears in some xi and therefore
do not change their relative positions. If u1 and t are incomparable, then u2 and
t are also incomparable and each of u1,u2 appears in some yi. Again, u1 and u2
do not change their relative positions. Thus,w ′ corresponds to a linear extension
of the order 6.

We want to show that µw ′ 6 µw. To this end, we consider the words

wi = (y0x1y1 · · · xk−1yk−1)(xk · · · xk+iyk · · ·yk+i)(xk+i+1yk+i+1 · · · xnyn)

for 0 6 i 6 `− k. With these, we have w = w0 and w ′ = w`−k. Since (T,6) is a
tree, we have Uu ⊆ Ut, Ut ⊆ Uu, or Uu ∩Ut = ∅ for every u ∈ T. Therefore, we
can apply Lemma 3.4.2 to U = Ut, V = Uu, and

r = (y0x1y1 · · · xk−1yk−1)(xk · · · xk+i), x = xk+i+1,
y = yk · · ·yk+i, s = yk+i+1(xk+i+2yk+i+2 · · · xnyn),
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which yields ρ(wi+1,Uu) 6 ρ(wi,Uu) for 0 6 i < `− k. This implies the in-
equality µw ′(u) 6 µw(u) and therefore µw ′ 6 µw.

It remains to be shown that µw ′ 6= µw. In w ′, the node t has the valence
sequence

ϕ(x1), . . . ,ϕ(xk−1),ϕ(xk · · · x`),ϕ(x`+1), · · ·ϕ(xn),

which has length µw ′(t) = n− (`− k) < n = µw(t).

Our next step is to apply our knowledge on valence trees to derivation trees
of valence grammars.

Derivation trees of valence grammars A derivation tree for a valence grammar
G = (N, T ,M,P,S) is a tuple (T,6,ϕ, (6t)t∈T ,Λ), where

• (T,6,ϕ) is a valence tree,

• for each t ∈ T, 6t is a total order on the set of successors of t,

• Λ : T → N∪ T ∪ {ε} defines a label for each node,

• if t ∈ T is a node with the successors s1, . . . , sn such that s1 6t . . . 6t sn,
then we either haveΛ(t) ∈ T ∪ {ε}, n = 0, andϕ(t) = 1 or we haveΛ(t) ∈ N
and there is a production (Λ(t)→ Λ(s1) · · ·Λ(sn);ϕ(t)) in P.

The total orders 6t, t ∈ T, induce a total order on the set of leaves, which in turn
defines a word w ∈ T∗. This word is called the yield of the derivation tree.

Each derivation tree can be regarded as a valence tree. An evaluation then
defines a derivation (A, 1) ⇒∗G (w, v), where A ∈ N is the label of the root, w is
the yield, and v ∈M is the value of the evaluation. Conversely, every derivation
induces a derivation tree and an evaluation. Thus, a word w ∈ T∗ is in L(G) if
and only if there exists a derivation tree for Gwith yield w, a root labeled S, and
an evaluation with value 1.

Lemma 3.4.4. Let R1(N) be finite for every finitely generated submonoidN ofM. Fur-
thermore, let G = (N, T ,M,P,S) be a valence grammar overM. Then, L(G) is context-
free.

Proof. We can assume that M is finitely generated and thus has a finite R1(M).
Since productions (A → w;m) with m /∈ J1(M) cannot be part of a success-
ful derivation, their removal does not change the generated language. Further-
more, by Corollary 3.2.3, J1(M) is a finite group. Thus, we can assume that
G = (N, T ,H,P,S), where H = J1(M) is a finite group. By a simple construction,
we can further assume that inG, every production is of the form (A→ w;h) with
w ∈ N∗ or (A→ w; 1) with w ∈ T ∪ {ε}.

We shall construct a context-free grammar G ′ = (N ′, T ,P ′,S ′) for L(G). The
basic idea is that G ′ simulates derivations of bounded excursiveness. This is
done by letting the nonterminals in G ′ consist of a nonterminal A ∈ N and a
finite sequence σ of elements from H. G ′ then simulates the generation of a
nonterminal A by generating a pair (A,σ) and thereby guesses that the corre-
sponding node in the derivation tree of G will have σ as its valence sequence.
Lemma 3.4.3 will then guarantee that this allows G ′ to derive all words in L(G)
when the sequences σ are of bounded length.
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Formally, we regard H as an alphabet and a sequence is a word over H. In
order to distinguish between the concatenation of words inH∗ and the group op-
eration in H, we will denote the concatenation in H∗ by �. Let N ′ = N×H6m,
in which m ∈ N is the constant provided by Lemma 3.4.3 for the group H. The
set of sequences that can be obtained from another sequence σ by “joining” sub-
sequences is denoted by J(σ):

J(h1�h2�σ) = J((h1h2)�σ)∪ {h1�σ ′ | σ ′ ∈ J(h2�σ)}

for h1,h2 ∈ H and σ ∈ H∗ and J(σ) = {σ} if |σ| 6 1. J is defined for subsets
S ⊆ H∗ by J(S) =

⋃
σ∈S J(σ).

For each production (A→ w;h) ∈ P,w = B1 · · ·Bn, Bi ∈ N for 1 6 i 6 n, we
include the production

(A,σ)→ (B1,σ1) · · · (Bn,σn),

for each σ ∈ H6m \ {ε} and σ1, . . . ,σn ∈ H6m such that for σ = h1�σ ′, h1 ∈ H,
σ ′ ∈ H6m−1, one of the following holds:

1. (h−1h1)�σ ′ ∈ J(σ1� · · ·� σn).

2. h1 = h and σ ′ ∈ J(σ1� · · ·� σn).

Furthermore, for every production (A → w; 1) with w ∈ T ∪ {ε}, we include the
production (A, ε)→ w. Finally, the start symbol of G ′ is (S, 1).

It remains to be shown that L(G ′) = L(G). In order to prove L(G ′) ⊆ L(G),
one can show by induction on n that forw ∈ T∗, (A,σ)⇒nG ′ w implies that there
is a derivation (A, 1)⇒∗G (w,h) for some h ∈ H using productions

(A1 → w1;h1), . . . , (Ak → wk;hk)

such that σ ∈ J(h1� · · ·�hk) (and of course h = h1 · · ·hk). This implies that for
(S, 1)⇒∗G ′ w, w ∈ T∗, we have w ∈ L(G). Thus, L(G ′) ⊆ L(G).

Let w ∈ L(G) with derivation tree (T,6,ϕ, (6t)t∈T ,Λ). By Lemma 3.4.3,
there is an evaluation � of the tree with value 1 and of excursiveness 6 m. From
the tree and the evaluation, we construct a derivation tree (T,6,ϕ ′, (6t)t∈T ,Λ ′)
forw inG ′ as follows. The components T,6, and6t, t ∈ T, remain unaltered, but
ϕ ′ will assign 1 to each node and Λ ′ is defined by Λ ′(t) = Λ(t) if Λ(t) ∈ T ∪ {ε}
and Λ ′(t) = (Λ(t),h1� · · ·�hk) if Λ(t) ∈ N, where h1, . . . ,hk is the valence
sequence of t in �. Now, one can see that the new tree is a derivation tree for G ′

that generates w. Hence, L(G) ⊆ L(G ′).

In order to complete the proof of Theorem 3.1.2, we need to exhibit a va-
lence grammar overM that generates a non-context-free language when given a
finitely generated monoidMwith infinite R1(M).

Lemma 3.4.5. Let R1(M) be infinite for some finitely generated monoidM. Then, there
is a valence grammar overM that generates a language that is not context-free.

Proof. Let M be generated by a1, . . . ,an and let X = {x1, . . . , xn} be an alphabet.
Furthermore, let ϕ : X∗ →M be the surjective morphism defined by ϕ(xi) = ai.
The valence grammarG = (N, T ,M,P,S0) is defined as follows. LetN = {S0,S1},
T = X∪ {c}, and let P consist of the productions

(S0 → xiS0xi; ai) (S0 → cS1c; 1) (S1 → xiS1; ai) (S1 → ε; 1)
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Chapter 3. Valence models vs. classical models

for 1 6 i 6 n. Then, clearly L(G) = K = {rcscrR | r, s ∈ X∗, ϕ(rs) = 1}. It remains
to be shown that K is not context-free. Suppose K is context-free and letm be the
constant provided by Ogden’s Lemma (Theorem 2.1.1). By Corollary 3.2.3, we
can find an infinite subset S ⊆ L1M such that

←−
I (a) ∩

←−
I (b) = ∅ for a,b ∈ S,

a 6= b. Since ϕ is surjective, we can define `(a) for every a ∈ S to be the minimal
length of a word w ∈ X∗ such that ϕ(w)a = 1. If `(a) < m for all a ∈ S, the
finite set {ϕ(w) | w ∈ X∗, |w| < m} contains a left inverse for every a ∈ S. This,
however, contradicts the fact that the infinitely many elements of S have disjoint
sets of left inverses. Thus, there exists an a ∈ Swith `(a) > m. We choose words
r, s ∈ X∗ such that ϕ(s) = a and r is of minimal length among those words
satisfying ϕ(rs) = 1. Then, by the choice of a, we have |r| > m.

We apply Ogden’s Lemma to the word z = rcscrR ∈ K, where we choose
the first |r| symbols to be marked. Let z = uvwxy be the decomposition from
the lemma. Condition 1 implies |uv| < |r|. Because of condition 4, x cannot
contain a c. Furthermore, x cannot be a subword of r, since then pumping would
lead to words with mismatching first and third segments. In particular, from
condition 2, the first part holds and v is not empty. Thus, if x were a subword of
s, pumping would again lead to a mismatching first and third segment. Hence,
x is a subword of rR. If we now pump with i = 0, we obtain a word r ′cscr ′′ ∈ K,
where |r ′| < |r|. In particular, we have ϕ(r ′s) = 1, in contradiction to the choice
of r.

Theorem 3.1.2 now follows from the foregoing lemmas.

Proof of Theorem 3.1.2. Condition 2 is equivalent to condition 5 by Lemmas 3.4.4
and 3.4.5. Lemmas 3.3.3 and 3.3.4 prove that conditions 1, 3, and 4 are each
equivalent to condition 5.

3.5 Conclusion

Theorem 3.1.2 settles the question of which monoids increase the expressiveness
when used as a storage mechanism in automata and grammars, provided that ex-
pressiveness is measured by the produced languages. Furthermore, for a strong
notion of determinism, it describes those monoids over which valence automata
can be determinized.

The main results of this chapter have appeared in [Zetzsche2011b].

Open problems

1. We have compared the possible behaviors of different storage mechanisms
in terms of their language classes. However, language equivalence is a
rather coarse notion of behavioral equivalence and there exist much more
fine-grained such notions, such as bisimulation [Milner1989]. Hence, it
would be interesting to understand which monoids increase the set of pos-
sible behaviors with respect to these finer notions. For example, which mon-
oids can yield automata that are not bisimilar to finite systems?

2. We have observed that the notion of determinism for valence automata is
rather strong and therefore sometimes fails to specialize to the usual notion
for concrete storage mechanisms. It would therefore be interesting to study
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the question of which monoids cause valence automata to have weakly de-
terministic equivalents. In order to permit actions that depend on the cur-
rent monoid element, one could allow, for each configuration, at most one
edge that leads to a right-invertible monoid element.

Related work The equivalence between condition 1 and condition 5 in Theo-
rem 3.1.2 has been obtained independently by Render2010 [Render2010]. In the
case of groups, it was shown by MitranaStiebe2001 [MitranaStiebe2001] (and
essentially the same fact was observed by Anisimov1971 [Anisimov1971]; see
Theorem 3.3.1).

As the author learned after the submission of [Zetzsche2011b], the dichot-
omy of monoids in Proposition 3.2.2 and Corollary 3.2.3 had been well known
to semigroup theorists (see, for example, [Render2010]). While Corollary 3.2.3
has appeared in [Zetzsche2011b] with the author’s own proof, it is deduced here
from the stronger Proposition 3.2.2, whose proof uses an idea from [Grillet1995].

Valence grammars (although only for certain concrete monoids) were intro-
duced by Paun1980 [Paun1980]. A thorough treatment, including normal form
results and a classification of the resulting language classes for commutative
monoids, has been carried out by FernauStiebe2002a [FernauStiebe2002a]. For
an overview of results on valence grammars, we refer the reader to the references
therein.

Acknowledgements I would like to thank Reiner Hüchting and Klaus Madle-
ner for discussions and helpful comments which have improved the presenta-
tion of [Zetzsche2011b]. Furthermore, I am grateful to the anonymous referee
for ICALP 2011 who made me aware that the equivalence of the second and last
condition of Theorem 3.1.2 had been obtained independently by Elaine Render
and that the dichotomy of monoids is well-known.

51

cf7212f0 2016-06-29 03:26:35 +0200



Chapter 3. Valence models vs. classical models

52

cf7212f0 2016-06-29 03:26:35 +0200



Chapter 4

Decidability of the emptiness
problem

4.1 Introduction

In this chapter, we turn from questions of expressivity to those of analysis of va-
lence automata. One of the most important problems in the algorithmic analysis
of system models is the emptiness problem, which asks whether a given language
is empty: On the one hand, this is a very natural problem. On the other hand,
in most automata models, it is equivalent to the reachability problem (Given two
configurations, can the second be reached from the first one?) and in the case of
effective full trios, such as VA(M), it is equivalent to the membership problem
(Given a language L and a word w, does L contain w?).

Deciding the emptiness problem is also instrumental for verifying safety prop-
erties: These designate certain events as undesirable and stipulate that they never
occur (“something bad never happens”) [Berard2010]. Hence, when an undesirable
event consists in reaching a certain configuration, verifying the corresponding
safety property boils down to an invocation of the reachability problem. Further-
more, if it is considered undesirable for an automaton A to perform a sequence
of actions from a regular language R ⊆ X∗, we can verify that L(A) ∩ RX∗ = ∅,
which is possible when the automaton model exhibits effective closure under
intersection with regular sets.

We present several results concerning the decidability of the emptiness prob-
lem. In Section 4.2, we mention a connection between the emptiness problem of
valence automata and the membership problem for rational subsets of monoids.
Afterwards, in Section 4.3, we consider the decidability of the emptiness problem
for graph monoids.

The results of this chapter have appeared in [Zetzsche2015c].

4.2 Groups

In this section, we mention a connection between the emptiness problem for va-
lence automata and the rational subset membership problem for groups, which
has attracted attention in recent years. This connection allows the transfer of de-
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Chapter 4. Decidability of the emptiness problem

cidability results between the emptiness problem for valence automata on the
one side and the membership problem for rational sets in groups on the other.

The rational subset membership problem Suppose M is a finitely generated
monoid and ϕ : X∗ →M is a surjective morphism. Then the rational subset mem-
bership problem1 for M is the following decision problem: The given input is a
rational subset R ⊆ X∗ and a word w ∈ X∗ and the question is whether ϕ(w)
contained in ϕ(R). Note that the decidability of the problem does not depend on
the chosen morphism ϕ.

The rational subset membership problem was subject to increased interest
in recent years; see [Lohrey2015a] for a survey. KambitesSilvaSteinberg2007
characterized the decidability of the emptiness problem of valence automata over
a group G in terms of the group’s rational subset membership problem.

Theorem 4.2.1 (KambitesSilvaSteinberg2007 [KambitesSilvaSteinberg2007]). For
valence automata over a groupG, emptiness is decidable if and only if the rational subset
membership problem for G is decidable.

4.3 Graph monoids

In this section, we investigate for which graph monoids MΓ , the emptiness prob-
lem is decidable for valence automata over MΓ .

As a first step, we exhibit graphs Γ for which VA(MΓ) includes the recursively
enumerable languages.

Theorem 4.3.1. Let Γ be a graph such that Γ− contains C4 or P4 as an induced sub-
graph. Then VA(MΓ) is the class of recursively enumerable languages. In particular, the
emptiness problem is undecidable for valence automata over MΓ .

Unfortunately, it is not clear whether this describes all Γ for which VA(MΓ)
exhausts the recursively enumerable languages. For example, if Γ contains no
loops and is just one edge short of being a clique, the monoid MΓ represents a
pushdown Petri net storage. For these, it is an open problem whether the reach-
ability problem is decidable [Reinhardt2008]. In Theorem 4.3.8, however, we
will see that if we forbid induced subgraphs corresponding to these devices, the
converse of Theorem 4.3.1 becomes true.

A result similar to Theorem 4.3.1 was shown by LohreySteinberg2008 [LohreySteinberg2008]:
They proved that if every vertex in Γ is looped and Γ contains C4 or P4 as an
induced subgraph, then the rational subset membership problem is undecidable
for MΓ . Their proof adapts a construction of AalbersbergHoogeboom1989 [AalbersbergHoogeboom1989],
which shows that the disjointness problem for rational sets of traces is unde-
cidable when the independence relation has P4 or C4 as an induced subgraph.
An inspection of the proof presented here, together with its prerequisites (Theo-
rems 4.3.3 and 4.3.4), reveals that the employed ideas are very similar to the com-
bination of LohreySteinberg2008’s and AalbersbergHoogeboom1989’s proof.
Here, we use the following fact. We denote the recursively enumerable lan-
guages by RE.

1It should be noted that the rational subset membership problem is usually defined for groups
and then with respect to a group generating set (as opposed to a monoid generating set). However,
it is easy to see that the decidability of the problem is not affected by this slight deviation.
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Lemma 4.3.2. Let X = {a1, ā1,b1,a2, ā2,b2} and let B2 ⊆ X∗ be defined as

B2 = ({an1 ā
n
1 | n > 0}b1)

∗
� ({an2 ā

n
2 | n > 0}b2)

∗.

Then RE equals T(B2), the smallest full trio containing B2.

Lemma 4.3.2 is essentially due to HartmanisHopcroft1970, who stated it in
slightly different terms:

Theorem 4.3.3 (HartmanisHopcroft1970 [HartmanisHopcroft1970]). Let C be the
smallest full AFL containing {anbn | n > 0}. Every recursively enumerable language
is the homomorphic image of the intersection of two languages in C.

According to the following auxiliary result of GinsburgGreibach1970 [GinsburgGreibach1970],
Lemma 4.3.2 will follow from Theorem 4.3.3.

Theorem 4.3.4 (GinsburgGreibach1970 [GinsburgGreibach1970]). Let L ⊆ X∗
and c /∈ X. The smallest full AFL containing L equals T((Lc)∗).

As announced, Lemma 4.3.2 now follows.

Proof of Lemma 4.3.2. Since clearly T(B2) ⊆ RE, it suffices to show RE ⊆ T(B2).
According to Theorem 4.3.3, this amounts to showing that L1 ∩ L2 ∈ T(B2) for
any L1 and L2 in C, where C is the smallest full AFL containing the language
S = {anbn | n > 0}. Hence, let L1,L2 ∈ C. By Theorem 4.3.4, L1 and L2 belong to
C = T((Sc)∗). This means we have Li = Ti({ani ā

n
i | n > 0}bi)∗ for some rational

transduction Ti for i = 1, 2. Using a product construction, it is now easy to obtain
a rational transduction T with L1 ∩ L2 = TB2.

The proof of Theorem 4.3.1 will require one more auxiliary lemma.

Lemma 4.3.5. Let Γ = (V ,E) be a graph, W ⊆ V a subset, and Y ⊆ XΓ be defined as
Y = {aw, āw | w ∈W}. Then u ≡Γ v implies πY(u) ≡Γ πY(v) for u, v ∈ X∗Γ .

Proof. An inspection of the rules in the presentation TΓ reveals that if (u, v) ∈ RΓ ,
then either (πY(u),πY(v)) = (u, v) or πY(u) = πY(v). In any case, we have the
equivalence πY(u) ≡Γ πY(v). Since ≡Γ is a congruence and πY a morphism, this
implies the lemma.

Note that the foregoing lemma does not hold for arbitrary alphabets Y ⊆ XΓ .
For example, if V = {1}, XΓ = {a1, ā1}, and Y = {a1}, then a1ā1 ≡Γ ε, but
a1 6≡Γ ε.

We are now ready to prove Theorem 4.3.1.

Proof of Theorem 4.3.1. The definition of MΓ implies that the set of all w ∈ X∗Γ
with w ≡Γ ε is recursively enumerable. In particular, one can recursively enu-
merate runs of valence automata over VA(MΓ) and hence VA(MΓ) ⊆ RE. For
the other inclusion, recall that VA(M) is a full trio for any monoid M. Further-
more, if ∆ is an induced subgraph of Γ , then M∆ embeds into MΓ , meaning
VA(M∆) ⊆ VA(MΓ). Hence, according to Lemma 4.3.2, it suffices to show that
B2 ∈ VA(MΓ) if Γ− equals C4 or P4.

Let X = {a1, ā1,b1,a2, ā2,b2} and Γ = (V ,E). If Γ− equals C4 or P4, then
we have V = {1, 2, 3, 4} with {3, 1}, {1, 2}, {2, 4} ∈ E and {1, 4}, {2, 3} /∈ E. See
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2 4

31

Figure 4.1: Graphs Γ where Γ− is C4 or P4. Dotted lines represent edges that may
or may not exist in Γ .

Fig. 4.1. We construct a valence automaton A over MΓ for B2 ⊆ X∗ as fol-
lows. First, A nondeterministically reads a word from the regular language
R = ((a∗1ā

∗
1)b1)

∗
� ((a∗2ā

∗
2)b2)

∗. Here, when reading ai or āi, it multiplies [ai]
or [āi], respectively, to the storage monoid. When reading b1 or b2, it multiplies
[a4] or [a3], respectively. After this, A switches to another state and nondeter-
ministically multiplies an element from {[ā4], [ā3]}∗. Then it changes into an ac-
cepting state. We shall prove that A accepts B2. Let h : X∗ → {ai, āi | 1 6 i 6 4}∗

be the morphism with h(ai) = ai and h(āi) = āi for i = 1, 2 and h(b1) = a4
and h(b2) = a3.

Suppose w ∈ L(A). Then w ∈ R and there is a v ∈ {ā4, ā3}∗ that satis-
fies [h(w)v]Γ = [ε]Γ . Let wi = π{ai,āi,bi}(w). Observe that if we can show
wi ∈ ({ani ā

n
i | n > 0}∗bi)

∗ for i = 1, 2, then clearly w ∈ B2. For symme-
try reasons, it suffices to prove this for i = 1. Let Y = {a1, ā1,a4, ā4}. Since
[h(w)v]Γ = [ε]Γ , we have in particular [πY(h(w)v)]Γ = [ε]Γ by Lemma 4.3.5.
Moreover,

πY(h(w)v) = a
n1
1 ā

n̄1
1 a4 · · ·a

nk
1 ā

n̄k
1 a4ā

m
4

for some n1, . . . ,nk, n̄1, . . . , n̄k,m ∈ N. Again, by projecting to {a4, ā4}∗, we
obtain [ak4 ā

m
4 ]Γ = [ε]Γ and hence k = m. If nk 6= n̄k, then it is easy to see that

πY(h(w)v) cannot be reduced to ε, since there is no edge {1, 4} in Γ . Therefore,
we have nk = n̄k. It follows inductively that ni = n̄i for all 1 6 i 6 k. Since
wi = a

n1
1 ā

n̄1
1 b1 · · ·a

nk
1 ā

n̄k
1 b1, this implies wi ∈ ({an1 ā

n
1 | n > 0}b1)∗.

We shall now prove B2 ⊆ L(A). Let g : X∗ → {ā3, ā4} be the morphism
defined by g(ai) = g(āi) = ε and g(b1) = ā4 and g(b2) = ā3. We show
by induction on |w| that w ∈ B2 implies [h(w)g(w)R]Γ = [ε]Γ . Since for each
w ∈ B2, A clearly has a run that puts [h(w)g(w)R]Γ into the storage, this estab-
lishes B2 ⊆ L(A). Suppose π{b1,b2}(w) ends in b1. Then w = rsb1 for r ∈ X∗,
s ∈ (an1 ā

n
1 )� t with r ∈ X∗, n ∈N and t ∈ {a2, ā2,b2}∗. Note that then rt ∈ B2.

Since there are edges {1, 2}, {2, 4} in Γ , we have [h(s)]Γ = [h(tan1 ā
n
1 )]Γ . Moreover,

since g deletes a1 and ā1, we have g(s) = g(t). Therefore,

[h(w)g(w)R]Γ = [h(rsb1)g(rsb1)
R]Γ = [h(rtan1 ā

n
1 b1)g(rtb1)

R]Γ

= [h(rt)an1 ā
n
1 a4ā4g(rt)

R]Γ = [h(rt)g(rt)R]Γ .

By induction, we have [h(rt)g(rt)R]Γ = [ε]Γ and hence [h(w)g(w)R]Γ = [ε]Γ .
If π{b1,b2}(w) ends in b2, then one can show [h(w)g(w)R]Γ = [ε]Γ completely
analogously. This proves B2 ⊆ L(A) and hence the theorem.

Decidability We now establish the decidability of the emptiness problem for
valence automata over certain graph monoids. As already noted in Section 2.4,
if Γ = (V ,E) has no loops, is one edge short of being a clique, and |V | > 2,
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4.3. Graph monoids

then MΓ ∼= B(2) ×B|V |−2. This means valence automata over MΓ are equiva-
lent to Petri nets with |V |− 2 unbounded places and one pushdown. In particu-
lar, the emptiness problem for valence automata is equivalent to the reachability
problem for such Petri nets, for which decidability is a long-standing open prob-
lem [Reinhardt2008]. Therefore, characterizing those Γ with a decidable empti-
ness problem for valence automata over MΓ would very likely settle this open
problem2.

However, if we steer clear of pushdown Petri nets, we can achieve a character-
ization. More precisely, we will present a set of graphs that allow the simulation
of a pushdown Petri net. Then, among those graphs that do not contain these
as induced subgraphs, we characterize those for which emptiness is decidable.
From Theorem 4.3.1, we already know that a P4 or C4 as an induced subgraph of
Γ− causes the emptiness problem to be undecidable. We will see in Theorem 4.3.8
that, if we forbid subgraphs corresponding to pushdown Petri nets, the absence
of P4 and C4 already characterizes decidability. Let us define those subgraphs
that entail the behavior of pushdown Petri nets.

PPN-graphs The graph Γ is said to be a PPN-graph if it is isomorphic to one of
the following three graphs:

A graph Γ is called PPN-free is it has no PPN-graph as an induced subgraph.
Observe that a graph Γ is PPN-free if and only if in the neighborhood of each
unlooped vertex, any two vertices are adjacent.

Of course, the abbreviation ‘PPN’ refers to ‘pushdown Petri nets’. This is
justified by the following fact.

Proposition 4.3.6. If Γ is a PPN-graph, then VA(MΓ) = VA(B(2) ×B).

Proof. By definition, we have MΓ ∼= B× (M0 ∗M1), where Mi ∼= B or Mi ∼= Z

for i ∈ {0, 1}. We show that VA(M0 ∗M1) = VA(B ∗B) in any case. According
to Theorem 2.3.6, this implies VA(MΓ) = VA(B(2) ×B). If M0 ∼= M1 ∼= B, the
equality VA(M0 ∗M1) = VA(B ∗B) is trivial, so we may assumeM0 ∼= Z.

IfM1 ∼= Z, thenM0 ∗M1 ∼= Z ∗Z, meaning that VA(M0 ∗M1) is the class of
context-free languages (Theorem 2.4.1) and thus VA(M0 ∗M1) = VA(B ∗B).

If M1 ∼= B, then VA(Z ∗B) = Alg(VA(Z)) by Theorem 2.6.6. Since VA(Z) is
included in the context-free languages, we have Alg(VA(Z)) = VA(B ∗B).

In order to exploit the absence of P4 and C4 as induced subgraphs, we will
employ a characterization of such graphs as transitive forests.

Transitive forests The comparability graph of a tree t is a simple graph with the
same vertices as t, but has an edge between two vertices whenever one is a de-
scendent of the other in t. A simple graph is a transitive forest if it is the disjoint
union of comparability graphs of trees. For an example of a transitive forest, see
Fig. 4.2.

2Technically, it is conceivable that there is a decision procedure for each B(2)×Bn, but no uniform
one that works for all n. However, this seems unlikely.
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Figure 4.2: Example of a transitive forest. The solid edges are part of the trees
whose comparability graphs make up the graph.

Definition 4.3.7. By DEC, we denote the smallest isomorphism-closed class of monoids
such that

1. for each n > 0, we have Bn ∈ DEC and

2. forM,N ∈ DEC, we also haveM ∗N ∈ DEC andM×Z ∈ DEC.

Our result characterizes those PPN-free Γ for which valence automata over
MΓ have decidable emptiness problem.

Theorem 4.3.8. Let Γ be PPN-free. Then the following conditions are equivalent:

1. Emptiness is decidable for valence automata over MΓ .

2. Γ− contains neither C4 nor P4 as an induced subgraph.

3. Γ− is a transitive forest.

4. MΓ ∈ DEC.

Note that this generalizes the fact that emptiness is decidable for pushdown
automata (i.e. graphs with no edges) and partially blind multicounter automata
(i.e. cliques), or equivalently, reachability in Petri nets.

This theorem extends a result by LohreySteinberg2008 [LohreySteinberg2008].
The latter characterizes those graph groups for which the rational subset mem-
bership problem is decidable.

Theorem 4.3.9 (LohreySteinberg2008 [LohreySteinberg2008]). Let Γ be a graph
in which every vertex is looped. Then the rational subset membership problem for the
group MΓ is decidable if and only if Γ− is a transitive forest.

According to Theorem 4.2.1, this covers the cases of Theorem 4.3.8 where in
Γ every vertex is looped. LohreySteinberg2008 show decidability by essentially
proving that VA(MΓ) is semilinear in their case. Here, we extend this argument
by showing that in the equivalent cases of Theorem 4.3.8, the Parikh images of
VA(MΓ) are those of languages accepted by priority multicounter automata. The
latter were introduced and shown to have a decidable reachability problem by
Reinhardt2008 [Reinhardt2008].
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Intuition for decidable cases In order to provide an intuition for those storage
mechanisms (not containing a pushdown Petri net) with a decidable emptiness
problem, we present an equally expressive class of monoids for which the cor-
responding storage mechanisms are easier to grasp. Let SC± be the smallest
isomorphism-closed class of monoids with

1. for each n ∈N, we have Bn ∈ SC±,

2. for eachM ∈ SC±, we also have B ∗M ∈ SC± andM×Z ∈ SC±.

Hence, SC± realizes those storage mechanisms that can be constructed from a
finite set of partially blind counters (Bn), building stacks (M 7→ B ∗M) and adding
blind counters (M 7→M×Z). Then, in fact, the monoids in SC± produce the same
languages as those in DEC.

Proposition 4.3.10. VA(DEC) = VA(SC±).

Proof. Since SC± ⊆ DEC, the inclusion “⊇” is immediate. We show by induction
with respect to the definition of DEC that for eachM ∈ DEC, there is anM ′ ∈ SC±

with VA(M) ⊆ VA(M ′). This is trivial if M = Bn, so suppose VA(M) ⊆ VA(M ′)
and VA(N) ⊆ VA(N ′) for M,N ∈ DEC and M ′,N ′ ∈ SC±. Observe that by
induction on the definition of SC±, one can show that there is a common P ∈ SC±

with VA(M ′) ⊆ VA(P) and VA(N ′) ⊆ VA(P). Of course, we may assume that
R1(P) 6= {1}. Then we have

VA(M ∗N) ⊆ Alg(VA(M)∪VA(N)) by Theorem 2.6.3
⊆ Alg(VA(M ′)∪VA(N ′))
⊆ Alg(VA(P))

= VA(B ∗ P) by Theorem 2.6.6

and B ∗ P ∈ SC±. Moreover, Corollary 2.3.7 implies VA(M×Z) ⊆ VA(M ′ ×Z)
and we haveM ′ ×Z ∈ SC±.

Intuition for open cases We also want to provide an intuition for the remain-
ing storage mechanisms, i.e. those defined by monoids MΓ about which Theo-
rem 4.3.1 and Theorem 4.3.8 make no statement. To this end, we describe a class
of monoids that are expressively equivalent to these remaining cases. The re-
maining cases are given by those graphs Γ where Γ− does not contain C4 or P4,
but Γ contains a PPN-graph. Let REM denote the class of monoids MΓ , where Γ
is such a graph. Let SC+ be the smallest isomorphism-closed class of monoids
with

1. for each n ∈N, n > 1, we have (B ∗Bn)×B ∈ SC+ and

2. for eachM ∈ SC+, we also have B ∗M ∈ SC+ andM×B ∈ SC+.

Thus, SC+ realizes those storage mechanisms that are obtained from a stack of
partially blind counters, together with one partially blind counter ((B ∗Bn)×B) by
building stacks (M 7→ B ∗M) and adding partially blind counters (M 7→ M× B).
Of course, SC+ generalizes pushdown Petri nets, which correspond to monoids
(B ∗B)×Bn for n ∈N.

Proposition 4.3.11. VA(REM) = VA(SC+).
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Chapter 4. Decidability of the emptiness problem

Proving Proposition 4.3.11 requires some ingredients of the proof of Theo-
rem 4.3.8. We therefore postpone the proof until after Theorem 4.3.8 is shown.

The remainder of this section is devoted to the proof of Theorem 4.3.8 and
Proposition 4.3.11. Note that the implication “1⇒ 2” immediately follows from
Theorem 4.3.1. The implication “2⇒ 3” is an old graph-theoretic result of Wolk.

Theorem 4.3.12 (Wolk1965 [Wolk1965]). A simple graph Γ is a transitive forest if
and only if Γ does not contain C4 or P4 as an induced subgraph.

The implication “3⇒ 4” is a simple combinatorial observation. An analogous
fact is part of Lohrey and Steinberg’s proof of Theorem 4.3.9.

Lemma 4.3.13. If Γ is PPN-free and Γ− is a transitive forest, then MΓ ∈ DEC.

Proof. Let Γ = (V ,E). We proceed by induction on |V |. Observe that by The-
orem 4.3.12, every induced subgraph of a transitive forest is again a transitive
forest. Since furthermore every induced proper subgraph ∆ of Γ is again PPN-
free, our induction hypothesis implies M∆ ∈ DEC for such graphs. If Γ is empty,
then MΓ ∼= 1 ∼= B0 ∈ DEC. Hence, we assume that Γ is non-empty. If Γ is not con-
nected, then Γ is the disjoint union of graphs Γ1, Γ2, for which MΓ1, MΓ2 ∈ DEC
by induction. Hence, MΓ ∼= MΓ1 ∗MΓ2 ∈ DEC. We therefore assume that Γ is
connected.

Since Γ− is a transitive forest, there is a vertex v ∈ V that is adjacent to every
vertex in V \ {v}. We distinguish two cases.

• If v is a looped vertex, then MΓ ∼= Z×M(Γ \ v), and M(Γ \ v) ∈ DEC by
induction.

• If v is an unlooped vertex, then Γ being PPN-free means that in (Γ \ v)−,
any two distinct vertices are adjacent. Hence, MΓ ∼= Bm ×Zn for some
m,n ∈N and thus MΓ ∈ DEC.

In light of Theorem 4.3.1, Theorem 4.3.12, and Lemma 4.3.13, it remains to be
shown that emptiness is decidable for valence automata over monoids in DEC.
We prove this by reducing the problem to the reachability problem of priority
multicounter machines, whose decidability has been established by Reinhardt2008 [Reinhardt2008].
Priority multicounter machines are an extension of Petri nets with one inhibitor
arc. Intuitively, a priority multicounter machine is a partially blind multicoun-
ter machine with the additional capability of restricted zero tests: The counters
are numbered from 1 to k and for each ` ∈ {1, . . . ,k}, there is a zero test instruc-
tion that checks whether counters 1 through ` are zero. Let us define priority
multicounter machines formally.

Definition 4.3.14. A priority k-counter machine is a tuple A = (Q,X,E,q0, F),
where

• Q is a finite set of states,

• X is an alphabet,

• E is a finite subset of Q× X∗ × {0, . . . ,k}×Zk ×Q, and its elements are called
edges or transitions,
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• q0 ∈ Q is the initial state, and

• F ⊆ Q is the set of final states.

Elements of Q× X∗ ×Nk are called configurations. For configurations (q,u,µ) and
(q ′,u ′,µ ′) with q,q ′ ∈ Q and µ,µ ′ ∈Nk, with µ = (m1, . . . ,mk), we write

(q,u,µ)→A (q ′,u ′,µ ′) if for some (q, x, `,ν,q ′) ∈ E,
u ′ = ux, µ ′ = µ+ ν, andmi = 0 for 1 6 i 6 `.

The language accepted by A is defined as

L(A) = {w ∈ X∗ | (q0, ε, 0)→∗A (q,w, 0) for some q ∈ F}.

A priority multicounter machine is a priority k-counter machine for some k ∈ N.
The class of languages accepted by priority multicounter machines is denoted by Prio.

Reinhardt2008 has shown that the reachability problem for priority multi-
counter machines is decidable [Reinhardt2008], which can be reformulated as
follows.

Theorem 4.3.15 (Reinhardt2008 [Reinhardt2008]). Emptiness is decidable for pri-
ority multicounter machines.

The idea of the proof of “4 ⇒ 1” is, given a valence automaton over some
M ∈ DEC, to construct a Parikh-equivalent priority multicounter machine. This
construction makes use of the following simple fact.

Lemma 4.3.16. Prio is a Presburger closed full semi-AFL and closed under substitu-
tions.

Proof. The fact that Prio is a full semi-AFL can be shown by standard automata
constructions. Given a priority multicounter machine A and a semilinear set
S ⊆ X⊕, we add |X| counters to A that ensure that the input is contained in
L(A)∩Ψ−1(S). This proves that Prio is Presburger closed.

Suppose σ : X∗ → P(Y∗) is a Prio-substitution. Furthermore, letA be a priority
k-counter machine and let σ(x) be given by a priority `-counter machine for each
x ∈ X. We construct a priority (` + k)-counter machine B from A by adding `
counters. B simulates A on counters `+ 1, . . . , `+ k. Whenever A reads x, B uses
the first ` counters to simulate the priority `-counter machine for σ(x). Using the
zero test on the first ` counters, it makes sure that the machine for σ(x) indeed
ends up in a final configuration. Then clearly L(B) = σ(L(A)).

In order to show that every L ∈ VA(M) for M ∈ DEC has a Parikh equivalent
in Prio, we use Proposition 2.5.3 and Theorem 2.6.3. By induction with respect to
the definition of DEC, it suffices to prove that

Ψ(VA(M)),Ψ(VA(N)) ⊆ Ψ(Prio) implies Ψ(VA(M×Z)) ⊆ Ψ(Prio) and
Ψ(VA(M ∗N)) ⊆ Ψ(Prio).

According to Proposition 2.5.3 and Theorem 2.6.3, this boils down to showing
that Ψ(SLI(Prio)) ⊆ Ψ(Prio) and Ψ(Alg(Prio)) ⊆ Ψ(Prio). The former is a conse-
quence of Lemma 4.3.16 and the latter is a special case of Theorem 2.6.8.
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Lemma 4.3.17. We have the effective inclusion Ψ(VA(DEC)) ⊆ Ψ(Prio). More pre-
cisely, given M ∈ DEC and L ∈ VA(M), one can construct an L ′ ∈ Prio with
Ψ(L ′) = Ψ(L).

Proof. We proceed by induction with respect to the definition of DEC. IfM = Bn,
then VA(M) ⊆ Prio, because priority multicounter machines generalize partially
blind multicounter machines.

Suppose M = N×Z and Ψ(VA(N)) ⊆ Ψ(Prio) and let L ∈ VA(M). By Propo-
sition 2.5.3, we have L = h(K ∩ Ψ−1(S)) for some semilinear set S, a morphism
h, and K ∈ VA(N). Hence, there is a K̄ ∈ Prio with Ψ(K̄) = Ψ(K). With this,
we have Ψ(L) = Ψ(h(K̄ ∩Ψ−1(S))) and since Prio is Presburger closed, we have
h(K̄∩Ψ−1(S)) ∈ Prio and thus Ψ(L) ∈ Ψ(Prio).

Now assume M = M0 ∗M1 and Ψ(VA(Mi)) ⊆ Ψ(Prio) for i = 0, 1 and let
L ∈ VA(M). According to Theorem 2.6.3, we have L ∈ Alg(VA(M0) ∪ VA(M1)).
Since Ψ(VA(M0) ∪ VA(M1)) ⊆ Ψ(Prio), Lemma 2.6.9 allows us to construct a
Prio-grammar G with Ψ(L(G)) = Ψ(L). By Theorem 2.6.8 and Lemma 4.3.16, this
implies Ψ(L) ∈ Ψ(Prio).

The following lemma is a direct consequence of Lemma 4.3.17 and Theo-
rem 4.3.15: Given a valence automaton over M with M ∈ DEC, we construct
a priority multicounter machine accepting a Parikh-equivalent language. The
latter can then be checked for emptiness.

Lemma 4.3.18. For each M ∈ DEC, the emptiness problem for valence automata over
M is decidable.

Theorem 4.3.8 now follows easily.

Proof of Theorem 4.3.8. The foregoing lemmas establish the required implications
as follows:

1 =⇒ 2 by Theorem 4.3.1
=⇒ 3 by Theorem 4.3.12
=⇒ 4 by Lemma 4.3.13
=⇒ 1 by Lemma 4.3.18

Let us now prove Proposition 4.3.11.

Proof of Proposition 4.3.11. By induction, it is easy to see that each M ∈ SC+ is
isomorphic to some MΓ , where Γ contains a PPN-graph and Γ− is a transitive
forest. By Theorem 4.3.12, this means Γ− contains neither C4 nor P4. This proves
the inclusion “⊇”.

Because of Theorem 4.3.12, for the inclusion “⊆”, it suffices to show that if Γ−

is a transitive forest, then there is some M ∈ SC+ with VA(MΓ) ⊆ VA(M). We
prove this by induction on the number of vertices in Γ = (V ,E). As in the proof
of Lemma 4.3.13, we may assume that for every induced proper subgraph ∆ of
Γ , we find anM ∈ SC+ with VA(MΓ) ⊆ VA(M).

If Γ is empty, then MΓ ∼= 1 and VA(MΓ) ⊆ VA(B(2) ×B). Hence, we may
assume that Γ is non-empty.
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If Γ is not connected, then Γ = Γ1 ] Γ2 with graphs Γ1, Γ2 such that there are
M1,M2 ∈ SC+ with VA(MΓi) ⊆ VA(Mi) for i = 1, 2. By induction with respect
to the definition of SC+, one can show that there is a common N ∈ SC+ with
VA(Mi) ⊆ VA(N) for i = 1, 2. Since then N 6= {1}, we have

VA(MΓ) = VA(MΓ1 ∗MΓ2)

⊆ Alg(VA(MΓ1)∪VA(MΓ2)) by Theorem 2.6.3
⊆ Alg(VA(M1)∪VA(M2))
⊆ Alg(VA(N))

= VA(B ∗N) by Theorem 2.6.6

and B ∗N ∈ SC+.
Suppose Γ is connected. Since Γ− is a transitive forest, there is a vertex v ∈ V

that is adjacent to every vertex in V \ {v}. By induction, there is an M ∈ SC+

with VA(M(Γ \ v)) ⊆ VA(M). Depending on whether v is looped or not, we have
MΓ ∼= M(Γ \ v)×Z or MΓ ∼= M(Γ \ v)×B. Since VA(Z) ⊆ VA(B×B) (one blind
counter can easily be simulated by two partially blind counters), Corollary 2.3.7
yields

VA(MΓ) ⊆ VA(M(Γ \ v)×B×B) ⊆ VA(M×B×B)

and the fact thatM×B×B ∈ SC+ completes the proof.

4.4 Conclusion

In this chapter, we identified induced subgraphs C4 and P4 as obstructions for
decidability of the emptiness problem for valence automata over graph monoids.
If the monoids corresponding to pushdown Petri nets do not occur as submon-
oids, we have seen that C4 and P4 are the only obstructions.

Furthermore, for those storage mechanisms that admit a decision procedure
and for those where the decidability status is open, we each provided a class
of storage mechanisms that is expressively equivalent and easy to grasp. In the
case where we showed decidability, these are the storage mechanisms obtained
from partially blind multicounters by building stacks and adding blind counters. For
those mechanisms where decidability is left open, these are the mechanisms ob-
tained by starting from a partially blind multicounter together with a pushdown,
and then applying the transformations of building stacks and adding partially blind
counters.

The results in this chapter have appeared in [Zetzsche2015c].

Related work Since in the case of groups, the emptiness problem for valence
automata is equivalent to the rational subset membership problem, the work that
has been carried out on the latter is closely related to the results here. In particu-
lar, and as mentioned above, Theorem 4.3.8 extends a result on this problem for
graph groups by LohreySteinberg2008 [LohreySteinberg2008]. See [Lohrey2015a]
for a survey on the rational subset membership problem.

Furthermore, MadhusudanParlato2011 [MadhusudanParlato2011] propose
a general model of automata with auxiliary storage. Similar in spirit to the re-
sults in Section 4.3, they exhibit a class of storage mechanisms that, when used

63

cf7212f0 2016-06-29 03:26:35 +0200



Chapter 4. Decidability of the emptiness problem

in automata, admit a decision procedure for the emptiness problem. This gener-
alizes several other decidability results.

However, they also show that the realized models always satisfy a Parikh’s
theorem. Since this is not the case already for partially blind multicounter stor-
ages (see Section 7.2), their result very likely does not easily subsume the ones
here. Note that proving that there is no encoding of our results into the other
framework is impossible, since there is always a trivial encoding (use our deci-
sion procedure and output one of two fixed instances of the other framework);
hence, the question is merely whether some encoding would simplify the proofs.

Open problems Section 4.3 leaves open whether the emptiness problem is de-
cidable for the monoids from SC+. Of course, determining the decidability status
for these remaining storage mechanisms is an interesting problem. As mentioned
above, this extends the open question of whether reachability is decidable for
pushdown Petri nets [Reinhardt2008].

Observe that it is conceivable that the result of LohreySteinberg2008 (Theo-
rem 4.3.9), when phrased as decidability of the emptiness problem, holds in fact
for arbitrary graph monoids. The latter is equivalent to the decidability for the
whole class SC+.
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Chapter 5

Boolean closure

5.1 Introduction

In the previous chapters, we have observed and exploited the closure of the lan-
guage classes VA(M) under rational transductions. In the case of regular lan-
guages, this closure property is accompanied by the closure under the Boolean
operations: union, intersection, and complementation.

This combination of closure properties is useful for several reasons. First, in
the case of regular languages, this particular collection is employed, for example,
in the theory of automatic structures [KhoussainovNerode1995], since it implies
that in such structures, every first-order definable relation can be represented by
a regular language. Since emptiness is decidable for regular languages, one can
therefore decide the first-order theory of these structures.

Second, together with the decidable emptiness problem, the effectiveness of
these closure properties permit the decision of the universality problem (given a
regular R ⊆ X∗, does R equal X∗?) and the inclusion problem (given regular R
and S, does R include S?).

It is therefore an interesting question for which monoids M, the class VA(M)
exhibits closure under the Boolean operations as this would give hope for find-
ing new structures with a decidable first-order theory and decision procedures
for valence automata. Unfortunately, this chapter answers this question in an
extremely negative way. It is shown here that for finitely generated monoids M,
the class VA(M) is not closed under the Boolean operations, unless VA(M) co-
incides with the regular languages. In fact, a much more general statement is
proven: Every Boolean closed full trio that contains any non-regular language
L, already includes the arithmetical hierarchy (in particular the recursively enu-
merable languages) relative to L. This means in a full trio beyond the regular
languages, virtually no decidability property can coexist with Boolean closure.

Similar results as the one presented here have been obtained, for example,
by Hartmanis and Hopcroft [HartmanisHopcroft1970]: They showed that every
intersection closed full AFL that contains the language {anbn | n > 0} already
includes the recursively enumerable languages (see Theorem 4.3.3). Moreover,
Book [Book1978] proved that the arithmetical languages constitute the smallest
Boolean closed full trio that is closed under what Book termed homomorphic repli-
cation (see [Book1978] for a definition). Hence, the result here means in Book’s
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result one can replace the homomorphic replication by containment of any non-
regular language (which is a significantly weaker condition).

In slightly enhanced form, the results in this section have appeared in [LohreyZetzsche2014a].
In the latter work, it was made explicit that in order to construct every language
in AH(L) from a given non-regular L, three fixed rational transductions suffice.
Moreover, the extended version of [LohreyZetzsche2014a] also considers anal-
ogous questions with synchronized rational transductions instead of rational
transductions [ZetzscheLohreyKuske2015a].

5.2 Boolean closed full trios

In order to state the main result of this chapter, we need to define the (relative)
arithmetical hierarchy. Recall that RE denotes the recursively enumerable lan-
guages. For any language class C, we write RE(C) for the class of languages
accepted by some Turing machine with an oracle L ∈ C. We also write RE(L) for
RE({L}). Then the arithmetical hierarchy is defined as

Σ1 = RE, Σn+1 = RE(Σn) for n > 0, AH =
⋃
n>1

Σn.

Languages in AH are called arithmetical. The arithmetical hierarchy relative to L is
defined as

Σ1(L) = RE(L), Σn+1(L) = RE(Σn(L)) for n > 0, AH(L) =
⋃
n>1

Σn(L).

For a more detailed introduction to the arithmetical hierarchy, see [Kozen1997].
For a language L ⊆ X∗, let α(L) ⊆ X denote the smallest subset Y ⊆ X with
L ⊆ Y∗. Then, the complement of L is the language L = α(L)∗ \ L. A language class
C is Boolean closed if for each K,L ∈ C, we have K∪ L ∈ C and L ∈ C.

We are now in a position to formulate the main result of this chapter.

Theorem 5.2.1. Let L be a non-regular language. Then AH(L) is the smallest Boolean
closed full trio containing L.

Before we prove Theorem 5.2.1, we record some consequences. The first one
applies to a wide range of language classes. Although the author is not aware of
any particular full semi-AFL for which it is not known whether complementation
closure is available, the following fact is interesting because of its generality.

Corollary 5.2.2. Other than the regular languages, no full semi-AFL C ⊆ RE is closed
under complementation.

Proof. Suppose C were a complementation closed full semi-AFL that contains a
non-regular language. According to Theorem 5.2.1, it would already include AH
and thus not be included in RE.

Note that the next corollary is not a special case of Corollary 5.2.2 as it is not
restricted to language classes below RE.

Corollary 5.2.3. A principal full trio is closed under complementation if and only if it
coincides with the regular languages.
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Proof. Consider the principal full trio T(L). If L is regular, T(L) coincides with the
regular languages and is therefore closed under complementation.

Suppose L is not regular. T(L) consists of all languages of the form RL, where
R is a rational transduction. Hence, T(L) is contained in RE(L) and closed un-
der union. If T(L) were closed under complementation, it would be closed un-
der all Boolean operations and thus, by Theorem 5.2.1, include AH(L). Since
RE(L) ( AH(L), this is a contradiction.

For each finitely generated monoidM, the class VA(M) is a principal full trio
(Corollary 2.3.5). Therefore, together with Theorem 3.1.2, Corollary 5.2.3 implies
the following.

Corollary 5.2.4. For finitely generated monoidsM, the following are equivalent:

1. VA(M) is closed under complementation.

2. VA(M) coincides with the regular languages.

3. R1(M) is finite.

We shall prove Theorem 5.2.1 by constructing every language in AH(L) from
L using rational transductions and the Boolean operations. In order to construct
the recursively enumerable languages, we rely on the well-known fact that each
of them is accepted by some two-counter machine [Minsky1961].

Two-counter machines We define the alphabet ∆ = {+,−, z}, whose elements
will represent the operations increment, decrement, and zero test, respectively.

A two-counter machine is a tuple A = (Q,X,E,q0, F), where Q is a finite set of
states, X is its input alphabet, E ⊆ Q×X∗×∆×∆×Q is a finite set of edges, q0 ∈ Q
is its initial state, and F ⊆ Q is its set of final states. A configuration is an element of
Q× X∗ ×N×N. For configurations (q,u,n0,n1) and (q ′,u ′,n ′0,n ′1), we write
(q,u,n0,n1)→A (q ′,u ′,n ′0,n ′1) if there is an edge (q, v, δ0, δ1,q ′) ∈ E such that
u ′ = uv and for each i ∈ {0, 1}, we have

1. δi = + and n ′i = ni + 1,

2. δi = − and n ′i = ni − 1, or

3. δi = z and n ′i = ni = 0.

The language accepted by A is then

L(A) = {w ∈ X∗ |(q0, ε, 0, 0)→∗A (f,w,n0,n1)
for some f ∈ F and n0,n1 ∈N}.

The definition here forces the machine to operate on both counters in each step,
whereas in the usual definition, these automata can also use only one counter at
a time. This is not a serious restriction: A two-counter machine that sometimes
accesses only one counter at a time can be simulated as follows. First, we change
it so that it always uses only one counter at a time. Then, instead of incrementing
counter i, we first increment both counters and then decrement counter 1− i and
increment counter i again. If we proceed analogously for decrement (decrement
i and increment 1− i, then decrement i and decrement 1− i) and zero test (zero
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test on i and increment on 1− i, then zero test on i and decrement on 1− i), we
represent the counter values (n0,n1) of the old machine by the values (2n0, 2n1)
and thus accept the same language.

In order to construct languages accepted by two-counter automata, we con-
struct the language C ⊆ ∆∗ of words that describe valid sequences of counter
operations.

Definition 5.2.5. Let C ⊆ ∆∗ be the set of words δ1 · · · δm, δ1, . . . , δm ∈ ∆, for which
there are numbers x0, . . . , xm ∈N such that x0 = 0 and for 1 6 i 6 m:

1. if δi = +, then xi = xi−1 + 1,

2. if δi = −, then xi = xi−1 − 1, and

3. if δi = z, then xi = xi−1 = 0.

The main difficulty in proving Theorem 5.2.1 is to construct C from a lan-
guage L, where the only information we have about L is that it is not regular. The
key idea of the construction is to use the characterization of regular languages as
those that have infinitely many Myhill-Nerode classes. Let X be an alphabet and
L ⊆ X∗. For words u, v ∈ X∗, we write u ≡L v if for each w ∈ X∗, we have

uw ∈ L if and only if vw ∈ L.

The equivalence relation ≡L is called the Myhill-Nerode equivalence. The well-
known Myhill-Nerode Theorem [Kozen1997] states that L is regular if and only
if≡L has a finite index. Using the Myhill-Nerode equivalence, we define another
language, which can be thought of as encoding counter values as Myhill-Nerode
classes.

Definition 5.2.6. Suppose the alphabets X, ∆, and {#} are pairwise disjoint. We define
ĈL ⊆ (∆∪X∪ {#})∗ to be the set of all words

v0δ1v1 · · · δmvm#u0# · · ·un#

with δi ∈ ∆, vi ∈ X∗, uj ∈ X∗, such that uk 6≡L u` for k 6= `, v0 ≡L u0, and for each
1 6 i 6 m, we have

1. if δi = + and vi−1 ≡L uj, then vi ≡L uj+1,

2. if δi = − and vi−1 ≡L uj, vi ≡L uj−1, and

3. if δi = z, then vi−1 ≡L vi ≡L u0.

Hence, the words v0, . . . , vm describe the counter values as they are attained
over time (the class of vi represents the value at time i ∈ {0, . . . ,m}), and the
words u0, . . . ,un describe the counter values sorted by their magnitude (the
class uj represents the value j ∈ {0, . . . ,n}).

It is not hard to see that π∆(ĈL) contains valid sequences of counter oper-
ations, but only those whose counter values remain below the index of ≡L. In
particular, if L is not regular, ĈL describes all valid sequences of counter opera-
tions.

Lemma 5.2.7. If L is not regular, then π∆(ĈL) = C.
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Proof. In order to prove the inclusion “⊇”, let x0, . . . , xm ∈ N be numbers as in
the definition of C and suppose {x0, . . . , xm} ⊆ {0, . . . ,n}. Since L is not regular,
we can find words u0, . . . ,un ∈ X∗ such that uk 6≡L u` for k 6= `. Now for
each 0 6 i 6 m, let vi = uxi . Then it can be checked straightforwardly that
v0δ1v1 · · · δmvm#u0# · · ·un# ∈ ĈL and hence δ1 · · · δm ∈ π∆(ĈL).

For the inclusion “⊆”, suppose δ1 · · · δm ∈ π∆(ĈL). Then there are words
v0, . . . , vm ∈ X∗, u0, . . . ,un ∈ X∗ with

v0δ1v1 · · · δmvm#u0# · · ·un# ∈ ĈL.

Using the fact that the uk are pairwise incongruent w.r.t. ≡L and by induction on
i, one can easily verify that for each 0 6 i 6 m, there is a unique xi ∈ {0, . . . ,n}
such that vi ≡L uxi . By the definition of ĈL, this choice of x0, . . . , xn satisfies the
conditions 1 to 3 of Definition 5.2.5.

The following lemma is the key ingredient in the proof of Theorem 5.2.1. It
will be convenient to denote the smallest Boolean closed full trio containing L by
BT(L).

Lemma 5.2.8. Let L ⊆ X∗ be non-regular. Then C is in BT(L).

Proof. By Lemma 5.2.7, it suffices to show that ĈL is in BT(L). We will use the al-
phabet Y = X∪ {#}∪∆, where we assume that X, ∆, and {#} are pairwise disjoint.
In the following, when we say that a language K can be constructed, we mean
that K can be obtained from L using rational transductions and the Boolean op-
erations.

There are clearly rational transductions T1 and T2 with

W1 = {u#v#w | u, v,w ∈ X∗, uw ∈ L} = T1L,
W2 = {u#v#w | u, v,w ∈ X∗, vw ∈ L} = T2L,

which meansW1,W2 ∈ BT(L). Hence,

W ′ ={u#v#w | u, v,w ∈ X∗, (uw ∈ L, vw /∈ L) or (uw /∈ L, vw ∈ L)}
=(W1 ∩W2)∪ (W1 ∩W2)

is in BT(L) as well. We can clearly find a rational transduction T3 with

W = {u#v | u, v ∈ X∗,u 6≡L v}
= {u#v | u#v#w ∈W ′ for some w ∈ X∗} = T3W ′.

This means P = {u#v | u ≡L v} = X∗#X∗ \W = T4W, for some T4, belongs to
BT(L). With suitable rational transductions T5, T6, we have

S = {u0#u1# · · ·un# | ui 6≡L uj for all i 6= j}
= (X∗#)∗ \ {ru#sv#t | r, s, t ∈ (X∗#)∗,u#v ∈ P} = T6T5P,

meaning that S ∈ BT(L). Let M (matching) be the set of all words v1δv2#u1#u2
where v1, v2,u1,u2 ∈ X∗ with

1. if δ = +, then v1 ≡L u1 and v2 ≡L u2,
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2. if δ = −, then v1 ≡L u2 and v2 ≡L u1, and

3. if δ = z, then v1 ≡L v2 ≡L u1.

Since

M = {v1+v2#u1#u2 | v1#u1 ∈ P, v2#u2 ∈ P}
∪ {v1−v2#u1#u2 | v1#u2 ∈ P, v2#u1 ∈ P}
∪ {v1zv2#u1#u2 | v1#v2 ∈ P, v1#u1 ∈ P, u2 ∈ X∗}

= (T7P ∩ T8P)∪ (T9P ∩ T10P)∪ (T11P ∩ T12P)

for suitable rational transductions T7, . . . , T12, we haveM ∈ BT(L).
Let E (error) be the set of words v1δv2#u0# · · ·un# such that for every index

1 6 j 6 n, we have v1δv2#uj−1#uj /∈M or we have δ = z and v1 6≡L u0. Since

E ′ = {v1δv2#ru1#u2#s | v1δv2#u1#u2 ∈M, r, s ∈ (X∗#)∗} = T13M

for some rational transduction T13, we find E ′ ∈ BT(L). Furthermore, since

E = {v1zv2#u0#r | v1 6≡L u0, r ∈ (X∗#)∗, v2 ∈ X∗}∪
[
(X∗∆X∗#(X∗#)∗ \ E ′

]
= T14P ∪ T15E ′,

for some rational transductions T14, T15, we have E ∈ BT(L).
LetN (no error) be the set of words v0δ1v1 · · · δmvm#u0# · · ·un# such that for

every 1 6 i 6 m, there is a 1 6 j 6 n with vi−1δivi#uj−1#uj ∈M and if δi = z,
then vi−1 ≡L u0. Since

N ′ = {w ∈ (X∗∆)∗v1δv2(∆X
∗)∗#u0# · · ·un# | v1δv2#u0# · · ·un# ∈ E} = T16E,

N = (X∗∆)+X∗#(X∗#)∗ \N ′ = T17N ′

for some rational transductions T16, T17, we find N ∈ BT(L).
Finally, the language I (initial condition) is defined as the set of all words

v0δ1v1 · · · δmvm#u0# · · ·un# ∈ N such that v0 ≡L u0. Since

I = N∩ {v0(∆X∗)∗#u0#(X∗#)∗ | v0#u0 ∈ P} = N∩ T18P,

for some rational transduction T18, we have I ∈ BT(L).
Now we have ĈL = I ∩ (X∗∆)∗X∗#S = N ∩ T19S for some rational transduc-

tion T19, meaning ĈL ∈ BT(L). By Lemma 5.2.7, we have C = T20ĈL for some
rational transduction T20. This proves C ∈ BT(L).

Now that Lemma 5.2.8 is established, the remainder of the proof of Theo-
rem 5.2.1 requires only standard arguments.

Lemma 5.2.9. Let L be non-regular. Then RE ⊆ BT(L).

Proof. Suppose K ⊆ X∗ is recursively enumerable and let A = (Q,X,E,q0, F) be
a two-counter machine accepting K with Q = {0, . . . ,k} and F = {k}. Let R be the
regular language of all words

0m0
n∏
i=1

#wi#δ
(0)
i δ

(1)
i 0mi
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with (mi−1,wi, δ
(0)
i , δ(1)i ,mi) ∈ E for every 1 6 i 6 n, m0 = 0, and mn = k.

Since R is regular, we have R ∈ BT(L). Clearly, there are rational transductions
T1 and T2 such that

U =

{
00

n∏
i=1

#wi#δ
(0)
i δ

(1)
i 10mi ∈ R

∣∣∣∣∣ δ(k)1 · · · δ(k)n ∈ C for k = 0, 1

}
= R∩ T1C∩ T2C,

meaning that U ∈ BT(L). Finally, applying to U the transduction T3 that outputs
all occurrences of X after odd occurrences of # up to the next occurrence of #
clearly yields K, implying K ∈ BT(L).

We are now ready to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. We shall prove that for any K ⊆ X∗, we have the inclusion
RE(K) ⊆ BT({K,L}). This clearly implies Σ1(L) = RE(L) ⊆ BT(L) and hence, by
induction on i, all of Σi(L) ⊆ BT(L).

Let M ∈ RE(K). Without losing generality, we may assume M ⊆ X∗ (if this
is not the case, enlarge X). This means there is an oracle Turing machine A with
access to a K-oracle such that M is accepted by A. We will use the extended
alphabet Y = X ∪ {#1, #2}, in which X ∩ {#1, #2} = ∅. Let M ′ ⊆ Y∗ be the set of
words

u1#1 · · ·un#1v1#2 · · · vm#2w

such that there is an accepting computation inAwith inputw ∈ X∗ and in which
oracle queries about u1, . . . ,un are made with a positive result and oracle queries
about v1, . . . , vm are made with a negative result. Note that this does not mean
that ui ∈ K or vi /∈ K, we collect all computations that A could make and what
inputs would be accepted provided that an oracle answered as specified. Then
M ′ is clearly recursively enumerable and contained in BT({L}) by Lemma 5.2.9.

Furthermore, since

(K#1)∗ = (X∗#1)∗K#1(X∗#1) = T1K, (K#2)∗ = (X∗#2)∗K#2(X∗#2) = T2K

for suitable rational transductions T1, T2, we have (K#1)∗, (K#2)∗ ∈ BT({K,L}).
Moreover, since

M ′′ = {u1#1 · · ·un#1v1#2 · · · vm#2w ∈M ′ |w ∈ X∗,
u1, . . . ,un ∈ K,

v1, . . . , vm ∈ K}
=M ′ ∩ (K#1)∗(X∗#2)∗X∗ ∩ (X∗#1)∗(K#2)∗X∗

=M ′ ∩ T3(K#1)∗ ∩ T4(K#2)∗

for suitable rational transductions T3, T4, we have M ′′ ∈ BT({K,L}). If we now
apply a transduction T5 that for an input from Y∗ outputs the longest suffix in
X∗, we obtainM ∈ BT({K,L}), completing the proof of AH(L) ⊆ BT(L).

The inclusion BT(L) ⊆ AH(L) follows by observing that AH(L) is a Boolean
closed full trio.
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5.3 Conclusion

In this chapter, we have asked which storage mechanisms cause the induced lan-
guage class to be closed under Boolean operations. We have given an answer
that concerns significantly more language classes than those of valence autom-
ata. Specifically, we have shown that given an arbitrary non-regular language,
one can construct the whole arithmetical hierarchy using just rational transduc-
tions and Boolean operations. Since this hierarchy goes far beyond the recur-
sively enumerable languages, this tells us that the regular languages constitute
the only language class that is closed under rational transductions and Boolean
operations and exhibits any form of decidability. Our proof uses an encoding of
counter values as Myhill-Nerode classes.

The results of this chapter have appeared in [LohreyZetzsche2014a, ZetzscheLohreyKuske2015a].

Open problems

• One of the original motivations for studying Boolean closed full trios is the
following. The theory of automatic structures [KhoussainovNerode1995]
employs closure properties of the regular languages to show that in these
structures, every first-order definable relation can be represented by a regu-
lar language. The employed closure properties are subsumed by the Boolean
operations and rational transductions, so that identifying language classes
with this combination of closure properties and decidable emptiness might
lead to new structures with decidable first-order theory.

While the result here proves this impossible, one can observe that not the
full power of rational transductions is required to obtain all first-order de-
finable relations. Therefore, the question arises whether a smaller set of
transductions allows the construction of all first-order definable relations
and admits a decision procedure.

A natural candidate for such a smaller set of transductions is that of syn-
chronized rational transductions. The work [ZetzscheLohreyKuske2015a]
of the author, Markus Lohrey, and Dietrich Kuske shows that then, both sit-
uations can occur: Some non-regular languages make the emptiness prob-
lem undecidable, but not every non-regular language. However, it is not
clear which non-regular languages precisely permit decidability.

• There are several ways in which one could attempt to generalize Theo-
rem 5.2.1 further. One consequence is that for each language L, for expres-
sions involving L, rational transductions, and Boolean operations, empti-
ness is undecidable. If one could show that this is also the case when us-
ing rational transductions first and then Boolean operations afterwards, a
disjunctive normal form transformation would yield that also the follow-
ing problem is undecidable: Given rational transductions T1, . . . , Tn and
U1, . . . ,Um, does the inclusion T1L∩ · · · ∩ TnL ⊆ U1L∪ · · · ∪UmL hold?

Or, even stronger, is the inclusion problem for T(L) undecidable for every
non-regular L? Precisely stated, the inclusion problem for T(L) is the follow-
ing: Given rational transductions T and U, does TL ⊆ UL? We suspect
that this is the case. A restriction of this question is whether the inclu-
sion problem for every class VA(M) is undecidable, unless VA(M) = Reg.
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In Section 11.2 we will discuss a result of Render2010 [Render2010], which
states that VA(M) always either contains VA(B) or VA(Z) or it equals VA(G)
for some torsion group G. Since the inclusion problem is undecidable
for VA(B) and VA(Z), the only remaining case is that of (infinite) torsion
groups.

Related work Describing language classes by a set of contained generating lan-
guages and a collection of closure properties is one of the chief ideas of AFL
theory [Ginsburg1975]. Jantzen1979 [Jantzen1979], for example, obtained such
characterizations of the Petri net languages. Descriptions of this kind for the re-
cursively enumerable languages were presented by HausslerZeiger1980 [HausslerZeiger1980]
and HartmanisHopcroft1970 [HartmanisHopcroft1970]. A survey of language
classes that are principal trios has been prepared by Reinhardt2015 [Reinhardt2015].

More specifically, there is another such characterization of the arithmetical hi-
erarchy. Book1978 [Book1978] has shown that it constitutes the smallest Boolean
closed full trio that is closed under an operation he calls ‘homomorphic repli-
cation’. Since this operation is easily seen to produce non-regular languages,
Theorem 5.2.1 subsumes Book1978’s result.

Acknowledgements I am grateful to Markus Lohrey for discussions on the
main result, which clarified parts of the construction and lead to other results
in [LohreyZetzsche2014a, ZetzscheLohreyKuske2015a].
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Chapter 6

Context-freeness

6.1 Introduction

In this chapter, we study which monoidsM cause VA(M) to contain only context-
free languages. In the case of graph monoids, the situation is simple: It is easy
to see that VA(MΓ) is included in CF if and only if is contains no edges aside
from loops. Therefore, we consider a much larger class of monoids, namely arbi-
trary graph products. We present a characterization of those graph products (of
monoids) whose corresponding valence automata accept only context-free lan-
guages. Graph products are a generalization of the free and the direct product
in the sense that for each pair of participating factors, it can be specified whether
they should commute in the product.

Valence automata over a group accept only context-free languages if and only
if the group’s word problem (and hence the group itself) can be described by a
context-free grammar. Thus, a characterization of the desired kind had already
been available for groups in a result by LohreySenizergues2007 [LohreySenizergues2007]
(see Theorem 6.3.2). Therefore, our characterization can be regarded as an exten-
sion of Lohrey and Sénizergues’ to monoids.

The results of this chapter have appeared in [BuckheisterZetzsche2013a].

6.2 Graph products

Let Γ = (V ,E) be a simple graph and Mv a monoid for each v ∈ V such that
Mu ∩Mv = ∅ for u 6= v. Moreover, let P be the free product of all the Mv for
v ∈ V . By ≈Γ , we denote the smallest congruence onM such that

xy ≈Γ yx for all x ∈Mu, y ∈Mv, where {u, v} ∈ E.

Then the graph product M(Γ , (Mv)v∈V ) is defined as

M(Γ , (Mv)v∈V ) = P/≈Γ .

In other words, Mu and Mv commute in M(Γ , (Mv)v∈V ) if and only if u and v
are adjacent (unless, of course,Mu orMv is trivial). Clearly, if Γ is an anti-clique,
M(Γ , (Mv)v∈V ) is the free product of the Mv. If Γ is a clique, then the graph
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product is the direct product of the Mv. Moreover, if each Mv is either B or Z,
then M(Γ , (Mv)v∈V ) is a graph monoid.

For the sake of simplicity, we say that a monoid M is context-free if VA(M)
contains only context-free languages. In order to establish context-freeness of a
graph product, we will express it as a free product with amalgamation and then
apply the fact that the latter product preserves context-freeness (Theorem 2.6.3).
The following lemma explains how to decompose graph products into such free
products with amalgamation.

Let Γ be a simple graph. If Γ has induced subgraphs Γ0, Γ1, and S such that
Γ0 ∩ Γ1 = S and Γ = Γ0 ∪ Γ1, we say that Γ arises from Γ0 and Γ1 by pasting these
graphs together along S [Diestel2010]. Suppose M = M(Γ , (Mv)v∈V ). In slight
abuse of notation, we then writeM�∆ for the graph product M(∆, (Mv)v∈V(∆)),
if ∆ is a subgraph of Γ . The following lemma is a slight generalization of an
insight of Green [Green1990], where the decomposition was proved in the case
that all factors are groups, Γ0 consists of one vertex, and S is its neighborhood.

Lemma 6.2.1. Let Γ = (V ,E) and M = M(Γ , (Mv)v∈V ) be a graph product such that
Γ arises by pasting Γ0 and Γ1 together along S. ThenM ∼=M�Γ0 ∗M�SM�Γ1 .

Proof. Suppose that for each v ∈ V , we have a presentation (Av,Rv) forMv such
that Au ∩Av = ∅ for u 6= v. Moreover, for a subgraph ∆ of Γ , let

C∆ = {(ab,ba) | a ∈ Au,b ∈ Av, {u, v} ∈ E(∆)}.

ThenM is presented by (A,R), where

A =
⋃
v∈V

Av, R =
⋃
v∈V

Rv ∪CΓ .

For each a ∈ A, let ā be a new symbol and let X̄ = {x̄ | x ∈ X} for each subset
X ⊆ A, w̄ = w̄1 · · · w̄n for each w ∈ A∗, w = w1 · · ·wn with w1, . . . ,wn ∈ A
and T̄ = {(v̄, w̄) | (v,w) ∈ T } for each relation T ⊆ A∗ ×A∗. Then the monoid
M�Γ0 ∗M�SM�Γ1 is presented by (A ′,R ′), where A ′ = A∪ Ā and

R ′ =
⋃

v∈V(Γ0)

Rv ∪
⋃

v∈V(Γ1)

R̄v ∪CΓ0 ∪ C̄Γ1 ∪
⋃

v∈V(S)

{(a, ā) | a ∈ Av}.

Let ϕ : A ′∗ → A∗ be the morphism with ϕ(a) = ϕ(ā) = a for a ∈ A. It is
readily verified that u ≡R ′ v if and only if ϕ(u) ≡R ϕ(v): The “only if” is clear
by definition of R and R ′. For the “if” direction, note that every edge of Γ lies in
Γ0 or in Γ1. Therefore, we can match any rule in CΓ by applying a rule in CΓ0 or
CΓ1 and (if necessary) some rules (a, ā) with a ∈ Av, v ∈ V(S). Moreover, the
rules in Rv can be matched by those in Rv, v ∈ V(Γ0), or Rv, v ∈ V(Γ1), and (if
necessary) some rules (a, ā), a ∈ Av, v ∈ V(S). Hence, the monoids presented by
(A,R) and (A ′,R ′) are isomorphic, which provesM ∼=M�Γ0 ∗M�SM�Γ1 .

6.3 Context-freeness for groups

The class of finitely generated groups for which VA(G) contains only context-
free languages has been subject to intensive study for the following reason. Note
that VA(G) ⊆ CF is equivalent to the context-freeness of all identity languages
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of G (Theorem 2.3.3). In the case of a finitely generated group, each identity lan-
guage describes the group completely, since two elements g1 and g2 of G are
equal if and only if the word representing g1g−12 belongs to the identity lan-
guage. This means, if G is a finitely generated group, then VA(G) ⊆ CF if and
only if there is a context-free grammar that describes an identity language of G
and hence G itself. Therefore, such groups have been called ‘context-free’ inde-
pendently of the study of valence automata and have received considerable at-
tention; see [DiekertWeiss2013] for a survey. It should be noted that in the case
of groups, an identity language with respect to a generating set is also called word
problem.

The structure of context-free groups is very well understood, as demonstrated
by the following result. A finite index subgroup is a subgroup H of a group G such
that the equivalence relation ∼ with g1 ∼ g2 if and only if g1g−12 ∈ H has finitely
many equivalence classes. A group is free (of rank n) if it is isomorphic to a group
Z(n). A finitely generated group is said to be virtually free if it has a finite index
subgroup that is free. The following is a very well-known result by Muller and
Schupp [MullerSchupp1983] and Dunwoody [Dunwoody1985].

Theorem 6.3.1 (Muller, Schupp [MullerSchupp1983], Dunwoody [Dunwoody1985]).
A finitely generated group is context-free if and only if it is virtually free.

Therefore, our question of when VA(M) ⊆ CF for graph products M extends
the question of when a graph product of groups is virtually free. The latter ques-
tion has been answered completely by Lohrey and Sénizergues [LohreySenizergues2007].
A graph is called chordal if it does not contain an induced cycle of length > 4.

Theorem 6.3.2 (Lohrey, Sénizergues [LohreySenizergues2007]). LetGv be a finitely
generated non-trivial group for each v ∈ V . Then M(Γ , (Gv)v∈V ) is virtually free if and
only if

1. for each v ∈ V , Gv is virtually free,

2. if Gv and Gw are infinite and v 6= w, then {v,w} /∈ E,

3. ifGv is infinite, Gu andGw are finite and {v,u}, {v,w} ∈ E, then {u,w} ∈ E, and

4. the graph Γ is chordal.

6.4 Context-freeness for monoids

Our characterization of context-free monoids involves the equivalent conditions
of Theorem 3.1.2. It is therefore convenient to assign these conditions a name.

Definition 6.4.1. An FRI-monoid is a monoid that satisfies the equivalent conditions
of Theorem 3.1.2. In other words, M is an FRI-monoid if and only if R1(N) is finite for
every finitely generated submonoid N ofM.

The first step in our characterization of context-free graph products is a de-
scription of context-free direct products. The following lemma could also be
derived from a result of Latteux [Latteux1979], which states that if L0, L1 are
languages over disjoint alphabets and L0 L1 is context-free, then one of the
languages L0, L1 is regular.
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Lemma 6.4.2. The direct product of monoids M0 and M1 is context-free if and only if
for some i ∈ {0, 1},Mi is context-free andM1−i is an FRI-monoid.

Proof. Suppose Mi is context-free and M1−i is an FRI-monoid. Then each lan-
guage L ∈ VA(Mi ×M1−i) is contained in VA(Mi ×N) for some finitely gener-
ated submonoid N of M1−i. Since M1−i is an FRI-monoid, N has finitely many
right-invertible elements and hence J1(N) is a finite group (Corollary 3.2.3). Since
no element outside of J1(N) can appear in a product yielding the identity, we
may assume that L ∈ VA(Mi × J1(N)). This means, however, that L can be ac-
cepted by a valence automaton over Mi by keeping the right component of the
storage monoid in the state of the automaton. Hence, L ∈ VA(Mi) is context-free.

Suppose VA(M0 ×M1) ⊆ CF. Then certainly VA(Mi) ⊆ CF for i ∈ {0, 1}.
This means we have to show that at least one of the monoids M0 and M1 is an
FRI-monoid and thus, toward a contradiction, assume that none of them is.

By Corollary 3.2.3, for each i, there is a finitely generated submonoid Ni of
Mi and infinite sets S0 ⊆ R1(N0) and S1 ⊆ L1(N1) such that the elements of
S0 have pairwise disjoint sets of right inverses in N0 and the elements of S1
have pairwise disjoint sets of left inverses in N1. Let Xi be an alphabet large
enough that we can find a surjective morphism ϕi : X

∗
i → Ni for each i ∈ {0, 1}.

Furthermore, let # be a symbol with # /∈ X0 ∪X1. The language

L = {r0#r1#s0#s1 | ri, si ∈ X∗i , ϕi(risi) = 1 for each i ∈ {0, 1}}

is clearly contained in VA(M0 ×M1). We shall use Ogden’s Lemma (Theo-
rem 2.1.1) to show that L is not context-free. Suppose L is context-free and let
m be the constant provided by Theorem 2.1.1. For each a ∈ R1(N0), let `0(a)
be the minimal length of a word w ∈ X∗0 with aϕ0(w) = 1. Furthermore, for
a ∈ L1(N1), let `1(a) be the minimal length of a word w ∈ X∗1 with ϕ1(w)a = 1.
The existence of the sets S0 and S1 guarantees that there are a0 ∈ R1(N0) and
a1 ∈ L1(N1) such that `0(a0) > m and `1(a1) > m. Choose r0 ∈ X∗0 and s1 ∈ X∗1
such that ϕ0(r0) = a0 and ϕ1(s1) = a1. Furthermore, let r1 ∈ X∗1 be a word
of minimal length among those with ϕ1(r1s1) = 1 and let s0 ∈ X∗0 be a word
of minimal length among those with ϕ0(r0s0) = 1. These choices guarantee
|r1| > m and |s0| > m. Moreover, the word z = r0#r1#s0#s1 belongs to L.

Let z = uvwxy be the decomposition provided by the Ogden’s Lemma, where
we choose the positions in the subword r1#s0 to be marked. In the following, we
call r0, r1, s0, s1 the segments of the word z. Clearly, v and x cannot contain the
symbol #. Therefore, by condition 2, at least one of the words v and x lies in one
of the middle segments. By condition 3, they have to lie in the same segment or
in neighboring segments. Hence, we have two cases:

• If v or x lies in the segment r1, none of them lies in s1. Thus, by pump-
ing with i = 0, we obtain a word r ′0#r ′1#s ′0#s1 ∈ L with |r ′1| < |r1| and
ϕ1(r

′
1s1) = 1, contradicting the choice of r1.

• If v or x lies in the segment s0, none of them lies in r0. Thus, by pump-
ing with i = 0, we obtain a word r0#r ′1#s ′0#s ′1 ∈ L with |s ′0| < |s0| and
ϕ1(r0s

′
0) = 1, contradicting the choice of s0.

This proves that L is not context-free and hence the lemma.

In order to prove the main result of this chapter, we need a standard combina-
torial fact about chordal graphs. A proof can be found, for example, in [Diestel2010].
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Proposition 6.4.3. A simple graph is chordal if and only if it can be constructed re-
cursively by pasting together graphs along complete subgraphs, starting with complete
graphs.

We are now ready to prove our main result on context-freeness. Note that
Theorem 6.4.4 assumes that J1(Mv) 6= {1} for each v ∈ V . Let us explain why
this is not a serious restriction. Since for a graph product M = M(Γ , (Mv)v∈V ),
there is a morphism ϕv : M → Mv for each v ∈ V that restricts to the identity
on Mv, we have J1(M) ∩Mv = J1(Mv): While the inclusion “⊇” is true for
any submonoid, given b ∈ J1(M) ∩Mv with abc = 1, a, c ∈ M, we also have
ϕv(a)bϕv(c) = ϕv(abc) = 1 and hence b ∈ J1(Mv). This means no element
of Mv \ J1(Mv) can appear in a product yielding the identity. In particular, re-
moving a vertex v with J1(Mv) = {1} will not change VA(M). Therefore, the
requirement that J1(Mv) 6= {1} loses no explanatory power.

Theorem 6.4.4. Let Γ = (V ,E) and let J1(Mv) 6= {1} for each v ∈ V . The monoid
M = M(Γ , (Mv)v∈V ) is context-free if and only if

1. for each v ∈ V ,Mv is context-free,

2. ifMv andMw are not FRI-monoids and v 6= w, then {v,w} /∈ E,

3. ifMv is not an FRI-monoid,Mu andMw are FRI-monoids and {v,u}, {v,w} ∈ E,
then {u,w} ∈ E, and

4. the graph Γ is chordal.

Proof. First, we show that conditions 1–4 are necessary. For 1, this is immedi-
ate and for 2, this is a consequence of Lemma 6.4.2. If 3 is violated, then for
some u, v,w ∈ V ,Mv × (Mu ∗Mw) is a submonoid ofM such thatMu andMw
are FRI-monoids and Mv is not. Since Mu and Mw contain non-trivial (finite)
subgroups, Mu ∗Mw contains an infinite group and is thus not an FRI-monoid,
meaningMv × (Mu ∗Mw) is not context-free by Lemma 6.4.2.

Suppose 4 is violated for context-free M. By 2 and 3, any induced cycle of
length at least four involves only vertices with FRI-monoids. Each of these, how-
ever, contains a non-trivial finite subgroup. This means M contains an induced
cycle graph product of non-trivial finite groups, which is not virtually free by
Theorem 6.3.2 and hence has a non-context-free identity language.

In order to prove the other direction, we note that VA(M) ⊆ CF follows if
VA(M ′) ⊆ CF for every finitely generated submonoid M ′ ⊆ M. Since every
such submonoid is contained in a graph product N = M(Γ , (Nv)v∈V ) where
each Nv is a finitely generated submonoid of Mv, it suffices to show that for
such graph products, we have VA(N) ⊆ CF. This means whenever Mv is an
FRI-monoid, Nv has finitely many right-invertible elements. Moreover, since
Nv ∩ J1(N) = J1(Nv), no element of Nv \ J1(Nv) can appear in a product yield-
ing the identity. Hence, if Nv is generated by S ⊆ Nv, replacing Nv by the sub-
monoid generated by S ∩ J1(Nv) does not change the identity languages of the
graph product. Thus, we assume that each Nv is generated by a finite subset of
J1(Nv). Therefore, wheneverMv is an FRI-monoid, Nv is a finite group.

If Γ is not connected, then N is the free product of the M(∆, (Nv)v∈V(∆)),
where ∆ ranges over the connected components of Γ . Since the connected com-
ponents inherit conditions 1–4 and the free product preserves context-freeness
(Theorem 2.6.3) we may assume that Γ is connected.
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We observe furthermore that if S is a complete subgraph of Γ with |V(S)| > 2,
thenN�S is a finite group: By condition 2 eachNv with v ∈ V(S) has to be a finite
group and N�S is their direct product.

Since Γ is chordal, we can prove context-freeness of VA(N) by induction on the
number of steps it takes to construct Γ by pasting together graphs along complete
subgraphs (Proposition 6.4.3). In the induction base, we assume Γ is a complete
graph. This means either |V | = 1 and N is context-free by condition 1 or |V | > 2
and N is a finite group and, in particular, context-free.

Now suppose that Γ is obtained by pasting together Γ0 and Γ1 along the com-
plete subgraph S. We can clearly assume Γ0 6= S and Γ1 6= S, because otherwise,
Γ would coincide with Γ0 or Γ1. Since N�Γ0 and N�Γ1 are context-free by induc-
tion and N ∼= N�Γ0 ∗N�S N�Γ1 (Lemma 6.2.1), context-freeness of N follows from
Theorem 2.6.3 if we can show that N�S is a finite group.

If |V(S)| > 2, we have observed this above. If |V(S)| = 1, say V(S) = {v},
the vertex v has neighbors v0 ∈ V(Γ0) and v1 ∈ V(Γ1), because otherwise, Γ
would not be connected. By condition 3 and 2, this means Nv = N�S is a finite
group.

Obstructions to context-freeness What does Theorem 6.4.4 tell us about fea-
tures of storage mechanisms that obstruct context-freeness? As the proof demon-
strates, conditions 2 and 3 forbid direct products of non-FRI-monoids. Further-
more, if conditions 2 and 3 are satisfied, condition 4 serves to rule out an induced
cycle graph product of finite groups.

Direct products of non-FRI-monoids have an obvious interpretation as stor-
age mechanisms: These are two independent non-trivial (in the sense that they
admit non-regular languages) storage mechanisms. However, it appears to be
hard to interpret induced cycle graph products of finite groups as storage mech-
anisms. In fact, it even seems difficult to find a language theoretic proof of non-
context-freeness in this case. The proof given here relies on LohreySenizergues2007’s
result. They provide two proofs of non-context-freeness, one of them uses virtual
cohomology dimension and one uses Bass-Serre theory. Unfortunately, none of
the two proofs yields an intuition why the resulting languages are not context-
free.

As an example, consider the case that the graph is an induced cycle of length
n and the factor groups are all isomorphic to Z/2Z and each generated by some
ai for i = 1, . . . ,n. Then, the resulting identity language is the set of all words
obtained from ε by (i) inserting aiai at some position and (ii) commuting ai and
ai+1 for 1 6 i 6 n− 1 or commuting a1 and an.

Reformulation We close this chapter by reformulating Theorem 6.4.4 in terms
of expressive power of the factor monoids. Recall that VA(M) = Reg if and only
ifM is an FRI-monoid (Theorem 3.1.2).

Corollary 6.4.5. Let Γ = (V ,E). Then VA(M(Γ , (Mv)v∈V )) ⊆ CF if and only if

1. for each v ∈ V , VA(Mv) ⊆ CF,

2. if VA(Mv) 6= Reg and VA(Mw) 6= Reg and v 6= w, then {v,w} /∈ E,

3. if VA(Mv) 6= Reg, VA(Mu) = VA(Mw) = Reg and {v,u} ∈ E and {v,w} ∈ E,
then {u,w} ∈ E, and
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4. the graph Γ is chordal.

6.5 Conclusion

In this chapter, we have studied which monoidsM cause VA(M) to contain only
context-free languages. Specifically, we have characterized those graph products
of monoids that guarantee context-freeness.

The result identifies two obstructions for context-freeness. The first one con-
sists of a direct product of two monoids that can each accept non-regular lan-
guages. In other words, two independently usable infinite storage mechanisms
cause the languages to be non-context-free. The second obstruction is an induced
cycle graph product (of length > 4) of finite groups. In this case, unfortunately,
an intuition for the resulting storage mechanism seems difficult to obtain. In fact,
for proving non-context-freeness, we relied on the result of LohreySenizergues2007 [LohreySenizergues2007],
who provided two proofs that are both group-theoretic.

Open problem We have seen in Lemma 6.4.2 that the context-free languages
can only accommodate two independent storage mechanisms (i.e. include a class
VA(M0×M1)) if one of them is useless with respect to expressiveness (i.e. one of
the monoids M0, M1 merely effects regular languages). This raises the question
whether building stacks has this property in general: Is it true that if B ∗B ∗M can
accommodate the languages of M0 ×M1, then these are already accepted with
M or one of the factorsM0,M1 is useless? We conjecture that this is the case.

Conjecture 6.5.1. LetM,M0, andM1 be monoids. Then

VA(M0 ×M1) ⊆ VA(B ∗B ∗M)

if and only if we have VA(M0 ×M1) ⊆ VA(M) or for some i ∈ {0, 1}, we have
VA(Mi) ⊆ VA(B ∗B ∗M) and VA(M1−i) = VA(1).

Note that the “if” direction holds trivially and that Lemma 6.4.2 is precisely
the case M = 1. Observe also that VA(M0 ×M1) ⊆ VA(B ∗B ∗M) does not in
general imply VA(Mi) ⊆ VA(1) for some i ∈ {0, 1}, as in the case of M = 1.
For example, if M = Z × Z, then VA(Z × Z) ⊆ VA(B ∗ B ∗M), but VA(Z)
contains non-regular languages. Therefore, we need to permit the case that
VA(M0 ×M1) ⊆ VA(M).

Related work As mentioned above, the question of which groups cause va-
lence automata to accept only context-free languages is settled in a well-known
result of Muller and Schupp [MullerSchupp1983] and Dunwoody [Dunwoody1985].

Our characterization of graph products that guarantee context-freeness ex-
tends a result of LohreySenizergues2007 [LohreySenizergues2007]. In the pos-
itive branch, where context-freeness is shown, we provide an elementary lan-
guage theoretic proof (employing Theorem 2.6.3), where LohreySenizergues2007
rely on classic results on virtually free groups and thereby indirectly on the
theorem of Muller, Schupp, and Dunwoody. In the negative branch, we use
Lemma 6.4.2 in the case of direct products of non-FRI-monoids and we rely
on LohreySenizergues2007’s proof in the case of induced cycle finite groups of
length > 4.
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The chapter also characterizes direct products that guarantee context-freeness
(Lemma 6.4.2). Here, the non-context-freeness can alternatively be deduced from
a result of Latteux1979 [Latteux1979]. The latter states that for languages L0
and L1 over disjoint alphabets, if L0 L1 is context-free, then at least one of the
languages L0,L1 is regular.

Acknowledgements I would like to thank Phoebe Buckheister for many dis-
cussions on valence automata.
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Chapter 7

Semilinearity

7.1 Introduction

Parikh’s theorem states that the Parikh image of every context-free language is
effectively semilinear. This result is an extraordinarily useful tool, both for prov-
ing non-expressibility result and in the algorithmic analysis of formal languages.
It has been extended to so many other language classes that the term ‘a Parikh
theorem’ has come to mean a result guaranteeing effective semilinearity. This
type of results has countless applications. Especially in cooperation with Pres-
burger arithmetic, it facilitates a number of decision procedures.

Let us mention just a few examples from different areas. An early instance is
Ibarra1978’s decision procedure for the emptiness problem of reversal bounded
counter machines [Ibarra1978]. HarjuIbarraKarhumakiSalomaa2002 [HarjuIbarraKarhumakiSalomaa2002]
have used semilinearity to decide variants of Post’s Correspondence Problem. A
Parikh theorem has found application in in group theory, where LohreySteinberg2008 [LohreySteinberg2008]
used it in a decision procedure for the rational subset membership problem (see
also Theorem 4.3.9). SeidlSchwentickMuscholl2008 [SeidlSchwentickMuscholl2008]
obtained algorithms for querying XML trees. Moreover, an application to timed
automata has been proposed by DaIbBuKeSu2000 [DaIbBuKeSu2000]. Fur-
thermore, BjoerklundBojanczyk2007 [BjoerklundBojanczyk2007] have used a
Parikh theorem for deciding a fragment of first-order logic on words with nested
data. For further applications, see [KopczynskiTo2010].

Therefore, understanding what storage mechanisms admit a Parikh theorem
is useful for clarifying expressiveness, but especially in order to analyze autom-
ata. Hence, in this chapter, we study which monoids guarantee semilinearity of
the accepted language class.

Our first result is a characterization of those graphs Γ for which VA(MΓ) is
semilinear. Since our characterization addresses all graph monoids, it general-
izes Parikh’s original theorem on context-free languages [Parikh1966] and the
semilinearity of blind multicounter automata [Ibarra1978, Greibach1978]. Here,
we present several equivalent conditions that capture different perspectives.

Our second result is that for each torsion group G, the class VA(G) contains
only semilinear languages. While our first result provides effective semilinearity,
the second cannot be effective in general, since there are torsion groups for which
already the word problem is undecidable [Adian2010] and therefore, in particu-
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Chapter 7. Semilinearity

lar, emptiness of valence automata. We therefore also present a characterization
of those torsion groups for which semilinear representations of Parikh images
are computable.

Graph monoids One of the conditions in our desired characterization places
those monoids with semilinearity in an inductively defined class. It is defined
as follows. By SL, we denote the smallest isomorphism-closed class of monoids
such that

1. 1 ∈ SL and B ∈ SL and

2. For eachM,N ∈ SL, we also haveM ∗N ∈ SL andM×Z ∈ SL.

Another notion that will appear is that of a transitive forest. We have already
used it in Section 4.3 (Page 57), so that a definition can be found there. Our
characterization for arbitrary graph monoids is the following.

Theorem 7.1.1. For graphs Γ , the following conditions are equivalent:

1. VA(MΓ) is semilinear.

2. VA(B×B) is not included in VA(MΓ).

3. (a) Γ− contains neither C4 nor P4 as an induced subgraph and

(b) Γ contains neither nor as an induced subgraph.

4. (a) Γ− is a transitive forest and

(b) the neighborhood of every unlooped vertex in Γ is a looped clique.

5. MΓ ∈ SL.

6. VA(MΓ) ⊆ F.

Note that the condition 3b (and hence 4b) is similar to conditions 2 and 3
in Theorem 6.4.4 and Theorem 6.3.2: Instead of FRI-monoids (finite groups) we
have looped vertices and instead of non-FRI-monoids (infinite groups), we have
unlooped vertices.

A few comments on the equivalent conditions are in order. First, note that
condition 2 describes the languages in VA(B×B) as obstructions to semilinear-
ity. Hence, this explains precisely what property of the storage mechanism is
responsible for non-semilinearity: its ability to simulate two partially blind counters.
Second, condition 6 describes a common class containing all languages accepted
by storage mechanisms with semilinearity. We will see in Proposition 7.1.2 that
the semilinear storage mechanisms actually exhaust all of F.

Intuition on semilinear cases We also want to provide an automata-theoretic
intuition of those storage mechanisms that guarantee semilinear Parikh images.
As in Section 4.3, we do this by presenting a class of monoids that is equally
expressive as SL. Let SC− be the smallest isomorphism-closed class of monoids
such that

1. 1 ∈ SC− and
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2. for eachM ∈ SC−, we also have B ∗M ∈ SC− andM×Z ∈ SC−.

Hence, the monoids in SC− correspond to those storage mechanisms obtained
from the trivial storage (1) by building stacks (M 7→ B ∗M) and adding blind coun-
ters (M 7→ M×Z). Therefore, valence automata over monoids M ∈ SC− are
called stacked counter automata. For information on how to model recursive pro-
grams with numeric data types, see Chapter 12. In fact, we will not only show
that stacked counter automata are as expressive as the monoids in SL, but also
that the resulting languages are precisely those in F, yielding an explicit descrip-
tion of these languages:

Proposition 7.1.2. VA(SL) = VA(SC−) = F.

We will prove Theorem 7.1.1 and Proposition 7.1.2 in Section 7.2.

Torsion groups Our second result in this chapter concerns torsion groups. A
groupG is said to be a torsion group if for each element g ∈ G, there is a k ∈N\ {0}
with gk = 1. Our result also makes reference to the rational subset membership
problem, which is defined in Section 4.2.

Theorem 7.1.3. Let G be a torsion group. Then every language in VA(G) is semilinear.
Moreover, the Parikh images are computable for valence automata over G if and only if
there is a uniform algorithm for the rational subset membership problem for all groups
G×Zn, n ∈N.

One might wonder if a finitely generated torsion group is necessarily finite —
which would make Theorem 7.1.3 quite boring. In fact, whether this is true was
a long-standing open question in group theory, known as the Burnside problem.
However, this is not the case: GolodShafarevich1964 [GolodShafarevich1964,
Golod1964] have shown that infinite such groups exist. Simple examples have
been constructed by Grigorchuk1980 [Grigorchuk1980] and by GuptaSidki1983 [GuptaSidki1983].

Furthermore, there even exist finitely generated torsion groups with an un-
decidable word problem [Adian2010] and hence with an undecidable empti-
ness problem for valence automata. In particular, Parikh images of languages
in VA(G) are not computable for every infinite torsion group G. Therefore, The-
orem 7.1.3 provides a description—in terms of the rational subset membership
problem—for which torsion groups the semilinearity is effective.

What makes torsion groups interesting to us is a result of Render2010 [Render2010].
It implies that every language class VA(M) includes VA(B) or VA(Z), unless it is
of the form VA(G) for a torsion groupG. The latter case gives us little information
about the language class. Therefore, Theorem 7.1.3 provides us with a language-
theoretic condition in the otherwise somewhat unclear case of a torsion group.
See Section 11.2 for details on Render2010’s result.

As another application of Theorem 7.1.3, we show that the semi-Dyck lan-
guage over one pair of parentheses is not accepted by any valence automaton
over G×Zn, where G is a torsion group and n ∈ N. Note that D ′1 /∈ VA(G) can
be shown using a simple pumping argument that fails for the group G×Zn.

Corollary 7.1.4. For torsion groups G and n ∈N, we have D ′1 /∈ VA(G×Zn).

Proof. First, observe that VA(B×B) is not contained in VA(G×Zn), since the
former contains a non-semilinear language by Lemma 7.2.3 and the latter is semi-
linear by Theorem 7.1.3 and Proposition 2.5.3.
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If D ′1 were contained in VA(G×Zn), then VA(B) ⊆ VA(G×Zn), since D ′1 is
an identity language of B. This implies

VA(B×B) ⊆ VA((G×Zn)× (G×Zn)) = VA(G2 ×Z2n),

contradicting our observation above, since G2 is a torsion group as well.

We will establish Theorem 7.1.3 in Section 7.3.
The results of this chapter have appeared in [BuckheisterZetzsche2013a].

7.2 Graph monoids

This section is devoted to the proof of Theorem 7.1.1 and Proposition 7.1.2. We
begin with the latter.

Proof of Proposition 7.1.2. Since SC− ⊆ SL, it suffices to prove the inclusions

VA(SL) ⊆ F ⊆ VA(SC−). (7.1)

We begin with the left inclusion. We prove by induction with respect to the
definition of SL that for each M ∈ SL, we have VA(M) ⊆ Fi for some i ∈ N.
The classes VA(1) and VA(B) are included in CF = G0 ⊆ F1. Moreover, if
VA(M),VA(N) ⊆ Fi, then

VA(M ∗N) ⊆ Alg(VA(M)∪VA(N)) ⊆ Alg(Fi) = Gi ⊆ Fi+1

by Theorem 2.6.3 and VA(M×Z) ⊆ SLI(VA(M)) ⊆ SLI(Fi) = Fi. This proves the
left inclusion of Eq. (7.1).

We prove the right inclusion of Eq. (7.1) by induction on i ∈N: We show that
Fi ⊆ VA(SC−) for each i ∈N. For i = 0, we have F0 ⊆ VA(1), so suppose i > 1.

Recall that Fi−1 ⊆ Gi−1 ⊆ Fi. We start with the inclusion Gi−1 ⊆ VA(SC−).
For L ∈ Gi−1, there is an Fi−1-grammar G with L = L(G). Let L1, . . . ,Ln be
the right-hand sides in G. By induction, for each right-hand side Lj, there is an
Mj ∈ SC− with Lj ∈ VA(Mj). By induction on the definition of SC−, it is easy
to see that for M,N ∈ SC−, there is a P ∈ SC− such that VA(M) ⊆ VA(P) and
VA(N) ⊆ VA(P). Hence, there is a P ∈ SC− with VA(Mj) ⊆ VA(P) for each j. Of
course, we can choose P so that P 6= {1}. Then we have

L ∈ Alg(VA(M1)∪ · · · ∪VA(Mn)) ⊆ Alg(VA(P)) ⊆ Alg(B ∗ P),

in which the last inclusion is due to Theorem 2.6.6. Since B ∗P ∈ SC−, this proves
L ∈ VA(SC−).

Now suppose L ∈ Fi. Then there is an L ′ ∈ Gi−1, L ⊆ X∗, a homomorphism
h : X∗ → Y∗ and a semilinear set S ⊆ X⊕ such that L = h(L ′ ∩ Ψ−1(S)). We
have already established Gi−1 ⊆ VA(SC−), meaning there is an M ∈ SC− with
L ′ ∈ VA(M). The equation L = h(L ′ ∩Ψ−1(S)) and Proposition 2.5.3 imply

L ∈ SLI(VA(M)) =
⋃
n∈N

VA(M×Zn),

so that for some n ∈ N, we have L ∈ VA(M×Zn). Since M×Zn ∈ SC−, this
proves the right inclusion of Eq. (7.1).
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We continue with the proof of Theorem 7.1.1, specifically with the implication
“1 ⇒ 2”. The non-semilinear language we will exhibit can be traced back to
the work of Greibach1978 [Greibach1978] and Jantzen1979 [Jantzen1979]. It is
closely related to Lbin, which they used (independently) to show that in partially
blind multicounter automata, silent transitions cannot be removed. Lbin will be
used again in Section 8.5 to show that the same is true of automata with at least
two partially blind counters and a number of blind counters.

Definition 7.2.1. For w ∈ {0, 1}∗, let bin(w) denote the number obtained by interpret-
ing w as a base 2 representation:

bin(ε) = 0, bin(w0) = 2 · bin(w), bin(w1) = 2 · bin(w) + 1.

The language Lbin ⊆ {0, 1, c}∗ is defined as

Lbin = {wcn | w ∈ {0, 1}∗, n 6 bin(w)}.

Greibach1978 [Greibach1978] and Jantzen1979 [Jantzen1979] have shown
the following.

Theorem 7.2.2 (Greibach1978 [Greibach1978] / Jantzen1979 [Jantzen1979]). Lbin
is accepted by an automaton with two partially blind counters. Hence, Lbin ∈ VA(B×B).

This implies that the language Lbin ∩ {1}{0, c}∗ = {10ncm | m 6 2n} also
belongs to VA(B × B). The latter is clearly not semilinear. Indeed, if the set
S = {(n,m) ∈N2 | m 6 2n} were Presburger definable, then so would be

{max{m ∈N | (m,n) ∈ S} | n ∈N} = {2n | n ∈N}.

This proves the next lemma.

Lemma 7.2.3. VA(B×B) is not semilinear.

The following lemma establishes the implication “2⇒ 3”.

Lemma 7.2.4. Suppose

1. Γ− contains C4 or P4 as an induced subgraph or

2. Γ contains or as an induced subgraph.

Then VA(B×B) ⊆ VA(MΓ).

Proof. According to Theorem 4.3.1, if Γ− contains C4 or P4 as an induced sub-
graph, then VA(MΓ) contains all recursively enumerable languages and in par-
ticular VA(B×B).

If Γ contains as an induced subgraph, then VA(B×B) ⊆ VA(MΓ) is
trivial. If Γ contains as an induced subgraph, then MΓ contains a copy
of B× (Z ∗Z) as a submonoid. By Theorem 2.4.1, we have VA(B) ⊆ VA(Z ∗Z)
and hence Corollary 2.3.7 implies VA(B×B) ⊆ VA(B× (Z ∗Z)).

If Γ− contains C4 as an induced subgraph, there is another way to see that
VA(B×B) ⊆ VA(MΓ): Since we have already shown that the presence of
or as an induced subgraph guarantees VA(B×B) ⊆ VA(MΓ), we may
assume that all four participating vertices of Γ are looped. Hence, MΓ contains a
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copy of (Z ∗Z)× (Z ∗Z). By Theorem 2.4.1, we have VA(B) ⊆ VA(Z ∗Z) and
by Corollary 2.3.7, this implies VA(B×B) ⊆ VA(MΓ).

The next lemma permits almost the same proof as Lemma 4.3.13 and yields the
implication “4⇒ 5”.

Lemma 7.2.5. Suppose that

1. Γ− is a transitive forest and

2. the neighborhood of every unlooped vertex in Γ is a looped clique.

Then MΓ ∈ SL.

Proof. Let Γ = (V ,E). We proceed by induction on |V |. Observe that by The-
orem 4.3.12, every induced subgraph of a transitive forest is again a transitive
forest. Therefore, every induced proper subgraph ∆ of Γ satisfies 1 and 2 and
our induction hypothesis implies M∆ ∈ SL. If Γ is not connected, then Γ is the
disjoint union of graphs Γ1, Γ2, for which MΓ1, MΓ2 ∈ SL by induction. Hence,
MΓ ∼= MΓ1 ∗MΓ2 ∈ SL. Therefore, we assume that Γ is connected.

Since Γ− is a transitive forest, there is a vertex v ∈ V that is adjacent to every
vertex other than itself. We distinguish two cases.

• If v is a looped vertex, then MΓ ∼= Z×M(Γ \ v), and M(Γ \ {v}) ∈ SL by
induction.

• If v is an unlooped vertex, then by 2, V \ {v} induces a looped clique. Thus,
MΓ ∼= B×Z|V |−1 ∈ SL.

We are now ready to prove Theorem 7.1.1.

Proof of Theorem 7.1.1. Observe that condition 3b is equivalent to condition 4b.
Therefore, Theorem 4.3.12 proves “3⇒ 4” and we have

1 =⇒ 2 by Lemma 7.2.3
=⇒ 3 by Lemma 7.2.4
=⇒ 4 by Theorem 4.3.12
=⇒ 5 by Lemma 7.2.5
=⇒ 6 by Proposition 7.1.2
=⇒ 1 by Proposition 2.7.3

7.3 Torsion groups

This section is devoted to the proof of Theorem 7.1.3. The key ingredient is to
show that a certain set of multisets is upward closed with respect to a well-
quasi-ordering. Given multisets α,β ∈ X⊕ and k ∈ N, we write α ≡k β if k
divides α(x) − β(x) for each x ∈ X. Furthermore, we write α 6k β if α 6 β and
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α ≡k β. Clearly, 6k is a well-quasi-ordering on X⊕: Since ≡k has finite index
in X⊕, we find in any infinite sequence α1,α2, . . . ∈ X⊕ an infinite subsequence
α ′1,α ′2, . . . ∈ X⊕ of ≡k-equivalent multisets. Since 6 is a well-quasi-ordering,
there are indices i < j with α ′i 6 α

′
j and hence α ′i 6k α

′
j.

If S ⊆ X⊕ is upward closed with respect to 6k, we also say S is k-upward-
closed. The finite basis property of k-upward-closed sets then means that every
k-upward-closed set is semilinear.

We begin with the proof of Theorem 7.1.3. Let G be a torsion group and K
be accepted by the valence automaton A = (Q,X,G,E,q0, F). We may clearly
assume that F = {f} and q0 6= f. We regard the finite set E as an alphabet and
define the automaton Â = (Q,E,G, Ê,q0, F), where

Ê = {(p, (p,w,g,q),g,q) | (p,w,g,q) ∈ E}.

Let K̂ = L(Â). Since K is a homomorphic image of K̂, it suffices to show semilin-
earity (and computability) of K̂. Since q0 6= f, we have ε /∈ K̂.

For a word w ∈ E∗, w = (p1, x1,g1,q1) · · · (pn, xn,gn,qn), we write σ(w)
for the set {pi,qi | 1 6 i 6 n}. A non-empty word w is called a p,q-computation
if p1 = p, qn = q, and qi = pi+1 for 1 6 i < n. A q,q-computation is also called
a q-loop. Moreover, a q-loop w is called simple if qi 6= qj for i 6= j.

For each subset S ⊆ Q, let FS be the set of all q0, f-computations w ∈ E∗ with
σ(w) = S and |w| 6 |Q| · (2|Q|+ 1). Furthermore, let LS ⊆ E∗ consist of allw ∈ E∗
such that w is a simple q-loop for some q ∈ S and σ(w) ⊆ S. Note that LS is
finite, which allows us to define the alphabet YS so as to be in bijection with LS.
Let ϕ : YS → LS be this bijection and let ϕ̃ : Y⊕S → E⊕ be the morphism satisfying
ϕ̃(y) = Ψ(ϕ(y)) for y ∈ YS. For each v ∈ FS, we define

Uv = {µ ∈ Y⊕S | ∃w ∈ K̂ : σ(w) = σ(v), Ψ(w) = Ψ(v) + ϕ̃(µ)}

(note that there is only one S ⊆ Qwith v ∈ FS) and claim that

Ψ(K̂) =
⋃
S⊆Q

⋃
v∈FS

Ψ(v) + ϕ̃(Uv). (7.2)

Lemma 7.3.1. Equation (7.2) holds.

Proof. The inclusion “⊇” holds by definition. For the other direction, we show
by induction on n that for each q0, f-computation w ∈ E∗, |w| = n, there is a
v ∈ FS for S = σ(w) and a µ ∈ Y⊕S with σ(w) = σ(v) and Ψ(w) = Ψ(v) + ϕ̃(µ).
If |w| 6 |Q| · (2|Q| + 1), this is satisfied by v = w and µ = 0. Therefore, assume
|w| > |Q| · (2|Q| + 1) and write w = (p1, x1,g1,q1) · · · (pn, xn,gn,qn). Since
n = |w| > |Q| · (2|Q| + 1), there is a q ∈ Q that appears more than 2|Q| + 1 times
in the sequence q1, . . . ,qn. Hence, we can write

w = w0(p
′
1, x ′1,g ′1,q)w1 · · · (p ′m, x ′m,g ′m,q)wm

with m > 2|Q| + 1. Observe that the word wi(p ′i+1, x ′i+1,g ′i+1,q) is a q-loop for
each 1 6 i < m. Sincem− 1 > 2|Q|, there are indices 1 6 i < j < mwith

σ(wi(p
′
i+1, x ′i+1,g ′i+1,q)) = σ(wj(p ′j+1, x ′j+1,g ′j+1,q)).
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Chapter 7. Semilinearity

Now the word wi(p ′i+1, x ′i+1,g ′i+1,q) has as a factor a simple p-loop ` for some
p ∈ Q. This means the word w ′ ∈ E∗, which is obtained from w by removing `,
satisfies σ(w ′) = σ(w). Moreover, with S = σ(w) and ϕ(y) = `, y ∈ YS, we have
Ψ(w) = Ψ(w ′) + ϕ̃(y). Finally, since |w ′| < |w|, the induction hypothesis yields a
v ∈ FS and a µ ∈ Y⊕S with σ(w ′) = σ(v) and Ψ(w ′) = Ψ(v) + ϕ̃(µ). Then we have
σ(w) = σ(v) and Ψ(w) = Ψ(v) + ϕ̃(µ+ y) and the induction is complete.

In order to prove “⊆” of (7.2), suppose w ∈ K̂. Since ε /∈ K̂, w is a q0, f-
computation and we can find the above v ∈ FS, S = σ(w), and µ ∈ Y⊕S with
σ(w) = σ(v) and Ψ(w) = Ψ(v) + ϕ̃(µ). This means µ ∈ Uv and Ψ(w) is contained
in the right-hand side of (7.2). This proves (7.2).

By (7.2) and since FS is finite for each S ⊆ Q, for the semilinearity of Ψ(K̂), it
suffices to show that Uv is semilinear for each v ∈ FS and S ⊆ Q. Let γ : E∗ → G
be the morphism with γ((p, x,g,q)) = g for (p, x,g,q) ∈ E. Since G is a torsion
group, the finiteness of LS permits us to choose a k ∈ N such that γ(`)k = 1 for
any ` ∈

⋃
S⊆Q LS. We shall prove that Uv is k-upward-closed.

Lemma 7.3.2. For each v ∈ FS, the set Uv is k-upward-closed. In particular, Ψ(K̂) is
semilinear.

Proof. It suffices to show that for µ ∈ Uv, we also have µ + k · y ∈ Uv for
any y ∈ YS. Hence, let µ ∈ Uv with w ∈ K̂ such that σ(w) = σ(v) and
Ψ(w) = Ψ(v) + ϕ̃(µ) and let µ ′ = µ+ k · y. Let ` = ϕ(y) ∈ LS be a simple q-
loop. Then q ∈ S and since σ(w) = σ(v) = S, we can write w = r(q1, x1,g1,q)s,
r, s ∈ E∗. The fact that w ∈ K̂ means in particular γ(w) = 1. Therefore, the
wordw ′ = r(q1, x1,g1,q)`ks is a q0, f-computation and satisfies γ(w ′) = 1 since
γ(`)k = 1. This meansw ′ ∈ K̂ and Ψ(w ′) = Ψ(w) + k ·Ψ(`) = Ψ(v) + ϕ̃(µ+ k ·y).
We also have σ(`) ⊆ S and hence σ(w ′) = σ(w) = σ(v). Therefore, the multiset
µ ′ = µ+ k · y belongs to Uv. This proves Uv to be k-upward-closed.

We have thus proved the first statement of the theorem. The second statement
requires two lemmas.

Lemma 7.3.3. If Parikh images are computable for VA(G), then there is a uniform algo-
rithm for the rational subset membership problem for all groups G×Zn, n ∈N.

Proof. Given a rational subset R ⊆ G × Zn and g ∈ G × Zn, one can con-
struct a valence automaton A over G ×Zn such that L(A) 6= ∅ if and only if
g ∈ R. According to Proposition 2.5.3, this allows us to compute a valence au-
tomaton A ′ over G, L(A ′) ⊆ X∗, a semilinear set S ⊆ X⊕, and a morphism h
with L(A) = h(L(A ′)∩Ψ−1(S)). Since we can compute Ψ(L(A ′)), we can decide
whether Ψ(L(A ′))∩ S 6= ∅, which is equivalent to L(A) 6= ∅.

Lemma 7.3.4. Given v ∈ E∗, one can construct a valence automaton Av over G×Zn

such that Ψ(L(Av)) = Uv.

Proof. Consider the set

Wv = {Ψ(w) −Ψ(v) | w ∈ K̂, Ψ(v) 6 Ψ(w), σ(w) = σ(v)}

and observe that Uv = ϕ̃−1(Wv). Moreover, one can clearly construct a valence
automaton A ′v over Gwith Ψ(L(A ′v)) =Wv.
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We now pick a linear order on E, which induces an embedding E⊕ → Zn

for n = |E|, by way of which we regard E⊕ as a subset of Zn. The new valence
automaton Av over G×Zn works as follows. First, it simulates A ′v. However,
Av does not read any input during this simulation, but instead adds Ψ(z) to the
Zn-component of the storage group, where z is the input read by A ′v. After-
wards, Av nondeterministically reads an input word u ∈ Y∗S, subtracts ϕ̃(Ψ(u))
from the Zn-component, and goes into an accepting state. This means Av ac-
cepts u if and only if for some z ∈ L(A ′v), we have ϕ̃(Ψ(u)) = Ψ(z). Hence,
Ψ(L(Av)) = ϕ̃

−1(Wv) = Uv.

It remains to be shown thatΨ(K̂) is computable if there is a uniform algorithm
for the rational subset problem for all groups G×Zn, n ∈N.

Lemma 7.3.5. Suppose that there is a uniform algorithm for the rational subset mem-
bership problem for groups G×Zn, n ∈ N. Then one can compute a semilinear repre-
sentation of Ψ(K̂).

Proof. First, observe that since the rational subset membership problem is decid-
able forG, membership in the identity language is decidable as well. This means
we can compute k. Moreover, by Theorem 4.2.1, given v ∈ E∗, we can decide
whether K̂ ∩ {v} = ∅ and thus compute FS for each S. Hence, by (7.2), it suffices
to compute a semilinear representation of Uv.

Let Av be the automaton from Lemma 7.3.4. We will construct an ascend-
ing chain V0 ⊆ V1 ⊆ · · · of k-upward-closed subsets of Uv. If Uv \ Vi = ∅,
we stop; otherwise, we add new elements to obtain Vi+1. Since 6k is a well-
quasi-ordering, there is no infinite strictly ascending chain of k-upward-closed
sets and the algorithm has to terminate. We initialize with V0 = ∅. In order
to check whether Uv \ Vi = ∅, we can similar to Corollary 2.8.3, construct a
valence automaton Ai over G×Zn with L(Ai) = L(Av) ∩ Ψ−1(Y⊕S \ Vi) (note
that Ψ−1(Y⊕S \ Vi) is effectively regular). Then clearly, L(Ai) = ∅ if and only if
Uv \ Vi = ∅. Using the algorithm for the rational subset membership problem,
we can decide whether L(Ai) = ∅ and hence whether Uv ⊆ Vi.

Should the inclusion Vi ⊆ Uv still turn out to be strict, we enumerate all
µ ∈ Y⊕S \ Vi until we find a µ ∈ Uv. The latter can again be checked by testing
whether L(Av)∩Ψ−1(µ) 6= ∅. After finding µ, we set Vi+1 = (Vi ∪ {µ})↑k.

We have thus completed the proof of Theorem 7.1.3.

7.4 Conclusion

We have studied which storage mechanisms cause the accepted languages to be
semilinear. In the first result, we have characterized those graph monoids that
guarantee semilinearity.

The characterization provides several equivalent conditions from different
perspectives. One condition tells us that the ability to simulate two partially
blind counters is responsible for non-semilinearity; thus, the condition character-
izes semilinearity in terms of the capabilities of the storage mechanism. Another
condition states that a particular set of induced subgraphs may no occur, mean-
ing that these are obstructions to semilinearity as induced subgraphs. Further-
more, we have seen that the languages accepted with storage mechanisms that
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guarantee semilinearity are precisely those in the class F. Finally, we have identi-
fied a set of storage mechanisms that is expressively complete for F and therefore
gives us an automata theoretic characterization of the languages in semilinear
classes.

Our second result states that valence automata over torsion groups accept
only semilinear languages. According to a result of Render2010 [Render2010],
this implies that every language class VA(M) contains VA(B) or VA(Z) or con-
tains only semilinear languages. Furthermore, we have characterized those tor-
sion groups for which semilinear representations of Parikh images are effectively
computable.

Directions for future research Our first result completely explains semilinear-
ity in the case of graph monoids. It seems prudent to try to understand better
which groups have this property. It has been used by LohreySteinberg2008 [LohreySteinberg2008]
to solve the rational subset membership problem of graph groups (whenever it
is decidable). In general, whenever we have effective semilinearity of VA(G),
we can decide the rational subset membership problem, making semilinearity
an interesting property of groups. We know so far that effective semilinearity is
preserved by direct products with Z (Propositions 2.5.2 and 2.5.3) and by free
products with amalgamation over a finite identified subgroup (Theorem 2.6.3).
Furthermore, Theorem 7.1.3 tells us that torsion groups always enjoy this prop-
erty and explains to some extent in what cases they do so effectively.

Related work In the case that all vertices of Γ are looped, MΓ is a graph group.
Since LohreySteinberg2008 [LohreySteinberg2008] characterized those graph
groups that guarantee semilinearity, our result generalizes theirs. Our result also
generalizes the fact that pushdowns and blind multicounter storages guarantee
semilinearity.

As mentioned in Section 4.4, MadhusudanParlato2011 [MadhusudanParlato2011]
propose a general model of automata with auxiliary storage. Here, each storage
mechanism is given by a class of graphs definable in monadic second order logic.
They show that if this class of graphs has bounded tree-width, then the empti-
ness problem is decidable for automata with this type of storage mechanism.
They also show that the multisets of vertex labels occurring in runs are semilin-
ear in the case of bounded tree-width. Of course, the question arises whether
Theorem 7.1.1 is subsumed by MadhusudanParlato2011’s.

Since the storage mechanisms in Section 7.2 almost always involve at least
two counters, their configuration graphs (even when restricted to those from
which a final configuration is reachable) can contain arbitrarily large grids. More-
over, the absence of arbitrarily large grids (as minors) is a characterizing property
of bounded tree-width graph classes [Diestel2010]. It therefore seems unlikely
that Theorem 7.1.1 is a special case of the framework of MadhusudanParlato2011 [MadhusudanParlato2011].

Acknowledgements I would like to thank Phoebe Buckheister for many dis-
cussions on semilinearity and valence automata.
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Chapter 8

Silent transitions

8.1 Introduction

In the previous chapters, we measured the expressive power of various storage
mechanisms with respect to what languages can be accepted by them in general
valence automata. In this chapter, we study how this expressive power is affected
by restricting the way in which the automata operate.

Specifically, we ask when silent transitions (which also called ε-transitions),
i.e. those that read no input but may operate on the storage, are required to
achieve the full expressive power.

This is an interesting problem for two reasons. First, it has consequences
for the time and space complexity of the membership problem for these autom-
ata. For automata with silent transitions, it is in general not clear whether the
membership problem is decidable. If, however, an automaton has no silent tran-
sitions, we only have to consider paths that are at most as long as the word at
hand. In particular, if we can decide whether a sequence of storage operations
is valid using linear space, we can also solve the membership problem (nonde-
terministically) with a linear space bound. Similarly, if we can decide validity of
such a sequence in polynomial time, we can solve the membership problem in
(nondeterministic) polynomial time. In fact, those storage mechanisms for which
our results permit ε-removal always admit a linear space and an NP-algorithm
for the membership problem.

Silent transitions Let A = (Q,X,M,E,q0, F) be a valence automaton over M.
A transition (p,w,m,q) ∈ E is called silent transition or ε-transition if w = ε, i.e.
if it reads no input. The automaton A is said to be ε-free if it contains no ε-transi-
tions. The class of languages accepted by ε-free valence automata is denoted by
VA+(M).

Note that we impose no restriction on the monoid elements that occur in
an ε-free valence automaton. This means, if valence automata over M realize
a concrete storage mechanism, then ε-free valence automata correspond to those
where each input-reading transition is entitled to a bounded number of opera-
tions on the storage. This restriction is usually called quasi-realtime [BookGreibach1970].

As customary in this work, we want to present a class of monoids among
which we characterize those that permit the removal of silent transitions. Clas-
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(a) (b)

Figure 8.1: Examples of pseudo-bipartite graphs.

sical examples of storage mechanisms for which ε-transitions can be avoided
are pushdown automata and blind multicounter automata, as shown by Grei-
bach [Greibach1965, Greibach1978]. Our class of monoids that generalizes these
two types is the class of MΓ where Γ is pseudo-bipartite.

Pseudo-bipartite graphs A graph is called pseudo-bipartite if

1. any two looped vertices are adjacent and

2. no two unlooped vertices are adjacent.

The term ‘pseudo-bipartite’ reflects the fact that in such graphs, the only
choice we can make is which looped vertices are adjacent to which unlooped
ones—the distribution of edges between looped vertices and between unlooped
vertices is completely prescribed. In graph theory, a simple graph is called bi-
partite if its vertices can be divided into two disjoint sets A and B such that ev-
ery edge connects a vertex from A with one in B [Diestel2010]. Hence, pseudo-
bipartite graphs are obtained by choosing a number of looped vertices, a number
of unlooped vertices, and a bipartite graph between the two sets of vertices.

Observe that looped cliques (which correspond to Zn) as well as graphs
without any edges (which correspond to B(n)) are examples of pseudo-bipartite
graphs. Hence, the class of pseudo-bipartite graphs generalizes pushdown stor-
ages and sets of blind counters. See Fig. 8.1 for further examples of pseudo-
bipartite graphs.

Our first main result is the following. As usual, NP denotes the class of prob-
lems solvable by a nondeterministic algorithm in polynomial time [Kozen1997].

Theorem 8.1.1. For pseudo-bipartite graphs Γ , the following conditions are equivalent:

1. VA+(MΓ) = VA(MΓ).

2. Every language in VA(MΓ) is context-sensitive.

3. The membership problem of each language in VA(MΓ) is in NP.

4. Every language in VA(MΓ) is decidable.

5. Γ does not contain as an induced subgraph.

6. MΓ ∈ SC−.
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Since it is easy to see that each M ∈ SC− can be written as MΓ for a pseudo-
bipartite Γ , this implies that VA+(M) = VA(M) for eachM ∈ SC−. Note also that
together with Theorems 4.3.1 and 7.1.1, Theorem 8.1.1 implies that semilinearity
of VA(MΓ) is also equivalent to the condition of Theorem 8.1.1. Furthermore,
since every language in F is accepted by stacked counter automaton (Proposi-
tion 7.1.2), the following is a consequence of Theorem 8.1.1.

Corollary 8.1.2. Each language in F admits an NP-algorithm as well as a linear space
algorithm for its membership problem.

Theorem 8.1.1 generalizes several known results:

• An application of the Greibach normal form [Greibach1965] for context-
free grammars is that ε-transitions can be avoided in pushdown automata.1

• Greibach has also shown that ε-transitions can be eliminated in blind multi-
counter automata [Greibach1978]. While Greibach’s construction triples
the number of blind counters, an improved result by Latteux [Latteux1979]
implies that this is not necessary. Put in terms of valence automata, this
means VA+(Zn) = VA(Zn) for n ∈ N. Since Zn ∈ SC−, this is subsumed
by Theorem 8.1.1.

• Employing Latteux’s result, Hoogeboom2002 [Hoogeboom2002] has shown
that ε-transitions are avoidable in pushdown automata equipped with a set
of blind counters. In other words, VA+(B(2) ×Zn) = VA(B(2) ×Zn) for
n ∈ N. This is a special case of Theorem 8.1.1 since B(2) ×Zn ∈ SC−. See
Section 8.6 for a more detailed comparison of the proofs of Theorem 8.1.1
and Hoogeboom’s result.

The author of this work learned of Latteux’s and Hoogeboom’s results after pub-
lication of [Zetzsche2013a].

Extending the model of Parikh automata by KlaedtkeRuess2003 [KlaedtkeRuess2003]
(see also Section 9.3.2), Karianto2005 [Karianto2005] studied Parikh pushdown au-
tomata. These are easily seen to be equivalent to automata with a pushdown and
a set of blind counters. Since Theorem 8.1.1 implies VA+(B(2)×Zn) = VA(B(2)×Zn),
we know in particular that Parikh pushdown automata also permit the removal
of ε-transitions.

The simplest example of a storage mechanism in SC− beyond the mentioned
known examples with available ε-elimination is that consisting of one partially
blind counter and a number of blind counters. This corresponds to the mon-
oids B×Zn. (Note, however, that avoidability of ε-transitions does not become
a weaker statement for simpler monoids.) Our second main result states that
this the best we can do in mechanisms that combine a number of partially blind
counters and a number of blind counters.

Theorem 8.1.3. We have VA+(Br ×Zs) = VA(Br ×Zs) if and only if r 6 1.

In other words, when one has r partially blind counters and s blind coun-
ters, ε-transitions can be eliminated if and only if r 6 1. In fact, our proof

1Strictly speaking and as mentioned before, our result only yields a quasi-realtime pushdown
automaton. Syntactically, this is not quite the same as an ε-free pushdown automaton, since the
latter can only pop one symbol at a time. However, by enlarging the stack alphabet, one can easily
turn a quasi-realtime pushdown automaton into an an ε-free one.
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will imply that the language in VA(Br ×Zs) \ VA+(Br ×Zs) is not contained
in any VA+(Bp ×Zq) for p,q ∈ N. Therefore, we generalize Greibach’s and
Jantzen’s result that in partially blind multicounter automata, ε-transitions are
indispensable. As mentioned above, since B×Zs ∈ SC−, the positive branch
of Theorem 8.1.3 follows from Theorem 8.1.1. In order to prove the negative
branch, we will extend the technique that both Greibach1978 [Greibach1978]
and Jantzen1979 [Jantzen1979] used to show VA+(B × B) ( VA(B × B). See
Section 8.5.

Outline of the proofs The rest of this chapter is devoted to the proofs of Theo-
rems 8.1.1 and 8.1.3. Let us give an outline and describe the main ingredients.

• In Section 8.2, we devote ourselves to decidability and complexity of the
membership problem for ε-free valence automata. Here, we obtain a lin-
ear time and a (nondeterministic) polynomial time algorithm for the mem-
bership of each languages in VA+(MΓ), which establishes the implications
“1⇒ 2” and “1⇒ 3” of Theorem 8.1.1. The algorithms are simple applica-
tions of convergent reduction systems.

• In Section 8.3, we develop a normal form result for rational subsets of
monoids in SC−. The underlying idea can be traced back to the work of
Benois1969 [Benois1969], who developed it to prove various results on ra-
tional sets of free groups.

Such normal form results have been available for monoids described by
monadic rewriting systems (see, for example, [BookOtto1993]) and we ap-
plied by RenderKambites2009 [RenderKambites2009] to monoids repre-
senting pushdown storages. Under different terms, this normal form trick
has been used by BouajjaniEsparzaMaler1997 [BouajjaniEsparzaMaler1997]
and by Caucal2003 [Caucal2003] to describe rational sets of pushdown op-
erations.

However, since the monoids in SC− allow commutation of non-trivial el-
ements, an adaptation of this technique was necessary here. In the case
of monadic rewriting systems, one transforms a finite automaton accord-
ing to rewriting rules by gluing in new edges. Here, we glue in automata
accepting languages that are Parikh equivalent to languages in VA(M) for
M ∈ SC−.

It should be mentioned that in [Zetzsche2013a] a slight variant of Proposi-
tion 8.3.1 was shown that subsumes the aforementioned normal form for
pushdown automata. The one presented here is somewhat weaker but was
used because it is simpler and makes the proofs more readable.

• We will see that those pseudo-bipartite graphs Γ without
as an induced subgraph define precisely the monoids in SC−. Therefore,
in Section 8.4, we prove ε-removal by induction on the construction of
M ∈ SC−. This requires a stronger induction hypothesis: We show that it is
not only possible to remove ε-transitions from valence automata, but even
from valence transducers with output in a commutative monoid. Here,
however, the constructed valence transducer is allowed to output a semi-
linear set in each step. Monoids that admit such a transformation will be
called strongly ε-independent.
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• Section 8.4 proceeds to show strong ε-independence of monoids in SC−

using three techniques.

First, we show that B is strongly ε-independent (Section 8.4.1). Here, we
use a construction that allows the postponement of increment operations
and the early execution of decrement operations (Lemma 8.4.5). This is
used to show that one can restrict oneself to computations in which a se-
quence of increments, followed by a sequence of decrements, will in the
end change the counter only by a bounded amount.

Second, we need one technique to show that if M ∈ SC− is strongly ε-
independent, then M×Z is as well (Section 8.4.2). This uses semilinear-
ity of VA(M) and an auxiliary lemma to provide small preimages for mor-
phisms from the multisets to the integers (Lemma 8.4.6).

The third technique is to show that building stacks preserves strong ε-
independence, that is, if M ∈ SC− is strongly ε-independent, where M
is non-trivial, then M ∗ B is as well (Section 8.4.3). The construction en-
codes rational sets overM ∗B as elements on the stack. We have to use the
semilinearity of VA(M) again in order to be able to compute the set of all
possible outputs when elements from two given rational sets cancel each
other out.

• In Section 8.5, we prove Theorem 8.1.3. As mentioned above, since The-
orem 8.1.1 already allows ε-removal for B×Zn, it remains to show that
this is not possible for Br ×Zs with r > 2. Here, we adapt a technique by
Greibach1978 [Greibach1978] and Jantzen1979 [Jantzen1979] for showing
that ε-transitions are indispensable in partially blind multicounter autom-
ata. Specifically, we use a concept from state complexity to reformulate and
extend their argument.

The results of this chapter have appeared in [Zetzsche2013a].

8.2 The membership problem

In this section, we study decidability and complexity of the membership problem
for valence automata over MΓ without silent transitions. Specifically, we show
that for every Γ , membership for languages in VA+(MΓ) is (uniformly) decidable.
We present two nondeterministic algorithms, one of them uses linear space and
one runs in polynomial time (Proposition 8.2.4).

These results will serve two purposes. First, for those graphs Γ for which
there are undecidable languages in VA(MΓ) (see Theorem 4.3.1), it follows that
silent transitions are indispensable. Second, if we can show that silent transitions
can be removed from valence automata over MΓ , the algorithms also apply to
languages in VA(MΓ).

8.2.1 A convergent reduction system

The algorithms in this section rely on the convergence property of certain re-
duction systems. For more information on reduction systems, see [Huet1980,
BookOtto1993].
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A reduction system is a pair (S,→) in which S is a set and→ is a binary relation
on S. (S,→) is said to be noetherian if there is no infinite sequence s0, s1, . . . with
si → si+1 for each i ∈ N. We write ∗←→ ( ∗→) for the reflexive, transitive, sym-
metric (reflexive, transitive) closure of →. (S,→) has the Church-Rosser property
if for any s, t ∈ S with s ∗←→ t, there is a u ∈ S with s ∗→ u and t ∗→ u. We say
that (S,→) is confluent, if for any s, t,u ∈ Swith s ∗→ t and s ∗→ u, there is a v ∈ S
with t ∗→ v and u ∗→ v. A noetherian and confluent reduction system is called
convergent. Furthermore, (S,→) is called locally confluent, if for any s, t,u ∈ S
with s→ t and s→ u, there is a v ∈ Swith t ∗→ v and u ∗→ v. An element s ∈ S is
irreducible if there is no t ∈ S with s→ t. We say t ∈ S is a normal form of s ∈ S if
s
∗→ t and t is irreducible. It is well-known that a reduction system is confluent if

and only if it has the Church-Rosser property. Furthermore, a noetherian locally
confluent reduction system is already confluent.

One of the steps in our algorithms will be to check, given a word w ∈ X∗Γ ,
whether w ≡Γ ε. Unfortunately, turning the presentation TΓ (see Section 2.4)
into a reduction system on words will not yield a convergent reduction system
as the length-preserving rules allow for infinite reduction sequences. Therefore,
we will use reduction systems on traces instead. For more information on traces,
see [DiekertRozenberg1995].

Let X be an alphabet. An irreflexive symmetric relation I ⊆ X× X is called
an independence relation. To each such relation, the corresponding presentation
TI = (X,RI) is given as RI = {(ab,ba) | (a,b) ∈ I}. If ≡I denotes the congru-
ence generated by TI, then the monoid T(X, I) = X∗/≡I is called trace monoid,
its elements traces. The equivalence class of u ∈ X∗ is denoted as [u]I and since
the words in an equivalence class all have the same length, |[u]I| = |u| is well-
defined.

In order to efficiently compute using traces, we represent them using de-
pendence graphs. Let X be an alphabet and I ⊆ X× X an independence rela-
tion. To each word w ∈ X∗ we assign a loop-free directed acyclic vertex-labeled
graph, its dependence graph dep(w). If w = x1 · · · xn, xi ∈ X, 1 6 i 6 n, then
dep(w) = (V ,E, `), in which E ⊆ V ×V , has vertex set V = {1, . . . ,n} and (i, j) ∈ E
if and only if i < j and (xi, xj) /∈ I. Furthermore, each vertex i is labeled with
`(i) = xi ∈ X. It is well-known that for words u, v ∈ X∗, we have u ≡I v if
and only if dep(u) and dep(v) are isomorphic. Thus, we will also write dep(s) for
dep(u) if s = [u]I.

Each (undirected, potentially looped) graph Γ = (V ,E) gives rise to an inde-
pendence relation on XΓ , namely

I = {(x,y) | x ∈ {av, āv}, y ∈ {aw, āw}, x 6= y, {v,w} ∈ E}. (8.1)

If I is given by Γ in this way, we also write ≡Γ |T for ≡I and [u]Γ |T instead of [u]I.
In the following, let I be given by Γ = (V ,E) as in (8.1). We will now define a

reduction relation→ on T(XΓ , I) such that for u, v ∈ X∗Γ

[u]Γ = [v]Γ if and only if [u]Γ |T
∗←→ [v]Γ |T. (8.2)

For s, t ∈ T(XΓ , I), let s → t if there are u1,u2 ∈ X∗Γ and v ∈ V such that
s = [u1avāvu2]Γ |T and t = [u1u2]Γ |T. This definition immediately yields (8.2).
Since our algorithms will represent traces as dependence graphs, we have to re-
state this relation in terms of the latter. It is not hard to see that for s, t ∈ T(XΓ , I),
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Figure 8.2: Possible fragments of the dependence graph of s.

s → t if and only if there are vertices x,y in dep(s), labeled av and āv, respec-
tively, such that

1. there is no path from y to x and

2. there is no vertex lying on a path from x to y

and dep(t) is obtained from dep(s) by deleting x and y. We will refer to conditions
1 and 2 as the subtrace conditions.

Lemma 8.2.1. The reduction system (T(XΓ , I),→) is convergent.

Proof. Since the system is clearly noetherian, it remains to be shown that the re-
duction system (T(XΓ , I),→) is locally confluent. Hence, let x,y, x ′,y ′ be vertices
in dep(s) labeled av, āv,aw, āw, respectively, satisfying the subtrace conditions
such that dep(t) is obtained by deleting x,y and dep(t ′) is obtained by deleting
x ′,y ′. If {x,y} = {x ′,y ′}, we are done. Furthermore, if {x,y} ∩ {x ′,y ′} = ∅, delet-
ing x,y from dep(t ′) (or x ′,y ′ from dep(t)) yields a u ∈ T(XΓ , I) with t → u and
t ′ → u. Therefore, we assume x = x ′ and y 6= y ′ (the case x 6= x ′, y = y ′ can be
done analogously). This means in particular that v = w. Since (āv, āv) /∈ I, we
can also assume that there is an edge from y to y ′.

If (av, āv) /∈ I, there are edges (x,y) and (x,y ′) in dep(s) and y violates the
second subtrace condition of x,y ′ (see Fig. 8.2a). Hence, we have (av, āv) ∈ I.
We claim that flipping y and y ′ constitutes an automorphism of dep(s), mean-
ing dep(t) and dep(t ′) are isomorphic and thus t = t ′. The former amounts to
showing that each vertex z in dep(s) has an edge from (to) y iff z has one from
(to) y ′.

If there is an edge from y to z, then by the definition of I, we also have an
edge between x and z. Obeying the first subtrace condition, it has to be directed
from x to z: Otherwise, there would be a path from y to x (see Fig. 8.2b). Since
y and y ′ share the same label, we also have an edge between y ′ and z. If this
were an edge from z to y ′, z would lie on a path from x = x ′ to y ′ (see Fig. 8.2c),
violating the second subtrace condition. Hence, there is an edge from y ′ to z.

If there is an edge from z to y, then by the definition of I, we also have an
edge between x and z. By the second subtrace condition, it has to be directed
from z to x: Otherwise, z would lie on a path from x to y (see Fig. 8.2d). Since y
and y ′ share the same label, we also have an edge between y ′ and z. If this were
directed from y ′ to z, then there would be a path from y ′ to x = x ′ (see Fig. 8.2e),
violating the first subtrace condition. Hence, there is an edge from z to y ′.

If there is no edge between y and z, there is also no edge between y ′ and z,
since y and y ′ have the same label.
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By (8.2) and since (T(XΓ , I),→) is convergent, we have

[w]Γ = [ε]Γ if and only if [w]Γ |T
∗→ [ε]Γ |T. (8.3)

This equivalence is the basis of our algorithms to check for the former condition.

8.2.2 Decidability and complexity

The following lemmas provide algorithms for the identity problem of MΓ , which
asks, given w ∈ X∗Γ , whether w ≡Γ ε. One of the algorithms requires polynomial
time and the other one linear space. In fact, there are classes of graphs Γ that
admit more efficient algorithms.

• Suppose every vertex in Γ is looped. Then MΓ belongs to the class of graph
groups, which are linear over R [HsuWise1999, DavisJanuszkiewicz2000]
(that is, they embed into some GL(n, R) withn ∈N). Since LiptonZalcstein1977 [LiptonZalcstein1977]
have shown that the word problem of groups that are linear over a field of
characteristic zero is decidable in deterministic logarithmic space, we know
the same for MΓ .

Moreover, the word problem for graph groups can be solved in linear time,
which as proved by Wrathall1988 [Wrathall1988].

• If Γ contains no edges at all, then MΓ ∼= B(n) for n = |Γ | and the set of
words w with w ≡Γ ε is a semi-Dyck language over n pairs of paren-
theses, which can be recognized in deterministic logspace as shown by
RitchieSpringsteel1972 [RitchieSpringsteel1972].

• If Γ contains no loops, but any two distinct vertices are adjacent in Γ , then
MΓ ∼= Bn for n = |Γ | and we can decide whether w ≡Γ ε by using n
partially blind counters, which take up only logarithmic space.

Therefore, it seems likely that the following algorithms for the identity problem
can be improved. However, their purpose here is to facilitate a linear space and
an NP algorithm for the membership problem for languages in VA+(MΓ ) (Propo-
sition 8.2.4). Our solution for the latter problem, however, still involves guessing
a run of an automaton, meaning that the algorithms for the membership prob-
lem would not profit from improvements on the identity problem. In fact, the
membership problem is in some cases NP-complete, so that at least the NP upper
bound would certainly not be affected (see Proposition 8.2.4).

Lemma 8.2.2. There is a deterministic polynomial-time algorithm that, given a word
w ∈ X∗Γ , determines whether [w]Γ = [ε]Γ .

Proof. By (8.3), the condition [w]Γ = [ε]Γ is equivalent to [ε]Γ |T being the normal
form of [w]Γ |T. Therefore, our algorithm computes the normal form of [w]Γ |T. It
does so by computing the dependence graph ofw and successively deleting pairs
of nodes that satisfy the subtrace conditions. Finding such a pair can be done in
polynomial time and since at most |w|/2 deletions are possible, the normal form
is computed in polynomial time. In the end, the algorithm checks whether the
calculated dependence graph representing the normal form is empty.

Lemma 8.2.3. There is a nondeterministic linear-space algorithm that, given a word
w ∈ X∗Γ , determines whether [w]Γ = [ε]Γ .
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Proof. Let Γ = (V ,E). By (8.3), we have [w]Γ = [ε]Γ if and only ifw can be reduced
to the empty word by commuting av and aw for v,w ∈ E, commuting av and āv
for {v} ∈ E and deleting avāv for v ∈ V . This can be done by a nondeterministic
linear-space algorithm.

The following proposition uses the algorithms for the identity problem of MΓ
to devise a procedure for the membership problem of languages in VA+(MΓ).
The NP-hardness follows easily from a result of BookGreibach1970 [BookGreibach1970]
stating that every language accepted by a linear time nondeterministic Turing
machine is a length-preserving homomorphic image of the intersection of three
context-free languages.

Proposition 8.2.4. For each L ∈ VA+(MΓ), the membership problem can be decided by

• a nondeterministic polynomial-time algorithm as well as

• a nondeterministic linear-space algorithm.

In particular, the languages in VA+(MΓ) are context-sensitive. Moreover, there is a
graph Γ and a language L ∈ VA+(MΓ) such that membership in L is NP-complete.

Proof. In order to decide the membership problem for a word w for a language
in VA+(MΓ), we can guess a run reading w. Since there are no silent transitions
in the automaton, such a run has length linear in |w|. For this run, we have to
check whether the product of the monoid elements on the edges is the identity
element of MΓ . By Lemmas 8.2.2 and 8.2.3, this can be done in polynomial time
or using linear space.

We now construct Γ and L ∈ VA+(MΓ) such that L has an NP-complete mem-
bership problem. Pick a nondeterministic linear time Turing machine that ac-
cepts an NP-complete language L (the linear time bound can be achieved by
a suitable padding of the input). According to [BookGreibach1970], each lan-
guage accepted by such a Turing machine can be written as a length-preserving
homomorphic image of the intersection of three context-free languages. If we
choose Γ such that MΓ ∼= (B ∗B)3, then VA+(MΓ) contains L.

8.3 Rational sets

In this section and the next, we use some new notation. If A = (Q,M,E,q0, F) is
an automaton overM, then we write

Lp,q(A) = {m ∈M | (p, 1)→∗A (q,m)}.

In other words, Lp,q(A) contains those elements of M that labels paths from p
to q. In the following proofs, we will construct automata by gluing in some
automaton between two states of another. Let us define this formally. Suppose
that A = (Q,M,E,q0, F) is an automaton over M and B = (Q ′,M,E ′,q ′0, {q ′f})
is an automaton over M with only one final state. Suppose furthermore that
Q ∩Q ′ = ∅. Then the automaton obtained by gluing in B between p,q ∈ Q is
defined as C = (Q∪Q ′,M,E ′′,q0, F), where

E ′′ = E∪ E ′ ∪ {(p, 1,q ′0), (q, 1,q ′f)}.
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The following normal form result is in the spirit of a well-known fact about
monadic string rewriting systems [BookOtto1993]. The latter states that for each
rational subset of a monoid described by such a rewriting system, one can con-
struct a regular language that consists solely of normal forms of elements, but
represents every member of the rational subset.

The construction goes back to an idea of Benois1969 [Benois1969] and works
by successively adding edges to obtain more representatives for the rational set.
Here, convergence is guaranteed because only edges are added, not new states.
Since in our monoids, non-trivial elements can commute, we are not in the situa-
tion of a monadic rewriting system, meaning that adding edges does not suffice.
Therefore, we glue in automata instead of edges and show that termination is
still guaranteed because we only have to glue in one automaton between each
pair of states.

Recall that a and ā denote the positive and the negative generator, respec-
tively, of the bicyclic monoid B (see Section 2.2, Page 14).

Proposition 8.3.1. Let M ∈ SC− and C be a commutative monoid. Furthermore, let
S ⊆ (M ∗B)× C be a rational set. Then there is an alphabet X = {x, x̄} ∪ Y ∪ Z and
a morphism ϕ : X∗ → (M ∗ B) × C such that ϕ(x) = a, ϕ(x̄) = ā, ϕ(Y) ⊆ M,
ϕ(Z) ⊆ C, and regular languages

Ui ⊆ ((Y ∪Z)∗x̄)∗, Vi ⊆ (Y ∪Z)∗, Wi ⊆ (x(Y ∪Z)∗)∗.

such that

S∩ (J1(M ∗B)×C) =
n⋃
i=1

ϕ(UiViWi)∩ (J1(M ∗B)×C).

Proof. Let S ⊆ (M ∗B)× C be rational. Then there is an alphabet X, a rational
language L ⊆ X∗, and a morphismϕ : X∗ → (M ∗B)×Cwithϕ(L) = S. Without
loss of generality, we assume that X = {x, x̄} ∪ Y ∪ Z with ϕ(x) = a, ϕ(x̄) = ā,
ϕ(Y) ⊆ M, ϕ(Z) ⊆ C, where a and ā are the two generators of B. Let A be an
automaton accepting L such that every edge carries exactly one letter.

As a first step, we will construct an automaton A ′ that also satisfies the equa-
tion ϕ(L(A ′)) = S, but which represents every element of S∩ (J1(M ∗B)×C) by
a word in X∗ \X∗xX∗x̄X∗. Let A = (Q,X,E,q0, F). For p,q ∈ Q, the language

Kp,q = {πZ(w) | w ∈ Lp,q(A), ϕ(w) ∈ {1}×C}

is clearly contained in VA(M ∗ B) and is therefore semilinear (Theorem 7.1.1
and Proposition 7.1.2). Thus, we can find a finite automaton A ′p,q such that
Ψ(L(A ′p,q)) = Ψ(Kp,q). Since C is commutative and ϕ(Z) ⊆ C, this also means
ϕ(L(A ′p,q)) = ϕ(Kp,q). The automaton A ′ is now obtained from A by gluing
A ′p,q into A between p and q, for each p,q ∈ Q. Since in A ′ for each path from
the initial to the final state, we can find another path that encodes the same el-
ement of (M ∗B)× C and is present in A, we have ϕ(L(A ′)) = ϕ(L(A)) = S.
However, the glued in automata allow us to encode elements of the intersection
S∩ (J1(M ∗B)×C) by words of a certain form: We claim that

S∩ (J1(M ∗B)×C) ⊆ ϕ(L(A ′) \X∗xX∗x̄X∗) ⊆ S. (8.4)

The right inclusion is clear because ϕ(L(A ′)) = S. For the left inclusion, let
s ∈ S∩ (J1(M ∗B)×C) andw ∈ L(A ′) be chosen such that ϕ(w) = s and |w|X\Z
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y v

ux

Figure 8.3: Induced subgraph in the proof of Lemma 8.4.1.

is minimal. Toward a contradiction, suppose w ∈ X∗xX∗x̄X∗. Then w = fxgx̄h
with f,h ∈ X∗, g ∈ (Y ∪ Z)∗. Since amā /∈ J1(M ∗B) for any m ∈ M \ {1}, our
assumption s ∈ J1(M ∗B)×C implies ϕ(g) ∈ {1}×C and thus ϕ(xgx̄) ∈ {1}×C.
By the construction of A ′, however, this means that there is a word v ∈ Z∗ such
that fvh ∈ L(A ′) and ϕ(fvh) = ϕ(w). Since |fvh|X\Z = |fh|X\Z < |w|X\Z, this
contradicts the choice of w, proving Eq. (8.4).

Since the language K = L(A ′) \X∗xX∗x̄X∗ satisfies

K ⊆ ((Y ∪Z)∗x̄)∗(Y ∪Z)∗(x(Y ∪Z)∗)∗,

we can find regular languages

Ui ⊆ ((Y ∪Z)∗x̄)∗, Vi ⊆ (Y ∪Z)∗, Wi ⊆ (x(Y ∪Z)∗)∗

for 1 6 i 6 nwith K =
⋃n
i=1UiViWi. Since Eq. (8.4) implies the equality

ϕ(K)∩ (J1(M ∗B)×C) = S∩ (J1(M ∗B)×C),

this is the desired decomposition.

8.4 Stacked blind counters

In this section, we prove the implications “5⇒ 6” and “6⇒ 1” of Theorem 8.1.1.
We begin with the former.

Lemma 8.4.1. Let Γ be a pseudo-bipartite graph that does not contain
as an induced subgraph. Then, MΓ ∈ SC−.

Proof. We proceed by induction on the number of vertices. Note that induced
subgraphs of Γ are also pseudo-bipartite and do not contain .
Therefore, we may assume that M(Γ \ x) ∈ SC− for any vertex x. Let Γ = (V ,E)
and write V = L ∪U, where L is the set of looped vertices and U is the set of
unlooped vertices. For every x ∈ L, let σ(x) = N(x) ∩U be the set of unlooped
neighbors of x. We write x 6 y for x,y ∈ L if σ(x) ⊆ σ(y). Clearly,6 is a reflexive,
transitive order on L.

If there were x,y ∈ L such that σ(x) and σ(y) are incomparable, there would
be vertices u, v ∈ U with u ∈ σ(x) \ σ(y) and v ∈ σ(y) \ σ(x). Thus, the vertices
u, x,y, v induce the subgraph (see Fig. 8.3), contradicting our
premise. Hence, 6 is a total order and has a greatest element g ∈ L, that is, such
that x 6 g for each x ∈ L (note that g may not be unique as 6 is not necessarily
antisymmetric).

• If σ(g) = U, then g is adjacent to every vertex in Γ and thus we have
MΓ ∼= M(Γ \ g)×Z.
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• If σ(g) ( U, then there is an isolated vertex u ∈ U \ σ(g). Hence, we have
MΓ ∼= M(Γ \ u) ∗B.

As an example for the previous lemma, consider the graphs Γa and Γb in
Figs. 8.1a and 8.1b. Then, we have

MΓa ∼= ((((1×Z) ∗B) ∗B)×Z)×Z,
MΓb ∼= (((B×Z)×Z) ∗B)×Z.

The core of Theorem 8.1.1 is the fact that VA+(M) = VA(M) for every monoid
M ∈ SC−. We prove this using an induction with respect to the definition of
SC−. In order for this induction to work, we need to strengthen the induction
hypothesis. This stronger hypothesis will state that we can not only eliminate
ε-transitions, but we can do this while preserving the output in a commutative
monoid. More precisely, for any M ∈ SC− and any commutative monoid C, we
can transform a valence transducer over M with output in C into another one
that has no ε-transitions but is allowed to output a semilinear set of elements in
each step. Formally, we will show that eachM ∈ SC− is strongly ε-independent.

Valence transducers with commutative output In the following, we extend the
definition of valence transducers (Section 3.1) so as to allow outputs in arbitrary
monoids (as opposed to words). It will therefore be useful to make the output
monoid of a transduction T ⊆ X∗ ×M explicit by called it an M-transduction.
Let M and N be monoids. A valence transducer over M with output in N is an
automaton over X∗ ×M×N. Instead of (Q,X∗ ×M×N,E,q0, F), we also write
A = (Q,X,M,N,E,q0, F). Such devices perform N-transductions, namely

T(A) = {(u, v) ∈ X∗ ×N | ∃q ∈ F : (q0, ε, 1, 1)→∗A (q,u, 1, v)}.

The class of N-transductions performed by valence transducers over M is de-
noted by VT(M,N). An edge of the form (ε,m,n) with n ∈ N, m ∈ M is called
ε-transition and A is ε-free if such transitions are absent. By confining ourselves
to ε-free transducers, we obtain the class VT+(M,N) of N-transductions.

As mentioned above, we want to show that we can remove ε-transitions
while preserving the output in a commutative monoid C. Note that we can-
not hope to prove VT+(M,C) = VT(M,C), since valence transducers without
ε-transitions and with output in C can only output finitely many elements per
input word. However, we will show that if we grant the ε-free transducers the
ability to output a semilinear set in one step, they are expressively complete (with
respect to C-transductions). Let us formalize this property.

Let C be a commutative monoid and T ⊆ X∗ × SL(C) be an SL(C)-transduc-
tion. ThenΦ(T) ⊆ X∗ ×C is defined as

Φ(T) = {(w, c) ∈ X∗ ×C | ∃(w,S) ∈ T : c ∈ S}.

For a class C of SL(C)-transductions, Φ(C) is the class of all Φ(T) with T ∈ C. A
monoid M is called strongly ε-independent if for every commutative monoid C,
we have

VT(M,C) = Φ(VT+(M,SL(C))).

104

cf7212f0 2016-06-29 03:26:35 +0200



8.4. Stacked blind counters

By choosing the trivial monoid for C, we can see that for every strongly ε-
independent monoid M, we have VA+(M) = VA(M). Indeed, given a valence
automaton A over M, add an output of 1 to each edge and transform the result-
ing valence transducer into an ε-free one with output in SL(1). The latter can
then clearly be turned into a valence automaton for the language accepted by A.
Hence, we have the following.

Lemma 8.4.2. IfM is strongly ε-independent, then VA+(M) = VA(M).

Rationally labeled transducers When we eliminate ε-transitions, we take the
perspective that a valence transducer with ε-transitions performs big steps con-
sisting of one transition with input and a sequence of ε-transitions. Then, the set
of all elements added to the storage and the output during such a big step in a
valence transducer over M with output in C is a rational subset of M× C. In
other words, we will consider rationally labeled transducers.

We give a formal definition. A rationally labeled valence transducer over M
with output in C is an automaton over X∗ × Rat(M × C). For the automaton
A = (Q,X∗ × Rat(M×C),E,q0, F), we also write A = (Q,X,M,C,E,q0, F). The
transduction performed by A is

T(A) = {(w, c) ∈ X∗ ×C | ∃q ∈ F : (q0, (ε, {1}))→∗A (q, (w,S)), (1, c) ∈ S}.

We call A spelling if E ⊂ Q× X× Rat(M×C)×Q, that is, if it reads exactly one
letter in each transition.

The definition of T(A) for rationally labeled valence transducers A means
that A behaves as if instead of an edge (p, (w,S),q), S ∈ Rat(M×C), it had an
edge (p,w,m, c,q) for each (m, c) ∈ S. Therefore, in slight abuse of terminology,
we will also say that

q0
(x1,m1,c1)−−−−−−−→ q1 → · · · → qn−1

(xn,mn,cn)−−−−−−−−→ qn

is a computation in A when there are edges (qi−1, (xi,Si),qi) ∈ E such that
(mi, ci) ∈ Si for 1 6 i 6 n. A similar custom applies for steps.

The following explains why it suffices to consider rationally labeled valence
transducers.

Lemma 8.4.3. For each valence transducer A over M with output in C, there is a
spelling rationally labeled valence transducer A ′ with T(A ′) = T(A).

Proof. Let A = (Q,X,M,C,E,q0, F). We obtain the ε-free rationally labeled va-
lence transducer A ′ = (Q,X,M,C,E ′,q0, F) as follows. We introduce one edge
(p, (x,S),q) for every triple (p, x,q) ∈ Q× X×Q such that S ⊆ M×C is the ra-
tional set of elements spelled by paths in A that start in p, go along a number of
ε-edges, then pass through an edge labeled x and then again go along a number
of ε-edges and stop in q. Then clearly T(A ′) = T(A).

In Sections 8.4.1 to 8.4.3, we will show that every monoid in SC− is strongly
ε-independent.
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8.4.1 One partially blind counter

This section is devoted to the proof of the following lemma.

Lemma 8.4.4. B is strongly ε-independent.

In order to prove it, we need an auxiliary lemma.

Lemma 8.4.5. For each valence transducer over B with output in C, there is an equiv-
alent rationally labeled valence transducer Â = (Q,X,M,C,E,q0, F) such that every
edge in Â is of the form (p, x,R⊕(m, c)L⊕,q) with p,q ∈ Q, R ∈ Rat({a}⊕ × C),
(m, c) ∈ B×C, L ∈ Rat({ā}⊕ ×C), and such that in every computation

q0
(x1,R⊕1 (m1,c1)L

⊕
1 )−−−−−−−−−−−−−→ q1 · · ·qn−1

(xn,R⊕n(mn,cn)L⊕n)−−−−−−−−−−−−−→ qn,

we have

R1 ⊆ R2 ⊆ · · · ⊆ Rn and L1 ⊇ L2 ⊇ · · · ⊇ Ln. (8.5)

Proof. Let T ∈ VT(B,C). We may assume that T = T(A) for a rationally labeled
valence transducer A = (Q,X, B,C,E,q0, F) over B with output in C. By Propo-
sition 8.3.1, we may also assume that every edge in A has the form (p, x,LR,q),
with L ∈ Rat({ā}⊕ ×C) and R ∈ Rat({a}⊕ ×C).

We may further assume that edges starting in the initial state q0 are of the
form (q0, x,R,p) and, analogously, edges ending in a final state q ∈ F are of the
form (p, x,L,q), p ∈ Q, L ∈ Rat({ā}⊕ × C) and R ∈ Rat({a}⊕ × C). Thus, we
can construct an equivalent transducer A ′ = (Q ′,X, B,C,E ′,q0, F ′) each edge
of which simulates the R-part of one edge of A and then the L-part of another
edge of A. Hence, in A ′, every edge is of the form (p, x,RL,q) with p,q ∈ Q ′,
R ∈ Rat({a}⊕ ×C), and L ∈ Rat({ā}⊕ ×C).

Since {a}⊕×C and {ā}⊕×C are commutative, all such R and L are semilinear
sets and we can even assume that every edge is of the form

(p, x,R⊕(m, c)L⊕,q),

in which (m, c) ∈ B× C and where R ⊆ {a}⊕ × C and L ⊆ {ā}⊕ × C are finite
subsets.

The crucial observation of this lemma is that if we allow the transducer to
apply elements of {a}⊕×C that, in an edge (p, x,R⊕(m, c)L⊕,q) traversed earlier,
were contained in R, we do not increase the set of accepted pairs in X∗ ×C. This
is due to the fact that if the counter realized by B does not go below zero in
this new computation, it will certainly not go below zero if we add the value
at hand in an earlier step. Thus, any computation in the new transducer can be
transformed into one in the old transducer. Furthermore, the commutativity of C
guarantees that the output is invariant under this transformation. Analogously,
if we allow the transducer to apply elements from {ā}⊕ ×C, as long as it ensures
that in some edge (p, x,R⊕(m, c)L⊕,q) traversed later, they are contained in L,
we do not change the accepted set of pairs either.

Therefore, we construct a rationally labeled transducer Â fromA ′. In its state,
Â stores a state of A ′ and two sets: a finite set R̃ ⊆ {a}⊕ × C and a finite set
L̃ ⊆ {ā}⊕×C. R̃ always contains all those elements of {a}⊕×C that have occurred
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in sets R so far, and L̃ are elements of {ā}⊕ ×C that still have to be encountered
in sets L in the future. Then for every edge (p, x,R⊕(m, c)L⊕,q) in A ′, we have
an edge labeled (x, (R∪ R̃)⊕(m, c)(L∪ L̃)⊕). Â will then add the elements of R to
its set R̃ and nondeterministically remove some elements of L from L̃ (they can
only be removed if this is their last occurrence; otherwise, we might need them
in L̃ later). The final state will then make sure that L̃ is empty and Â has thus
only applied elements early that would later appear. In the initial state, both sets
R̃ and L̃ are empty and then L̃ is filled nondeterministically. By construction, Â
satisfies Eq. (8.5).

We are now ready to show that B is strongly ε-independent.

Proof of Lemma 8.4.4. Let T ∈ VT(B,C). By Lemma 8.4.5, we have T = T(A)
for some rationally labeled valence transducer over M with output in C with
the property stated there. The essential idea of the proof is to simulate a certain
fragment of all computations ofA, namely those where in every edge the element
in the R⊕-part and the element in the L⊕-part differ in size (as measured by the
number of a and ā) only by a bounded amount. We will see that every pair in
X∗ ×C can be produced through such a computation by showing that if in some
edge the R⊕-part and the L⊕-part differ by more than the bound, either some
part of the R⊕-part can be postponed or some part of the L⊕-part can be applied
earlier. Note that the property of Lemma 8.4.5 allows us to postpone elements of
R⊕-parts and apply elements of L⊕ earlier.

Simulating the computations in this fragment is then simple: Since for each
occurring difference (between the sizes), the set of possible outputs is semilinear,
we only have to output the semilinear set and add the difference.

Let us define the new transducer Â that will simulate the fragment. It is
obtained from A as follows. Let e = (p, x,R⊕(akān, c)L⊕,q) be an edge in
A. Let Y and Z be alphabets in bijection with R and L, respectively, and de-
fine ϕ : (Y ∪ Z)⊕ → B × C to be the morphism extending these bijections. In
the following, we write π1 and π2 for the projection on the left and right com-
ponent, respectively. Then, if κ : B → Z is the morphism with κ(a) = 1 and
κ(ā) = −1, let ψ : (Y ∪ Z)⊕ → Z be defined by ψ(µ) = κ(π1(ϕ(µ))). The
set Ci = π2(ϕ(ψ

−1(i))) ⊆ C now contains all outputs c1c2 ∈ C such that
there are (at, c1) ∈ R⊕ and (āu, c2) ∈ L⊕ with t − u = i. Moreover, since
ψ−1(i) ⊆ (Y ∪Z)⊕ is clearly Presburger definable, the set Ci is semilinear. Let

b = min{−1,ψ(z) +n− k | z ∈ Z},
B = max{1,ψ(y) +n− k | y ∈ Y}.

Â has the same set of states as A. To simulate the edge e, we introduce for each
i ∈N with b < i < B the edge

(p, x,ak+iān, cCi,q) if i > 0, (8.6)

(p, x,akān−i, cCi,q) if i < 0. (8.7)

Initial state and final states remain unaltered. We claim thatΦ(T(Â)) = T(A).
The transducer Â is constructed so as to simulate all computations inAwhere

the difference between the element in the R⊕-part and the element in the L⊕-part
is between b and B. Therefore, we haveΦ(T(Â)) ⊆ T(A).
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It remains to be shown that every computation in A has an equivalent com-
putation in our fragment and hence in Â. Here, the idea is that if we transform
a computation in A by postponing elements of R⊕-parts and applying elements
of L⊕-parts early as much as possible, we end up with a computation in our
fragment. Consider a computation in A containing a step

p
(x,r(akān,c)`)−−−−−−−−−−→ q for an edge (p, x,R⊕(akān, c)L⊕,q).

Define Y, Z, ϕ, κ, ψ, b, B as above. Then there are µ ∈ Y⊕ and ν ∈ Z⊕ with
ϕ(µ) = r and ϕ(ν) = `.

Let us identify the situations in which we can postpone elements in µ or apply
elements of ν earlier. Suppose there is a y in µ such that

ψ(µ− y) + k−n+ψ(ν) > 0, (8.8)

that is, the counter stays above zero until the end of the step, even if we do not
add y. Then the counter will also stay above zero if we postpone the application
of ϕ(y) until the beginning of the next step. By construction, A allows us to do
so. Note that we cannot be in the last step of the computation, since this would
leave a positive value on the counter. Analogously, suppose there is a z in ν such
that

−ψ(ν− z) +n− k−ψ(µ) > 0, (8.9)

that is, when starting from the right (and interpreting ā as increment and a as
decrement), the counter does not drop below zero until the beginning of the step,
even if we do not applyϕ(z). Then we can applyϕ(z) earlier in the computation.
Again, note that this cannot happen in the first step, since this would mean the
computation starts by subtracting from the counter.

We transform the computation in the following way. Whenever in some step,
Eq. (8.8) is satisfied, we move ϕ(y) to the right (i.e., we postpone the application
of ϕ(y)). Symmetrically, whenever in some step, Eq. (8.9) is fulfilled, we move
ϕ(z) to the left (i.e., we apply ϕ(z) earlier). We repeat this and since the compu-
tation is finite, this process will terminate and we are left with a valid equivalent
computation in which Eqs. (8.8) and (8.9) do not occur. We will show that this
means we arrived at a computation in our fragment. Note that we are in the
fragment if in each step, we have b < ψ(µ) +ψ(ν) < B.

Equations (8.8) and (8.9) are equivalent to

ψ(µ) +ψ(ν) > ψ(y) +n− k,
ψ(µ) +ψ(ν) 6 ψ(z) +n− k.

Since these are not satisfied for any y ∈ Y and z ∈ Z, we have

ψ(µ) +ψ(ν) < ψ(y) +n− k for each y in µ, (8.10)
ψ(µ) +ψ(ν) > ψ(z) +n− k for each z in ν (8.11)

and thus
b < ψ(µ) +ψ(ν) < B.

Indeed, the left inequality follows from Eq. (8.11) if ν 6= 0. If ν = 0, then we
have b < 0 6 ψ(µ) + ψ(ν). Symmetrically, the right inequality follows from
Eq. (8.10) if µ 6= 0. If µ = 0, then ψ(µ) +ψ(ν) 6 0 < B. This means, the resulting
computation is in our fragment and each step has a counterpart in the edges (8.6)
and (8.7). Therefore,Φ(T(Â)) = T(A).
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8.4.2 Blind counters

Our next step is to show that adding a blind counter preserves the property of
strong ε-independence. Let us sketch the idea for showing VA+(Z) = VA(Z).
This boils down to simulating the addition of a semilinear subset of Z by adding
single elements of Z. Here, our strategy is to add the constant element of a linear
set and then a bounded number of period elements. This means we have to show
that if the sum of period elements (added throughout the whole computation)
allows to arrive at 0, then a bounded number in each step already suffices. The
following lemma provides such a bound.

Lemma 8.4.6. Let ϕ : X⊕ → Z be a morphism. Then for any n ∈ Z, the set ϕ−1(n)
is semilinear. In particular, kerϕ is finitely generated. Furthermore, there is a con-
stant k ∈ N such that for any µ ∈ X⊕, there is a ν 6 µ with µ ∈ ν + kerϕ and
|ν| 6 k · |ϕ(µ)|.

Proof. Since ϕ−1(n) ⊆ X⊕ is clearly Presburger definable, it is semilinear. This
implies that kerϕ is finitely generated: If kerϕ =

⋃n
i=1 µi + F

⊕
i , then for each

µ ∈ Fi, we have ϕ(µi) = 0 and ϕ(µi + µ) = 0 and hence ϕ(µ) = 0. This means
Fi ⊆ kerϕ and thus kerϕ =

(
{µ1, . . . ,µn}∪

⋃n
i=1 Fi

)⊕.
In order to prove the second claim, we present an algorithm to obtain ν from

µ, from which it will be clear that the size of ν is linear in the absolute value of
ϕ(µ). Without loss of generality, let ϕ(µ) > 0. The algorithm operates in two
phases.

In the first phase, we construct a ν 6 µ with ϕ(ν) > ϕ(µ) −m such that |ν|
is linear in |ϕ(µ)|, where m = max{|ϕ(x)| | x ∈ X}. In this phase, we start with
ν = 0 and successively add elements from µ to ν until ϕ(ν) > ϕ(µ) −m. As
long as we still have ϕ(ν) < ϕ(µ) −m, it is guaranteed that we find an x ∈ X
such that ν + x 6 µ and ϕ(x) > 0. Thus, after at most ϕ(µ) −m steps, we
have ϕ(ν) > ϕ(µ) −m and |ν| 6 ϕ(µ) −m. Since we stopped after we first had
ϕ(ν) > ϕ(µ) −m, we also have ϕ(µ) −m 6 ϕ(ν) 6 ϕ(µ) +m.

In the second phase, we successively extend ν such that ϕ(ν) always stays
within the interval [ϕ(µ) −m,ϕ(µ) +m]: If ϕ(ν) < ϕ(µ), we can find an x ∈ X
with ν+ x 6 µ and ϕ(x) > 0 and if ϕ(ν) > ϕ(µ), we can find an x ∈ X with
ν+ x 6 µ and ϕ(x) < 0. At some point, we have to arrive at ϕ(ν) = ϕ(µ). Our
procedure is nondeterministic and we consider a computation with a minimal
number of additions to ν. Then, no value ϕ(ν) occurs more than once: Other-
wise, we could have left out the summands between the two occurrences.

Hence, the values ϕ(ν) obtained in the course of the second phase are pair-
wise distinct numbers in [ϕ(µ)−m,ϕ(µ)+m]. Therefore, the second phase adds
at most 2m+ 1 elements to ν. This means |ν| 6 ϕ(µ) −m+ 2m+ 1.

Lemma 8.4.7. Suppose M ∈ SC− is strongly ε-independent. Then M×Z is strongly
ε-independent as well.

Proof. We denote the operation of C by +. Let T ∈ VT(M×Z,C) and suppose
A = (Q,X,M×Z,C,E,q0, F) is a transducer for T . By letting

E ′ = {(p, x,m, (z, c),q) | (p, x, (m, z), c,q) ∈ E},

we get a valence transducer A ′ = (Q,X,M, Z×C,E ′,q0, F) over M with output
in Z×C. Then we have (w, c) ∈ T if and only if the pair (w, (0, c)) is contained in
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T(A ′). Since M is strongly ε-independent, there is an ε-free valence transducer
A ′′ overMwith output in SL(Z×C) such that Φ(T(A ′′)) = T(A ′).

In A ′′, every edge is of the form (p, x,m,S,q), where S ⊆ Z× C is semilin-
ear. Thus, we may assume that every edge is of the form (p, x,m, (`, c) + S⊕,q),
where S ⊆ Z× C is finite. Since Z× C is commutative, we do not change the
transduction if we output elements s ∈ Z×C that occur in some S in a step any-
where else in the computation. Therefore, we can transform A ′′ so as to make it
guess the set S̃ of all s ∈ Z×C that will occur in an S somewhere in the computa-
tion. It uses its finite control to guarantee that the computation is only accepting
if all elements of S̃ actually occur. In every step, it allows the application of every
element of S̃⊕. Thus, in the resulting transducer A ′′′, we have that in any com-

putation, the set S in steps p
(x,m,(`,c)+S⊕)−−−−−−−−−−−→ q does not change throughout the

computation.
The construction of the new ε-free valence transducer Â over M×Z relies

on the following idea. In order to simulate an edge (p, x,m, (`, c) + S⊕,q), we
add ` to the storage, output c, and output a bounded number of elements of
S. In addition, each step outputs the semilinear set of all those elements of S⊕

that leave the Z-component unchanged (whose output hence complies with the
behavior of A ′′′).

The transducer Â has the same set of states as A ′′′ and the edges are defined
as follows. For the edge e = (p, x,m, (`, c) + S⊕,q) in A ′′′, let Y be an alphabet in
bijection with S and letϕ : Y⊕ → Z×C be the morphism extending this bijection.
Moreover, define the maps

α : Y⊕ −→ Z, β : Y⊕ −→ C,
µ 7−→ π1(ϕ(µ)), µ 7−→ π2(ϕ(µ)),

where π1 : Z × C → Z and π2 : Z × C → C are the projection onto the left
and right component, respectively. Hence, for µ ∈ Y⊕, α(µ) is µ’s Z-effect
and β(µ) is the output created by µ. Let k ∈ N be the constant provided by
Lemma 8.4.6 for the map α and let B be the maximum over all values |` ′| for
edges (p ′, x ′,m ′, (` ′, c ′) + S⊕,q ′) in A ′′′. In lieu of e, we give Â an edge

(p, x, (m, `+α(ν)), c+β(ν+ kerα)), q)

for each ν ∈ Y⊕ with |ν| 6 k · B. Initial and final states remain unaltered. Note
that by Lemma 8.4.6, the set c+ β(ν+ kerψ) ⊆ C is semilinear. Coming back
to our description above, this edge adds ` to the storage, outputs c, applies
the (bounded number of) elements in ϕ(ν) ∈ Z× C, and outputs the semilin-
ear set β(kerα). Observe that each of these edges simulates an step in A ′′′: It
chooses an element of S⊕, namely ϕ(µ) for some µ ∈ ν + kerα ⊆ Y⊕, adds
`+ α(ν) = `+ α(µ) to the Z-component of the storage and outputs c+ β(µ)).
Therefore, if (w, c) ∈ Φ(T(Â)), then (w, (0, c)) ∈ Φ(T(A ′′′)) and thus (w, c) ∈ T .

It remains to be shown that (w, (0, c)) ∈ Φ(T(A ′′′)) implies (w, c) ∈ Φ(T(Â)).
Therefore, Let

q0
(x1,m1,(`1,c1)+s1)−−−−−−−−−−−−−→ q1 · · ·qn−1

(xn,mn,(`n,cn)+sn)−−−−−−−−−−−−−−→ qn (8.12)

be a computation in A ′′′ that witnesses (w, (0, c)) ∈ Φ(T(A ′′′)). By construction
ofA ′′′, there is a finite set S such that si ∈ S⊕ for 1 6 i 6 n. Define Y,ϕ,α,β,k,B
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as above. We claim that we can choose νi ∈ Y⊕, |νi| 6 kB, and ξi ∈ kerα such
that the computation with

qi−1
(xi, (mi, `i+α(νi)), ci+β(νi+ξi))−−−−−−−−−−−−−−−−−−−−−−−−−→ qi (8.13)

has the same output as (8.12) (of course, it reads the same input w = x1 · · · xn).
Intuitively, this means we have to decompose the effect s1 + · · ·+ sn ∈ S⊕ into n
multisets ν1, . . . ,νn ∈ Y⊕ of bounded size and n multisets ξ1, . . . , ξn ∈ Y⊕ that
reside in kerα, i.e. act neutrally on the counter.

By definition of Y, is a µi ∈ Y⊕ with ϕ(µi) = si. Since the computation
(8.12) accepts (w, (0, c)), we have α(µ1 + · · · + µn) + `1 + · · · + `n = 0 and for
µ = µ1 + · · ·+ µn we have thus

|α(µ)| = |α(µ1 + · · ·+ µn)| = |`1 + · · ·+ `n| 6 n ·B.

Lemma 8.4.6 now yields a ν 6 µ with µ ∈ ν+ kerα and |ν| 6 knB. This means
that we can decompose ν = ν1+ · · ·+νn such that |νi| 6 kB for 1 6 i 6 n. Since
µ ∈ ν+ kerα, we have

`1 +α(ν1) + · · ·+ `n +α(νn) = `1 + · · ·+ `n +α(µ) = 0.

This means the computation (8.13) leaves the counter at zero in the end. The
relation µ ∈ ν + kerα also means that µ − ν ∈ kerα. We can therefore sim-
ply choose ξ1 = µ − ν and ξi = 0 for i > 1. With these settings, we have∑n
i=1 β(νi + ξi) = β(µ) =

∑n
i=1 β(µi), so that the computation (8.13) has out-

put
n∑
i=1

ci +β(νi + ξi) =

n∑
i=1

ci +β(µi) = c.

Hence, we have (w, c) ∈ Φ(T(Â)).

8.4.3 Stacks

The following is the last step in proving Theorem 8.1.1.

Lemma 8.4.8. Suppose M ∈ SC− is strongly ε-independent. Then, M ∗B is strongly
ε-independent as well.

Proof. If M ∼= 1, then M ∗B ∼= B and this case has been treated in Lemma 8.4.4.
Hence, we haveM 6= {1}.

By Lemma 8.4.3, in order to show T ∈ Φ(VT+(M ∗B,SL(C))) for any given
T ∈ VT(M ∗B,C), we may assume that T = T(A) for a rationally labeled valence
transducer A over M ∗B with output in C. Without loss of generality, the set of
edges E in A satisfy E ⊆ Q×X× Rat((M ∗B)×C)×Q.

Since M ∈ SC− and M 6= {1}, we have R1(M) 6= {1}. Hence, we have
M ∗ B(n) ↪→ M ∗ B (Lemma 2.6.5), which means an ε-free valence transducer
over M ∗B(n) can easily be transformed into one over M ∗B. Hence, it suffices
to show

T(A) ∈ Φ(VT(M ∗B(n))SL(C))

for some n ∈ N. Intuitively, this means we construct a valence transducer that
has access to a stack of elements of M that are separated by symbols from an
arbitrarily large stack alphabet.
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By Proposition 8.3.1, we may assume that for every edge (p, (x,S),q) ∈ E,
there is an alphabet X ′ = {x, x̄} ∪ Y ∪ Z, a morphism ϕ : X ′∗ → (M ∗B)×C with
ϕ(x) = a, ϕ(x̄) = ā, ϕ(Y) ⊆M, ϕ(Z) ⊆ C, and rational languages

L ⊆ ((Y ∪Z)∗x̄)∗, V ⊆ (Y ∪Z)∗, R ⊆ (x(Y ∪Z)∗)∗ (8.14)

such that S = ϕ(LVR). Indeed, replacing a rational set S by another one S ′ with
S ∩ (J1(M ∗ B) × C) = S ′ ∩ (J1(M ∗ B) × C) does not affect the transduction,
since elements outside of J1(M ∗B) cannot occur in a product that results in 1.
Hence, for each of the sets in the union provided by Proposition 8.3.1, we can
introduce an edge (p, (x,ϕ(LVR)),q) that satisfies Eq. (8.14). Moreover, it means
no loss of generality to assume that the alphabets X ′, Y,Z are the same for all
edges (p, (x,S),q).

Denotation of rational sets In order to be able to denote several appearing
rational sets using a pair of states, we construct finite automata

B− = (Q−,X ′,E,q0, ∅),
B0 = (Q0, Y ∪Z,E0,q0, ∅),
B+ = (Q+,X ′,E+,q0, ∅)

such that for each edge (p, (x,ϕ(LVR)),q) ∈ E, we find the sets L, V , and R as
L = Lr,s(B−) and V = Lt,u(B0) and R = Lv,w(B+) for some states r, s ∈ Q−,
t,u ∈ Q0, v,w ∈ Q+. Because of (8.14), we may assume that the edges in B−, B0,
and B+ have labels in X ∪ {ε} and there are subsets Q̃− ⊆ Q−, Q̃+ ⊆ Q+ such
that

1. in B−, an edge is labeled x̄ if and only if it enters a state in Q̃−,

2. an edge in B+ is labeled x if and only if it leaves a state in Q̃+, and

3. there are no loops on states in Q̃−, Q̃+.

For each r, s ∈ Q̃−, t,u ∈ Q0, v,w ∈ Q̃+, let

Lr,s = ϕ(Lr,s(B−)), Vt,u = ϕ(Lt,u(B0)), Rv,w = ϕ(Lv,w(B+)). (8.15)

The conditions on Q̃−, Q̃+ guarantee that

Lr,s ⊆ (Mā)∗ ×C, Vt,u ∈ Rat(M×C), Rv,w ⊆ (aM)∗ ×C

for any r, s ∈ Q̃−, t,u ∈ Q0, and v,w ∈ Q̃+. Moreover, every edge in A is of the
form (p, (x,Lr,sVt,uRv,w),q).

Note that although Lr,s and Rv,w are rational subsets of (M ∗ B) × C and
are included in (Mā)∗ × C and (aM)∗ × C, they may not be rational subsets of
(Mā)∗ ×C and (aM)∗ ×C. For example, observe that (Mā)∗ is a rational subset
of M ∗B, but it is not finitely generated and can thus not be a rational subset of
itself. We will therefore speak of rational sets in (Mā)∗ ×C and (aM)∗ ×C.
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8.4. Stacked blind counters

Outputs of cancelations The essential idea of the construction is to maintain on
the stack a representation of a set of possibly reached configurations. Roughly
speaking, we represent a sequence of rational sets in (aM)∗ ×C by elements of
M ∗B(n). In order to simulate the multiplication of a set Lr,s ⊆ (Mā)∗ ×C, we
have to output a set of elements of C that appear as output while canceling out
elements on the stack with those in Lr,s. Therefore, we will output sets of the
form

Cv,w,r,s = {c ∈ C | (1, c) ∈ Rv,wLr,s}.

Each of these sets is a homomorphic image of a language in VA(M ∗ B) and
since M ∗B ∈ SC−, these languages are semilinear (Theorem 7.1.1 and Propo-
sition 7.1.2). Hence, each Cv,w,r,s is semilinear.

Construction of D̂ In the course of a computation, we will have to simulate the
multiplication of rational subsets of M× C. Their denotation follows the same
principal as Lr,s, Vt,u, and Rv,w. Let

L̃r,s = {ϕ(w) | w ∈ (Y ∪Z)∗, wx̄ ∈ Lr,s(B−)},

R̃v,w = {ϕ(w) | w ∈ (Y ∪Z)∗, xw ∈ Lv,w(B+)}

for r, s ∈ Q̃− and v,w ∈ Q̃+. To simulate their multiplication, we use the hy-
pothesis ofM being strongly ε-independent in the following way. We consider

W = Q̃− × Q̃− ∪ Q0 ×Q0 ∪ Q̃+ × Q̃+

as an alphabet. Let D = ({q},W,M,C,E ′,q, {q}) be the rationally labeled valence
transducer overMwith output in C with the following edges:

• for each r, s ∈ Q̃−, one loop on q with input (r, s) ∈W and label L̃r,s,

• for each t,u ∈ Q0, one loop on q with input (t,u) ∈W and label Vt,u, and

• for each v,w ∈ Q̃+, one loop on q with input (v,w) ∈W and label R̃v,w.

Since M is strongly ε-independent, we can transform D into an ε-free valence
transducer D̂ = (Q̂,X,M,SL(C), Ê,q0, F̂) over M with output in SL(C) such that
Φ(T(D̂)) = T(D).

Encoding of rational sets on the stack As mentioned above, we will encode
rational sets in (aM)∗ × C by elements of M ∗ B(n). The monoid structure of
M ∗B(n) allows us to use the positive generators of the n instances of B as stack
symbols. In the simplest case, we represent the set Rv,w by a symbol2 ©v,w,
which is available for each v,w ∈ Q̃+.

Split By construction, composing an element of Rv,w with one of Lr,s always
yields one that, in the M ∗ B-component, agrees with an element of Rv,z
for some z ∈ Q̃+, or resides outside of J1(M ∗B)×C. Therefore, in order
to simulate a computation where an element of Lr,s cancels out part of an

2In this encoding, we deviate from our custom to put state pairs in the subscript (as in Lr,s(·)),
because these new symbols are often followed by commas, which would put the latter at risk of being
confused with primes.
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element of Rv,w, we have a split operation, which removes a symbol©v,w

from the top and puts©v,z©z,w in its place, so that we can later simulate
canceling an element of Rz,w by an element of Lr,s.

Merge and cancel In order to simulate an element of Lr,s that cancels out an el-
ement in the composition of more than one rational set, we need a way to
merge two representations of rational sets. However, if we would merge
two representations of rational sets in (aM)∗ × C into one, the resulting
representation would not be of the form ©v,w: The elements in Rv,zRz,w
are only those in Rv,w where the state zwas visited on the way. Hence, such
a representation would need to keep track of such intermediate states. Fur-
thermore, the more representations we would merge, the more information
we would have to maintain.

Therefore, we will not merge representations of the form ©v,w. Instead,
we have another kind of symbols: The symbol©�r,s stands for an element
of (aM)∗ × C that can be canceled out by one of Lr,s. Furthermore, the
occurrence of such a symbol also implies that the corresponding output of
the canceling process has already been performed. This means, the symbol
©�r,s is produced by an operation cancel that removes ©v,w, places ©�r,s

on top and outputs Cv,w,r,s. Since C is commutative, this early output
does not change the result. The merge operation then consists of removing
©�r,t©�t,s and putting ©�r,s on top. Since we will make sure that we can
always assume that a symbol ©v,w has already been turned into a ©�r,s,
the simulation of Lr,s amounts to a mere deletion of©�r,s.

Note that this way, keeping track of intermediate states is not necessary:
Since we already performed the necessary output, the only information we
need is that©�r,s represents an element that can be canceled out by one in
Lr,s.

Convert-to and convert-from Finally, we have to simulate the application of sets
Vt,u. To this end, we hand over control to the transducer D̂. This, in turn, is
done by storing the state information of D̂ in symbols�p on the stack. Ap-
plying Vt,u then means simulating D̂ as it uses an edge (p, (t,u),m,S,q).
Thus, we apply Vt,u by removing�p from the stack, using S as output, and
addingm�q on the stack.

In order to let elements of M that are factors of elements in Rv,w , i.e., el-
ements of R̃v,w , interact with sets Vr,s , we have two further operations:
convert-to and convert-from. Convert-to-M removes an element©v,w from
the stack and instead adds �m�q on the stack and outputs S, provided
that (q0, (v,w),m,S,q) is an edge in D̂. That is, the element represented by
©v,w can be thought of as being handed over to D̂. Here, � represents the
a that was part of Rv,w , but not of R̃v,w. Thus, convert-from-M initiates a
subsequence of stack elements that simulate a computation of D̂. On the
other hand, convert-from-M will terminate such a subsequence by simu-
lating the multiplication of a set of the form L̃r,s. It removes �q, adds m,
removes �, adds©�r,s, and outputs S, where (q, (r, s),m,S, f) is an edge in
D̂ and f is a final state of D̂. We leave©�r,s on the stack to signify that the
simulation of L̃r,s has been carried out (before A warranted it), including
the corresponding output.
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Operations formally Let Θ be the alphabet

Θ = {©v,w,©�r,s,�q,� | v,w ∈ Q̃+, r, s ∈ Q̃−, q ∈ Q̂}

and let n = |Θ|. We let each of the symbols x ∈ Θ, together with its counterpart
x̄, be the generators of one of the instances of B in M ∗B(n). Sometimes, it is
necessary to apply one of the aforementioned operations not on top of the stack,
but one symbol below the top. Therefore, for the operations split, merge, and
cancel, we have a deep variant, which nondeterministically removes some x ∈ Θ,
then performs the original operation and then puts x back on top. In some cases,
the deep variant itself has a deep version, which goes down one level further.

Formally, an operation is a (finite) set of elements of (M ∗B(n))× SL(C). In
accordance with the explanation above, we have the following operations:

(i) split = {(©v,w©v,v ′©v ′,w, {1}) | v, v ′,w ∈ Q̃+}

(ii) deep-split = {(x̄sx,S) | x ∈ Θ, (s,S) ∈ split}

(iii) cancel = {(©v,w©�r,s,Cv,w,r,s) | v,w ∈ Q̃+, r, s ∈ Q̃−}

(iv) deep-cancel = {(x̄sx,S) | x ∈ Θ, (s,S) ∈ cancel}

(v) deep-deep-cancel = {(x̄sx,S) | x ∈ Θ, (s,S) ∈ deep-cancel}

(vi) merge = {(©�r,r ′©�r ′,s©�r,s, {1}) | r, r ′, s ∈ Q̃−}

(vii) deep-merge = {(x̄sx,S) | x ∈ Θ, (s,S) ∈ merge}

(viii) deep-deep-merge = {(x̄sx,S) | x ∈ Θ, (s,S) ∈ deep-merge}

(ix) convert-to = {(©v,w�m�q,S) | v,w ∈ Q̃+, (q0, (v,w),m,S,q) ∈ Ê}

(x) convert-from = {(�qm�©�r,s,S) | r, s ∈ Q̃−, (q, (r, s),m,S, f) ∈ Ê, f ∈ F̂}

(xi) deep-convert-from = {(x̄sx,S) | x ∈ Θ, (s,S) ∈ convert-from}

Let us describe the transducer Â in detail. Although Â has ε-transitions, we
will argue later that every element of T(A) is accepted by Â by a computation
with only a bounded number of ε-transitions before and after every non-ε-tran-
sition. This clearly permits the removal of ε-transitions from Â.
Â is obtained from A by first removing all edges and then for each edge

(p, x,Lr,sVt,uRv,w ,q) in A and each edge (y, (t,u),m,S, z) in D̂, gluing in the
automaton

1 2 3 4
ε|(©�r,s, {1}) x|(�ym�z,S) ε|(©v,w, {1})

(8.16)

between p and q. Of course, the three edges from 1 to 4 simulate Lr,s, Vt,u, and
Rv,w, respectively. Furthermore, on every state of Â (including those in the glued
in automata), we add loops labeled with the operations (i) to (xi) and reading ε.
Finally, we add a loop labeled (ε,©�r,r, {1}) for each r ∈ Q̃− on the initial state
and a loop labeled (ε,©v,v, {1}) for each v ∈ Q̃+ on all final states.
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It is clear that Φ(T(Â)) ⊆ T(A). It remains to be shown that Â can accept
every pair (w, c) ∈ T(A) with an unbounded number of steps before and after
each non-ε-transition. Let us begin by describing how (w, c) can be accepted at
all. First we bring a symbol©�r,r on the stack to represent an empty storage. The
first simulated edge (p, x,Lr,sVt,uRv,w ,q), which has s = r, will thus be able to
take the edge from state 1 to 2 in (8.16). We assume that on the stack, there are no
symbols of the form©�r,s except for one representing the empty stack. Thus, the
monoid element in the configuration belongs to

{©v,w, �m�y | v,w ∈ Q̃+, m ∈M, y ∈ Q̂}∗ ∪ {©�r,r | r ∈ Q̃−}.

For each edge (p, x,Lr,sVt,uRv,w,q) in the computation in A, we execute the fol-
lowing phases:

(a) Apply a sequence of cancel/deep cancel, convert-from/deep convert-from,
merge, and split/deep-split loops in state 1 to obtain the symbol ©�r,s on
top of the stack. Note that for this, we need to use a split or deep split loop
at most once, namely for the lowest used occurrence of a ©v ′,w ′ , which
might be canceled only partially.

(b) Use an edge (ε,©�r,s, {1}) in (8.16).

(c) If necessary, use a split loop in state 2.

(d) If necessary, use a convert-to loop in state 2.

(e) Choose an edge (x,�ym�z,S) in (8.16).

(f) Use an edge (ε,©v,w, {1}) in (8.16).

By ‘necessary’ in phases (c) and (d), we mean that phase (e) might require that a
symbol©v,w be converted and perhaps split beforehand.

Note that phase (a) is the only phase that might use an unbounded number
of operations. Therefore, we move these operations to an earlier moment (so
that they are distributed more equally among the non-ε-transitions). Thereby,
we guarantee that before the application of (ε,©�r,s, {1}) (and during the overall
simulation of an edge from A) we only need a bounded number of operations.
This is done as follows. In each of the phases (a) to (f):

(I) After each introduction of a©v,w (by a split/deep split or by adding©v,w

directly): If this occurrence is eventually canceled after the current phase
(without being split), cancel it now (and drop the later cancel). For this, we
can use a cancel, deep cancel, or deep deep cancel loop3.

(II) After each application of a �ym�z: If the resulting subsequence �m ′�z is
eventually converted (without adding another �zm ′′�z

′
), convert it now

(and drop the later convert). This can be done using a convert-from loop.

(III) Whenever a symbol©�r,s produced by (I) or (II) is eventually merged with
the symbol underneath, merge them now (and drop the later merge). This
can be done using a merge, deep merge, or deep deep merge loop.

3Deep cancel and deep deep cancel are used to cancel the lower result of a split and a deep split,
respectively.
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Then, in phase (a), any ©v,w or �m�z-subsequence that was canceled or con-
verted and then merged with a symbol underneath in the old computation, is
now already merged. Therefore, phase (a) has to do only a bounded number
of operations to obtain ©�r,s on top of the stack: It might still need to (deep)
split (the lowest symbol of those turned into©�r,s in the old computation, which
is only partially canceled), cancel and (deep) merge the resulting symbols, but
nothing else. Note that the number of operations introduced by rules (I) through
(III) into phase (a) is bounded: In phase (a), only the split or deep split calls for
additional operations, but phase (a) executes split or deep split at most once in
the old computation.

In the end, the stack contains a symbol©v,v for some v ∈ Q̃+ to represent the
empty storage. This can then be removed by the loop labeled (ε,©v,v, {1}) on the
final state.

Thus, any (w, c) ∈ T(A) can be produced by a computation in Â using only
a bounded number of ε-transitions before and after any input symbol. Hence, Â
can be easily transformed into an equivalent valence transducer with no ε-tran-
sitions.

The foregoing lemmas establish now establish Theorem 8.1.1.

Proof of Theorem 8.1.1. According to Proposition 8.2.4, we have the implications
“1 ⇒ 2” and “1 ⇒ 3”. By Theorem 4.3.1, if Γ contains as an
induced subgraph, VA(MΓ) is the class of recursively enumerable languages.
This proves “4 ⇒ 5”, “2 ⇒ 5”, and “3 ⇒ 5”. Moreover, by Lemma 8.4.1, if

does not occur, we have MΓ ∈ SC−. Hence, each of the con-
ditions 1 to 5 implies condition 6.

Finally, Lemmas 8.4.4, 8.4.7, and 8.4.8 mean that every monoid in SC− is
strongly ε-independent and hence that we have the implication “6⇒ 1”.

8.5 Blind and partially blind counters

In this section, we prove Theorem 8.1.3. By Theorem 8.1.1, we already know that
when r 6 1, we have VA+(Br ×Zs) = VA(Br ×Zs). Hence, we only have to
show that VA+(Br ×Zs) ( VA(Br ×Zs) if r > 2.

Recall the language Lbin from Section 7.2 (Definition 7.2.1):

Lbin = {wcn | w ∈ {0, 1}∗, n 6 bin(w)}.

Greibach1978 [Greibach1978] and, independently, Jantzen1979 [Jantzen1979]
have shown that Lbin can be accepted by a partially blind counter automaton with
two counters, but not without ε-transitions. Since we have to show VA+(Br×Zs) ( VA(Br×Zs)
and we know Lbin ∈ VA(Br ×Zs), it suffices to prove Lbin /∈ VA+(Br ×Zs). We
do this by transforming Greibach’s and Jantzen’s proof into a general property
of languages in VA(Br×Zs) (Lemma 8.5.2). We will then apply this to show that
Lbin /∈ VA+(Br ×Zs).

Growth functions and fooling sets LetM be a monoid and S ⊆M a finite sub-
set. The growth function for M and S is defined as gM,S(n) = |S6n| for n ∈ N.

117

cf7212f0 2016-06-29 03:26:35 +0200



Chapter 8. Silent transitions

From the perspective of valence automata, gM,S(n) is the number of storage con-
tents that a valence automaton can produce after at most n steps if its edges are
labeled by S.

It should be mentioned that if S ranges over the generating sets of M (i.e.
those for which M = 〈S〉), then whether gM,S has a polynomial upper bound
(or an exponential lower bound) does not depend on the choice of S. It therefore
makes sense to speak of finitely generated monoids with polynomial growth or
exponential growth. These notions have been subject to intensive study in group
and semigroup theory [GrigorchukDeLaHarpe1997].

Let n ∈N and L ⊆ X∗. An n-fooling set for L ⊆ X∗ is a set F ⊆ X6n ×X∗ such
that the following holds:

1. for each (u, v) ∈ F, we have uv ∈ L, and

2. for pairs (u1, v1), (u2, v2) ∈ F with (u1, v1) 6= (u2, v2), we have u1v2 /∈ L
or u2v1 /∈ L.

We define the function fL : N→N as

fL(n) = max{|F| | F is an n-fooling set for L}.

The notion of fooling sets is often used to prove lower bounds for the number of
states in nondeterministic finite automata [GlaisterShallit1996]. We use it here
to prove lower bounds for growth functions. Our first lemma allows us to derive
a lower bound for gM,S under the assumption that L is accepted by an ε-free
valence automaton.

Lemma 8.5.1. Let M be a monoid and L ∈ VA+(M). Then, there is a constant k ∈ N

and a finite set S ⊆M such that fL(n) 6 k · gM,S(n) for all n ∈N.

Proof. Let k be the number of states in the automaton for L and let S consist of
the elements appearing on edges. Suppose fL(n) > k · gM,S(n) for some n and
let F = {(u1, v1), . . . , (um, vm)} be an n-fooling set for L, with m > k · gM,S(n).
Since uivi ∈ L for 1 6 i 6 m, we have an accepting computation for each of
these words. Let (qi, xi) be the configuration reached in one of these computa-
tions after reading ui, 1 6 i 6 m. Since the automaton has no ε-transitions and
has thus passed at most n edges, we have xi ∈ S6n for every 1 6 i 6 m. Fur-
thermore, sincem > k · gM,S(n), there are indices i 6= jwith qi = qj and xi = xj.
This means however, that uivj ∈ L and ujvi ∈ L, contradicting the fooling set
condition.

Together with Lemma 8.5.1, the polynomial growth of Br ×Zs yields the
property of languages in VA+(Br ×Zs).

Lemma 8.5.2. Let M = Br ×Zs for r, s ∈ N and S ⊆ M a finite set. Then, gM,S is
bounded by a polynomial. In particular, for each L ∈ VA+(Br ×Zs), fL is bounded by
a polynomial.

Proof. We only prove the first statement, since by Lemma 8.5.1, it implies the
second. Every x ∈ B can be written uniquely as x = āka`. We define |x| = k+ `.
For y ∈ Z, we have the usual absolute value |y|. Thus, for z ∈ Br ×Zs and
z = (x1, . . . , xr,y1 . . . ,ys) we can define

|z| = max{|xi|, |yj| | 1 6 i 6 r, 1 6 j 6 s}.
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Let m = max{|x| | x ∈ S}. Then, for z ∈ S6n, we have |z| 6 m ·n. There are k+ 1
elements x ∈ B with |x| = k, meaning that there are

1+ · · ·+ (k+ 2) = (k+ 3) · (k+ 2)/2

elements x ∈ B with |x| 6 k. Furthermore, there are 2k+ 1 numbers y ∈ Z with
|y| 6 k. Therefore, we have

gM,S(n) 6 ((m ·n+ 3)(m ·n+ 2)/2)r · (2 ·m ·n+ 1)s,

which is a polynomial in n.

The following means that if L = Lbin, fL is not bounded by a polynomial and
hence Lbin /∈ VA+(Br ×Zs) by Lemma 8.5.2.

Lemma 8.5.3. For L = Lbin, we have fL(n) > 2n for every n ∈N.

Proof. Let n ∈ N, and let F be the set of all pairs (u, v) such that u ∈ {0, 1}n and
v = cbin(u). Then, F is an n-fooling set for L with |F| > 2n: We have uv ∈ L for
any (u, v) ∈ F. Furthermore, for distinct pairs (u, v) 6= (u ′, v ′), we have u 6= u ′

and we may assume bin(u) < bin(u ′). Then uv ′ /∈ L.

The foregoing lemmas imply Theorem 8.1.3 immediately.

Proof of Theorem 8.1.3. If r 6 1, Theorem 8.1.1 already establishes the equation
VA+(Br ×Zs) = VA(Br ×Zs). If r > 2, we have Lbin ∈ VA(Br ×Zs), but
Lemmas 8.5.2 and 8.5.3 together imply that Lbin /∈ VA+(Br ×Zs).

8.6 Conclusion

We have shown that ε-transitions can be avoided in stacked counter automata
and, slightly stronger, within each monoidM ∈ SC−. This implies NP- and linear
time algorithms for the membership problem of each language in F, the class
containing all languages of graph-defined storage mechanisms that guarantee
semilinearity. Furthermore, we have completely described those combinations
of a number of partially blind counters and a number of blind counters for which
ε-transitions are avoidable.

The results of this chapter have appeared in [Zetzsche2013a].

Related work As mentioned above, the fact that ε-transition can be eliminated
for Zn and for B(2) ×Zn has also been shown by Latteux [Latteux1979] and
Hoogeboom [Hoogeboom2002], respectively. These are special cases of Theo-
rem 8.1.1, but were unknown to the author at the time of publishing [Zetzsche2013a].
It should be noted that the proof of Theorem 8.1.1 is by no means a mere iteration
of Hoogeboom’s construction. The result here requires showing semilinearity
of all involved language classes, adapting the technique of Benois in Proposi-
tion 8.3.1 for higher types of storage mechanisms, and preservation of strong
ε-independence by building stacks (Lemma 8.4.8), which is the most involved
ingredient. The latter has no counterpart in Hoogeboom’s proof, which relies on
the Greibach normal form of context-free grammars. Finally, Theorem 8.1.1 also
shows ε-elimination for monoids B×Zn.

As was also mentioned before, Theorem 8.1.1 also generalizes Greibach’s re-
sult that ε-transitions can be avoided in pushdown automata.
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Directions for future research The first question one might ask is whether this
result extends to all graph monoids, say, where the emptiness problem is de-
cidable (otherwise, we cannot expect an effective procedure). However, at this
point, this question seems to be of limited interest: Stacked counter automata
are already expressively complete for storages with semilinearity (SL). Hence,
ε-elimination is available since we can always do this in an equivalent stacked
counter automaton.

On the other hand, with those storage mechanisms outside of SL, we can ac-
cept the languages in VA(B×B) or even more (Theorem 7.1.1). It seems unlikely
that ε-transitions can be eliminated in such powerful models since this would
imply NP-algorithms for all their languages. It therefore seems prudent to fol-
low one of the following directions.

1. The most pressing task seems to be to try to simplify the proof of Theorem 8.1.1,
especially Lemma 8.4.8. A possible approach is to develop a Greibach nor-
mal form [Greibach1965] for Fi-grammars. However, given the involved
nature of the grammar constructions in Section 9.2, it is not clear whether
this really simplifies things. A simplification would be of interest because
it might lead to new complexity bounds, which brings us to the second
direction.

2. Can the elimination be made more efficient? This would have direct conse-
quences on the complexity of the rational subset membership problem for
graph groups as studied by LohreySteinberg2008 [LohreySteinberg2008]
(see also Theorem 4.3.9). Suppose a graph group with a decidable rational
subset problem is given. Via Theorem 4.3.9 and Proposition 7.1.2, it is not
hard to see that for each rational subset, one can construct a stacked counter
automaton to whose membership problem one can then reduce the rational
subset membership problem. Hence, Theorem 8.1.1 implies that the ratio-
nal subset membership problem for each fixed subset belongs to NP. An ef-
ficient elimination of ε-transitions would therefore entail uniform bounds
on this complexity.

Acknowledgements I would like to thank Markus Lohrey for discussions on
graph groups.
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Chapter 9

Computing downward
closures

9.1 Introduction

As mentioned in Section 2.8, Higman [Higman1952] in 1952 and Haines [Haines1969]
in 1969 discovered independently that the subword ordering is a well-quasi-
ordering. While regular languages had not been invented at the time of Hig-
man’s work, Haines presented the regularity of upward and downward closed
sets as the chief application. He also posed as an open problem which languages
admit an effective computation of these closures.

In the case of the upward closure, this question was settled for a large range
of language classes by vanLeeuwen1978 [vanLeeuwen1978], who proved that
when intersection with regular languages is available, upward closures can be
computed if and only if emptiness is decidable.

Applications of downward closures The more difficult task, the computation
of downward closures, has attracted attention in recent decades. This is due to
the fact that downward closures appear to be a promising abstraction. By an ab-
straction, we mean a simpler object that reflects certain aspects of the abstracted
language. Suppose a formal language describes the possible action sequences of
a system that is observed through a lossy channel. This means, on the way to
the observer, arbitrary actions can get lost. Then, L↓ is the set of words received
by the observer [HabermehlMeyerWimmel2010]. Hence, given the downward
closure as a finite automaton, we can decide whether two systems are equivalent
under such observations, and even whether the behavior of one system includes
the other. This is in contrast to the fact that behavioral inclusion for system mod-
els themselves is almost always undecidable.

Furthermore, it is well-known that the set of reachable channel contents in
lossy channel systems is always downward closed and thus regular. While these
reachability sets are not computable in general [Mayr2003], methods for com-
puting downward closures can be used to compute reachability sets at least for
subclasses of lossy channel systems [AbdullaBoassonBouajjani2001].

In addition, compared to other abstractions such as the Parikh image, the
downward closure has the advantage of simplifying every language: Most ap-
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plications of Parikh images require the semilinearity of the image, which is, of
course, not the case for every language. See [LongCalinMajumdarMeyer2012,
BachmeierLuttenbergerSchlund2015] for more applications of downward clo-
sures.

Computing downward closures However, while there always exists a finite au-
tomaton for the downward closure, it seems difficult to compute them. In fact,
there are few types of systems for which computability has been established and
in some cases, they are not computable.

Let us quickly survey the available results on downward closures. Early re-
sults are the computability for algebraic extensions and, in particular, context-
free languages. The former was shown by vanLeeuwen1978 [vanLeeuwen1978]
(see also Theorem 9.1.2) and the latter, using a different approach again by Courcelle1991 [Courcelle1991].
Furthermore, they have been shown to be computable for 0L-systems and con-
text-free FIFO rewriting systems by AbdullaBoassonBouajjani2001 [AbdullaBoassonBouajjani2001].
Finally, HabermehlMeyerWimmel2010 [HabermehlMeyerWimmel2010] have
obtained a method for computing downward closures of Petri net languages.

By a reduction of the finiteness problem for Church-Rosser languages, GruberHolzerKutrib2007 [GruberHolzerKutrib2007]
have shown that these languages do not permit the computation of downward
closures. Moreover, using a reduction of the boundedness problem for lossy
counter machines, Mayr2003 [Mayr2003] could show that reachability sets of
lossy channel systems (which are downward closed) cannot be computed.

We show here that downward closures are computable for the languages in F
and thus for all languages accepted by storage mechanisms of graphs monoids
that guarantee semilinearity. Equivalently, this means downward closures are
computable for stacked counter automata.

Theorem 9.1.1. Given a language L in F, one can compute a finite automaton for L↓.

One might wonder whether this result is already subsumed by the com-
putability for the algebraic extension of the Petri net languages. After all, these
languages also allow combining pushdown storages and counters. This is not the
case, since the languages in F allow using counters parallel to the pushdown. The
algebraic extension of the Petri net languages, however, coincides with the union⋃
n>0 VA(B ∗ Bn) (see Theorem 2.6.6), meaning that they are accepted with a

stack whose entries are configurations of a Petri net.
In fact, if L ⊆ X∗ is a context-free language that is not a Petri net language,

such as (D ′1#)∗ [Jantzen1979], and a,b, c /∈ X, it will follow from Proposition 10.2.3
that K = L� {anbncn | n > 0} does not belong to the algebraic extension of the
Petri net languages. However, it is easy to see that K ∈ F1. On the other hand,
since F contains only semilinear languages, it is incomparable to the algebraic
extension of the Petri net languages.

Representation of downward closures Let us comment on the representation
of downward closures. Since F is an effective full semi-AFL, the downward
closure of each language in F is effectively in F. Of course, since downward
closed languages are always regular, by “compute the downward closure” we
mean “compute a finite automaton for the downward closure”. Since the class of
downward closed languages is a proper subclass of the regular languages, other
descriptional means of have been tailored to them:
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• Ideal decompositions. An ideal (over X) is a language of the form

Y∗0{x1, ε}Y∗1 · · · {xn, ε}Y∗n,

where the Yi ⊆ X are subalphabets and the xi ∈ X are letters. As shown by
Jullien1969 [Jullien1969], downward closed languages are precisely those
that can be written as a finite union of ideals. This type of representation
was later rediscovered by Abdulla2004 [Abdulla2004], who called it simple
regular expressions.

• Obstruction sets. If L ⊆ X∗ is a downward closed language, then the set
X∗ \ L is upward closed and can thus be written as X∗ \ L = F↑ for a fi-
nite set F ⊆ X∗. The finite set can thus be regarded as a representation of
L = X∗ \ (F↑). Since a word is in L if and only if no word in F appears as
a subword, F is called the obstruction set for L. These were used, for ex-
ample, by Courcelle1991 [Courcelle1991] to denote downward closures of
context-free languages.

It is not hard to see that all three ways to denote a downward closed language
(finite automata, simple regular expressions, and obstruction sets) can be effec-
tively translated into one another [Abdulla2004] and it is not necessary to distin-
guish which representation can be computed.

In our procedure, we will use the following result by van Leeuwen.

Theorem 9.1.2 (van Leeuwen [vanLeeuwen1978]). The downward closure is com-
putable for languages in Alg(C) if and only if this is the case for languages in C.

It implies that if there is an algorithm to compute downward closures for Fi,
then there is such an algorithm for Gi = Alg(Fi). However, we are interested in a
uniform algorithm for all of F. Fortunately, the algorithm in van Leeuwen’s proof
is sufficiently uniform to be used in a procedure that works recursively with
respect to the levels of the hierarchy F0 ⊆ G0 ⊆ F1 ⊆ G1 ⊆ · · · . Specifically, van
Leeuwen’s algorithm works by replacing in a C-grammarG each right-hand-side
by its downward closure. This yields a Reg-grammar G ′ with L(G ′)↓ = L(G)↓, to
which one can then apply the (fixed) algorithm to compute downward closures
of context-free languages.

This allows us to compute L(G)↓ for an Fi-grammar G provided that we can
compute downward closures for Fi. Hence, it remains the task to compute down-
ward closures of languages h(L ∩Ψ−1(S)) for L ∈ Gi. To this end, we will show
that we can construct a language in Gi that is larger than h(L∩Ψ−1(S)), but has
the same downward closure. This will be accomplished in the following approx-
imation lemma.

Lemma 9.1.3 (Approximation lemma). Given i ∈N, a language L ⊆ X∗ in Gi, and
a semilinear S ⊆ X⊕, one can compute a language L ′ ∈ Gi that satisfies the inclusions
L∩Ψ−1(S) ⊆ L ′ ⊆ (L∩Ψ−1(S))↓.

The proof of Lemma 9.1.3 relies on the new technique of Parikh annotations.
It is introduced in the next section and the approximation lemma is proved after
the statement of Theorem 9.2.5, our main result on this new concept. First, let
us show how downward closures can be computed for F once Lemma 9.1.3 is
available.
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Proof of Theorem 9.1.1. We perform the computation recursively with respect to
the level of the hierarchy F0 ⊆ G0 ⊆ F1 ⊆ G1 ⊆ · · · .

• If L ∈ F0, then L is finite and we can clearly compute L↓.

• If L ∈ Fi with i > 1, then L = h(L ′ ∩ Ψ−1(S)) for some L ′ ⊆ X∗ in Gi−1,
a semilinear S ⊆ X⊕, and a morphism h. Since h(M)↓ = h(M↓)↓ for any
M ⊆ X∗, it suffices to describe how to compute (L ′ ∩ Ψ−1(S))↓. Using
Lemma 9.1.3, we construct a language L ′′ ∈ Gi−1 that satisfies

L ′ ∩Ψ−1(S) ⊆ L ′′ ⊆ (L ′ ∩Ψ−1(S))↓.

Note that this implies L ′′↓ = (L ′ ∩Ψ−1(S))↓. This means, the computation
of (L ′ ∩Ψ−1(S))↓ amounts to recursively computing L ′′↓.

• If L ∈ Gi, then L is given by an Fi-grammar G. Using recursion, we com-
pute the downward closure of each right-hand-side of G. We obtain a new
Reg-grammarG ′ by replacing each right-hand-side inGwith its downward
closure. Then L(G ′)↓ = L↓. Since we can construct a context-free grammar
for L(G ′), we can compute L(G ′)↓ using Theorem 9.1.2.

Upward closures vs. downward closures One might wonder why downward
closures are more difficult to compute than upward closures, given their similar
definition. The algorithm for computing the upward closure of a language L
is a classical saturation procedure (much like determining the set of productive
nonterminals in Section 2.6): We start with an empty setU0 = ∅ and, as long asUi
is strictly contained in L↑, we setUi+1 = (Ui ∪ {w})↑ for somew ∈ L↑ \Ui. Since
the subword ordering is a well-quasi-ordering, the chain U0,U1, . . . of upward
closed sets must become stationary, causing the algorithm to terminate. Here, we
can check whether L↑ \Ui 6= ∅ by simply intersecting L with a suitable regular
language and checking for emptiness.

Why does this approach fail for downward closures? After all, we could try
the dual algorithm which starts with X∗ as a candidate D0 for the downward
closure and then makes the sets Di smaller and smaller, this time relying on the
fact that descending chains of downward closed sets become stationary. The
reason is that we would have to check whetherDi ⊆ L↓, but checking whether a
regular language is contained in a given language is usually undecidable. Note
also that this is not just the wrong approach, since computing a finite automaton
for L↓ always enables us to decide whether R ⊆ L↓ for regular languages R.

This means, the difference has its root in the fact that for ‘complex’ languages
L and regular languages R, it is easy to decide whether L ⊆ R, but hard to decide
whether R ⊆ L. The reason for this, in turn, is that the languages we are interested
in are usually generated by nondeterministic processes and thus, a witness for a
positive answer to the latter problem would be an infinite set of derivations. Note
that in deterministic systems, due to complementation, the two types of decision
problems usually differ only in complexity. Simply put, nondeterminism makes
downward closures hard to compute.

The results in this chapter have appeared in [Zetzsche2015a].
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9.2 Constructing Parikh annotations

This section introduces Parikh annotations, the key tool in our procedure for
computing downward closures. Suppose L is a semilinear language. Then for
each w ∈ L, Ψ(w) can be decomposed into a constant vector and a linear com-
bination of period vectors from the semilinear representation of Ψ(L). We call
such a decomposition a Parikh decomposition. The main purpose of Parikh an-
notations is to provide transformations of languages that make reference to Parikh
decompositions without leaving the respective language class. For example, sup-
pose we want to transform a context-free language L into the language L ′ of
all those words w ∈ L whose Parikh decomposition does not contain a spec-
ified period vector. This may not be possible with rational transductions: If
L∨ = {anbm | m = n orm = 2n}, then the Parikh image is (a+ b)⊕ ∪ (a+ 2b)⊕,
but a finite state transducer cannot determine whether the input word has a
Parikh image in (a + b)⊕ or in (a + 2b)⊕. Therefore, a Parikh annotation for
L is a language K in the same class with additional symbols that allow a finite
state transducer (that is applied to K) to access the Parikh decomposition.

Definition 9.2.1. Let L ⊆ X∗ be a language and C be a language class. A Parikh
annotation (PA) for L in C is a tuple (K,C,P, (Pc)c∈C,ϕ), where

• C,P are alphabets such that X,C,P are pairwise disjoint,

• K ⊆ C(X∪ P)∗ is in C,

• ϕ is a morphism ϕ : (C∪ P)⊕ → X⊕,

• Pc is a subset Pc ⊆ P for each c ∈ C,

such that

1. πX(K) = L (the projection property),

2. ϕ(πC∪P(w)) = Ψ(πX(w)) for each w ∈ K (the counting property), and

3. Ψ(πC∪P(K)) =
⋃
c∈C c+ P

⊕
c (the commutative projection property).

If |C| = 1, then the PA is called linear. In this case, we also write (K, c,Pc,ϕ) for the
Parikh annotation, where C = {c}. We say that Parikh annotations for a language
class C can be constructed if there is an algorithm that, given a language L ∈ C, can
construct a PA for L in C.

Intuitively, a Parikh annotation describes for each w in L one or more Parikh
decompositions of Ψ(w). The symbols in C represent constant vectors and sym-
bols in P represent period vectors. Here, the symbols in Pc ⊆ P correspond to
those that can be added to the constant vector corresponding to c ∈ C. Further-
more, for each x ∈ C∪ P, ϕ(x) is the vector represented by x.

The projection property states that removing the symbols inC∪P from words
in K yields L. The commutative projection property requires that after c ∈ C only
symbols representing periods in Pc are allowed and that all their combinations
occur. Finally, the counting property says that the additional symbols in C ∪ P
indeed describe a Parikh decomposition of Ψ(πX(w)).
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Clearly, the conditions of a Parikh annotation imply

Ψ(L) = Ψ(πX(K)) = ϕ(πC∪P(K)) =
⋃
c∈C

ϕ(c) +ϕ(Pc)
⊕

and hence that L is semilinear.

Example 9.2.2. Let X = {a,b, c,d} and L = (ab)∗(ca∗ ∪ db∗). Then, for

K = e(pab)∗c(qa)∗ ∪ f(rab)∗d(sb)∗,

P = {p,q, r, s}, and ϕ : (C∪ P)⊕ → X⊕ with

C = {e, f} ϕ(e) = c, ϕ(f) = d,
Pe = {p,q}, ϕ(p) = a+ b, ϕ(q) = a,
Pf = {r, s}, ϕ(r) = a+ b, ϕ(s) = b,

the tuple (K,C,P, (Pg)g∈C,ϕ) is a Parikh annotation for L.

The main purpose of Parikh annotations is to help understand the structure
of languages of the form L ∩ Ψ−1(S), where L ⊆ X∗ and S ⊆ X⊕. Specifically,
they provide sufficient conditions for when L ∩ Ψ−1(S) is in the same language
class as L. Of course, L ∩ Ψ−1(S) can be more complex than L: Take, for ex-
ample, the regular language L = {a,b}∗ and the semilinear set S = (a + b)⊕.
Then L ∩ Ψ−1(S) = {w ∈ {a,b}∗ | |w|a = |w|b} is not regular. Now suppose
L and (K,C,P, (Pg)g∈C,ϕ) are as in Example 9.2.2. Moreover, S is still the set
of multisets with the same number of a’s as b’s, but now over X. Thus, we
have S = {µ ∈ X⊕ | µ(a) = µ(b)}. Then ϕ−1(S) ∩ (e + P⊕e ) = e + p⊕ and
ϕ−1(S)∩ (f+ P⊕f ) = f+ r

⊕. This means

L∩Ψ−1(S) = πX(K∩ (e(X∪ p)∗ ∪ f(X∪ r)∗))

can be obtained from K using a rational transduction. More generally, whenever
Ψ−1(ϕ−1(S)∩ (c+P⊕c )) is regular for each c ∈ C, then L∩Ψ−1(S) can be written
as TK for a rational transduction T . This fact will be a recurring theme in the
applications of Parikh annotations.

In a Parikh annotation, for each cw ∈ K and µ ∈ P⊕c , we can find a word
cw ′ ∈ K such that Ψ(πC∪P(cw ′)) = Ψ(πC∪P(cw)) + µ. In particular, this means
Ψ(πX(cw

′)) = Ψ(πX(cw)) + ϕ(µ). In our applications, we will need a further
guarantee that provides such words, but with additional information on their
structure. Such a guarantee is granted by Parikh annotations with insertion
marker. Suppose we have a marker symbol � /∈ X and a word u ∈ (X ∪ {�})∗
with u = u0 � u1 · · · � un for u0, . . . ,un ∈ X∗. Then we write u �� v if we have
v = u0v1u1 · · · vnun for some v1, . . . , vn ∈ X∗. In other words, v can be obtained
from u by replacing each occurrence of �with some word from X∗.

Definition 9.2.3. Let L ⊆ X∗ be a language and C be a language class. A Parikh an-
notation with insertion marker (PAIM) for L in C is a tuple (K,C,P, (Pc)c∈C,ϕ, �)
such that:

1. � /∈ X and K ⊆ C(X∪ P ∪ {�})∗ is in C,

2. (πC∪X∪P(K),C,P, (Pc)c∈C,ϕ) is a Parikh annotation for L in C,
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3. there is a k ∈N such that every w ∈ K satisfies |w|� 6 k (boundedness), and

4. for each cw ∈ K and µ ∈ P⊕c , there is a w ′ ∈ L with πX∪�(cw) �� w ′ and
Ψ(w ′) = Ψ(πX(cw)) +ϕ(µ). This property is called the insertion property.

If |C| = 1, then the PAIM is called linear and we also write (K, c,Pc,ϕ, �) for the PAIM,
where C = {c}.

In other words, in a PAIM, each v ∈ L has an annotation cw ∈ K in which a
bounded number of positions is marked such that for each µ ∈ P⊕c , we can find
a v ′ ∈ L with Ψ(v ′) = Ψ(v) +ϕ(µ) such that v ′ is obtained from v by inserting
words in corresponding positions in v. In particular, this guarantees v � v ′.

Example 9.2.4. Let L and (K,C,P, (Pc)c∈C,ϕ) be as in Example 9.2.2. Furthermore,
let

K ′ = e � (pab)∗c � (qa)∗ ∪ f � (rab)∗d � (sb)∗.

Then (K ′,C,P, (Pc)c∈C,ϕ, �) is a PAIM for L in Reg. Indeed, every word in K ′ has at
most two occurrences of �. Moreover, if ew = e � (pab)mc � (qa)n ∈ K ′ and µ ∈ P⊕e ,
µ = k · p+ ` · q, then w ′ = (ab)k+mca`+n ∈ L satisfies

πX∪�(ew) = �(ab)mc � an �� (ab)k(ab)mca`an = w ′

and clearly Ψ(πX(w ′)) = Ψ(πX(ew)) +ϕ(µ) (and similarly for words fw ∈ K ′).

The main result of this section is that for each of the classes Fi and Gi, one
can construct PAIM. More precisely, there is an algorithm that, given a language
L ∈ Fi or L ∈ Gi, constructs a PAIM for L in Fi or Gi, respectively.

Theorem 9.2.5. Given i ∈ N and a language L in Fi (in Gi), one can construct a
Parikh annotation with insertion marker for L in Fi (in Gi).

To demonstrate how Parikh annotations can be applied, let us now prove
Lemma 9.1.3, the missing piece in our method for computing downward clo-
sures. The basic idea is to first construct a PAIM for L. From this PAIM, using
Corollary 2.8.3, one can construct a language L ′ ⊇ L ∩ Ψ−1(S) in which every
word admits insertions that yield a word in L∩Ψ−1(S). Here, the additional in-
formation encoded into each word by the PAIM allows us to obtain L ′ using a
rational transduction from the PAIM, which guarantees that L ′ is also in Gi.

Proof of Lemma 9.1.3. First, we construct a PAIM (K,C,P, (Pc)c∈C,ϕ, �) for L in
Gi using Theorem 9.2.5. Observe that for each constant symbol c ∈ C, the sets
Sc = {µ ∈ P⊕c | ϕ(c + µ) ∈ S} are Presburger definable and hence effectively
semilinear. Moreover, by Corollary 2.8.3, we can effectively construct a finite
automaton for Ψ−1(Sc↓), meaning that the language

L ′ = {πX(cv) | c ∈ C, cv ∈ K, πPc(v) ∈ Ψ
−1(Sc↓)}.

can be obtained from K using a rational transduction and thus effectively be-
longs to Gi, since Gi is an effective full semi-AFL. Let us prove that this lan-
guage satisfies our requirement. The counting property of the PAIM entails
that L ∩ Ψ−1(S) ⊆ L ′. In order to show L ′ ⊆ (L ∩ Ψ−1(S))↓, suppose we have
w ∈ L ′. Then there is a cv ∈ K with w = πX(cv) and πPc(v) ∈ Ψ−1(Sc↓). This
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means there is a ν ∈ P⊕c with Ψ(πPc(v)) + ν ∈ Sc. The insertion property of
(K,C,P, (Pc)c∈C,ϕ, �) allows us to find a word v ′ ∈ L such that

Ψ(v ′) = Ψ(πX(cv)) +ϕ(ν), πX∪{�}(cv) �� v ′. (9.1)

By definition of Sc, the first part of Eq. (9.1) implies that Ψ(v ′) ∈ S. The second
part of Eq. (9.1) means in particular that w = πX(cv) � v ′. Therefore, we have
w � v ′ ∈ L∩Ψ−1(S).

Outline of the proof The rest of this section is devoted to the proof of The-
orem 9.2.5. The construction of PAIM proceeds recursively with respect to the
level of our hierarchy. This means, we show that if PAIM can be constructed
for Fi, then we can compute them for Gi (Lemma 9.2.19) and if they can be con-
structed for Gi, then they can be computed for Fi+1 (Lemma 9.2.20). While the
latter can be done with a direct construction, the former requires a series of steps.
The general idea is to use recursion with respect to the number of nonterminals
via the van Leeuwen decomposition (see Section 2.6). This leaves us with two
tasks:

• We construct PAIM for languages generated by one-nonterminal grammars
where we are given PAIM for the right-hand-sides (Lemma 9.2.18).

• We construct PAIM for languages σ(L), where σ is a substitution, a PAIM
is given for L and for each σ(x) (Lemma 9.2.16). This construction is again
divided into the case where σ is a letter substitution (i.e., one in which each
symbol is mapped to a set of letters) (Lemma 9.2.15) and the general case
(Lemma 9.2.16).

Maybe surprisingly, the most conceptually involved step in the construction
of PAIM lies within obtaining a Parikh annotation for σ(L) in Alg(C), where σ is
a letter substitution and a PAIM for L ⊆ X∗ in Alg(C) is given. Before turning to
this case in Section 9.2.2, let us get a few simple cases out of the way.

9.2.1 Simple constructions

Here, we present some simple cases of the construction of Parikh annotations
with insertion markers. The proofs of Lemmas 9.2.6 to 9.2.11 are not difficult, but
we include them for the sake of completeness.

Lemma 9.2.6 (Finite languages). Given L in F0, one can construct a PAIM for L in
F0.

Proof. Let L = {w1, . . . ,wn} ⊆ X∗ and define C = {c1, . . . , cn} and P = Pc = ∅,
where the ci are new symbols. Let ϕ : (C ∪ P)⊕ → X⊕ be the morphism with
ϕ(ci) = Ψ(wi). It is easily verified that with K = {c1w1, . . . , cnwn}, the tuple
(K,C,P, (Pc)c∈C,ϕ, �) is a PAIM for L in F0.

Lemma 9.2.7 (Unions). Given i ∈ N and languages L0,L1 ∈ Gi, along with a PAIM
in Gi for each of them, one can construct a PAIM for L0 ∪ L1 in Gi.

Proof. One can find a PAIM (K(i),C(i),P(i), (P(i)c )c∈C(i) ,ϕ(i), �) for Li in C for
i = 0, 1 such that C(0) ∩C(1) = P(0) ∩ P(1) = ∅. Then K = K(0) ∪ K(1) is effec-
tively contained in Gi and can be turned into a PAIM (K,C,P, (Pc)c∈c,ϕ, �) for
L0 ∪ L1.
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Lemma 9.2.8 (Homomorphic images). Let h : X∗ → Y∗ be a morphism. Given i ∈N

and a PAIM for L ∈ Gi in Gi, one can construct a PAIM for h(L) in Gi.

Proof. Let (K,C,P, (Pc)c∈C,ϕ, �) be a PAIM for L and let h̄ : X⊕ → Y⊕ be the
morphism with h̄(x) = Ψ(h(x)) for x ∈ X. We choose ϕ ′ : (C ∪ P)⊕ → Y⊕ to be
the morphism with ϕ ′(µ) = h̄(ϕ(µ)) for µ ∈ (C∪ P)⊕. Moreover, let

g : (C∪X∪ P ∪ {�})∗ → (C∪ Y ∪ P ∪ {�})∗

be the extension of h that fixes C ∪ P ∪ {�}. Then (g(K),C,P, (Pc)c∈C,ϕ ′, �) is
clearly a PAIM for h(L) in Gi.

Lemma 9.2.9 (Linear decomposition). Given i ∈ N and L ∈ Gi along with a PAIM
in Gi, one can construct L1, . . . ,Ln ∈ Gi, each together with a linear PAIM in Gi, such
that L = L1 ∪ · · · ∪ Ln.

Proof. Let (K,C,P, (Pc)c∈C,ϕ, �) be a PAIM for L ⊆ X∗. For each c ∈ C, let

Kc = K∩ c(X∪ P ∪ {�})∗.

Then (Kc, {c},Pc,Pc,ϕc, �), where ϕc is the restriction of ϕ to ({c} ∪ Pc)⊕, is a
PAIM for πX(Kc) in Gi. Furthermore, L =

⋃
c∈C πX(Kc).

Lemma 9.2.10 (Presence check). Let X be an alphabet and x ∈ X. Given i ∈N and a
PAIM for L ⊆ X∗ in Gi, one can construct a PAIM for L∩X∗xX∗ in Gi.

Proof. Since

(L1 ∪ · · · ∪ Ln)∩X∗xX∗ = (L1 ∩X∗xX∗)∪ · · · ∪ (Ln ∩X∗xX∗),

Lemma 9.2.9 and Lemma 9.2.7 imply that we may assume that for L, we have a
linear PAIM (K, c,Pc,ϕ, �). Since in the case ϕ(c)(x) > 1, we have the equation
L∩X∗xX∗ = L and there is nothing to do, we assume ϕ(c)(x) = 0.

Let C ′ = {(c,p) | p ∈ P,ϕ(p)(x) > 1} be a new alphabet and let

K ′ = {(c,p)uv | (c,p) ∈ C ′, u, v ∈ (X∪ P ∪ {�})∗, cupv ∈ K}.

Note that K ′ can clearly be obtained from K by way of a rational transduction
and is therefore contained in Gi. Furthermore, we let P ′ = P ′(c,p) = P and
ϕ ′((c,p)) = ϕ(c) + ϕ(p) for (c,p) ∈ C ′ and ϕ ′(p) = ϕ(p) for p ∈ P. Then
we have

πX(K
′) = {πX(w) | w ∈ K, ∃p ∈ P : ϕ(πC∪P(w))(p) > 1,ϕ(p)(x) > 1}
= {πX(w) | w ∈ K, |πX(w)|x > 1} = L∩X∗xX∗.

This proves the projection property. For each (c,p)uv ∈ K ′ with cupv ∈ K, we
have

ϕ ′(πC ′∪P ′((c,p)uv)) = ϕ(πC∪P(cupv)) = Ψ(πX(cupv)) = Ψ(πX((c,p)uv)).

and thus ϕ ′(πC ′∪P ′(w)) = Ψ(πX(w)) for every w ∈ K ′. Hence, we have estab-
lished the counting property. Moreover,

Ψ(πC ′∪P ′(K
′)) =

⋃
p∈P

(c,p) + P ′⊕,
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meaning the commutative projection property is satisfied as well. This proves
that the tuple (πC∪X∪P(K

′),C ′,P ′, (P ′d)d∈C ′ ,ϕ
′) is a Parikh annotation for the

language L∩X∗xX∗ in Gi. Since (K,C,P, (Pc)c∈C,ϕ, �) is a PAIM for L, it follows
that the tuple (K ′,C ′,P ′, (P ′d)d∈C ′ ,ϕ

′, �) is a PAIM for L∩X∗xX∗.

Lemma 9.2.11 (Absence check). Let X be an alphabet and x ∈ X. Given i ∈ N and a
PAIM for L ⊆ X∗ in Gi, one can construct a PAIM for L \X∗xX∗ in Gi.

Proof. Since

(L1 ∪ · · · ∪ Ln) \X∗xX∗ = (L1 \X
∗xX∗)∪ · · · ∪ (Ln \X∗xX∗),

Lemma 9.2.9 and Lemma 9.2.7 imply that we may assume that for L, we are given
a linear PAIM (K, c,Pc,ϕ, �). Since in the caseϕ(c)(x) > 1, we have L\X∗xX∗ = ∅
and there is nothing to do, we assume ϕ(c)(x) = 0.

Let C ′ = C, P ′ = P ′c = {p ∈ P | ϕ(p)(x) = 0}, and let

K ′ = {w ∈ K | |w|p = 0 for each p ∈ P \ P ′}.

Furthermore, we let ϕ ′ be the restriction of ϕ to (C ′ ∪ P ′)⊕. Then it is clear that
(K ′,C ′, (P ′c)c∈C ′ ,ϕ ′, �) is a PAIM for L \X∗xX∗ in Gi.

9.2.2 Substitutions

In this section, we construct PAIM for languages σ(L), where L ∈ Gi, σ is a Gi-
substitution. As mentioned above, the main obstacle in the construction of PAIM
consists of obtaining one for σ(L), where σ is a letter substitution and we are
given a PAIM for L. Of course, the basic idea is to replace symbols in the PAIM
for L in the same way as σ does. However, one has to substitute the symbols in
X consistently with the symbols in C∪ P; more precisely, one has to maintain the
agreement between ϕ(πC∪P(·)) and Ψ(πX(·)).

In order to exploit the fact that this agreement exists in the first place, we
use the following simple yet very useful lemma. It states that for a morphism
ψ into a group, the only way a grammar G can guarantee L(G) ⊆ ψ−1(h) is
by encoding into each nonterminal A the value ψ(u) for the words u that A
derives. The G-compatible extension of ψ reconstructs this value for each non-
terminal. Let G = (N, T ,P,S) be a C-grammar and M be a monoid. A morphism
ψ : (N ∪ T)∗ → M is called G-compatible if u ⇒∗G v implies that ψ(u) = ψ(v) for
u, v ∈ (N∪ T)∗. We will essentially apply the following lemma by regarding X⊕

as a subset of Zn and defining ψ : (C ∪ P ∪ X)∗ → Zn as the morphism with
ψ(w) = Ψ(πX(w)) −ϕ(πC∪P(w)). In the case that G generates the correspond-
ing Parikh annotation, the counting property implies that L(G) ⊆ ψ−1(0). The
lemma then states that each nonterminal in G encodes the imbalance between
Ψ(πX(·)) and ϕ(πC∪P(·)) on the words it generates.

Lemma 9.2.12. Let H be a group and ψ : T∗ → H be a morphism. Furthermore, let
G = (N, T ,P,S) be a reduced C-grammar with L(G) ⊆ ψ−1(h) for some h ∈ H. Then
ψ has a unique G-compatible extension ψ̂ : (N∪ T)∗ → H.

Proof. First, observe that there is at most one G-compatible extension: For each
A ∈ N, there is a u ∈ T∗ with A⇒∗G u and hence ψ̂(A) = ψ(u).
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In order to prove existence, we claim that for each A ∈ N and A ⇒∗G u and
A ⇒∗G v for u, v ∈ T∗, we have ψ(u) = ψ(v). Indeed, since G is reduced, there
are x,y ∈ T∗ with S ⇒∗G xAy. Then xuy and xvy are both in L(G) and hence
ψ(xuy) = ψ(xvy) = h. In the group H, this implies

ψ(u) = ψ(x)−1hψ(y)−1 = ψ(v).

This means a G-compatible extension exists: Setting ψ̂(A) = ψ(w) for some
w ∈ T∗ with A ⇒∗G w does not depend on the chosen w. This definition im-
plies that whenever u ⇒∗G v for u ∈ (N ∪ T)∗, v ∈ T∗, we have ψ̂(u) = ψ̂(v).
Therefore, if u ⇒∗G v for u, v ∈ (N ∪ T)∗, picking a w ∈ T∗ with v ⇒∗G w yields
ψ̂(u) = ψ̂(w) = ψ̂(v). Hence, ψ̂ is G-compatible.

Note that in the case C = Fi and H = Zn, the G-compatible extension can be
computed: Since H is commutative, ψ is well-defined on (N ∪ T)⊕ (i.e., there is
a morphism ψ̄ : (N ∪ T)⊕ → Z with ψ̄(Ψ(w)) = ψ(w) for w ∈ (N ∪ T)∗) and we
can determine ψ̂(A) by computing a semilinear representation of the language
{w ∈ (N∪ T)∗ | A⇒∗G w}, which is in Alg(Fi).

We continue with the problem of replacing C ∪ P and X consistently. For
constructing the PAIM for σ(L), it is easy to see that it suffices to consider the
case where σ(a) = {a,b} for some a ∈ X and σ(x) = {x} for x ∈ X \ {a}.

In order to simplify the setting and exploit the symmetry of the roles played
by C ∪ P and X, we consider a slightly more general situation. There is an al-
phabet X = X0 ] X1, morphisms γi : X∗i → N, i = 0, 1, and a language L ⊆ X∗,
L ∈ Alg(Fi) with γ0(πX0(w)) = γ1(πX1(w)) for every w ∈ L. Roughly speak-
ing, X1 will later play the role of C ∪ P and X0 will play the role of X. Then,
γ0(w) will be the number of a’s in w and γ1(w) will be the number of a’s repre-
sented by symbols from C ∪ P in w. Therefore, we wish to construct a language
L ′ in Alg(Fi) such that each word in L ′ is obtained from a word in L as follows.
We substitute each occurrence of x ∈ Xi by one of γi(x) + 1 many symbols y
in an alphabet Yi, each of which will be assigned a value 0 6 ηi(y) 6 γi(x).
Here, we want to guarantee that in every resulting word w ∈ (Y0 ∪ Y1)∗, we
have η0(πY0(w)) = η1(πY1(w)), meaning that the symbols in X0 and in X1 are
replaced consistently. Formally, we have

Yi = {(x, j) | x ∈ Xi, 0 6 j 6 γi(x)}, i = 0, 1, Y = Y0 ∪ Y1 (9.2)

and the morphisms

hi : Y
∗
i −→ X∗i , h : Y∗ −→ X∗, ηi : Y

∗
i −→N, (9.3)

(x, j) 7−→ x, (x, j) 7−→ x, (x, j) 7−→ j,

and we want to construct a subset of

L̂ = {w ∈ h−1(L) | η0(πY0(w)) = η1(πY1(w))}

in Alg(C). Observe that we cannot hope to find L̂ itself in Alg(C) in general.
Take, for example, the context-free language E = {anbn | n > 0} and X0 = {a},
X1 = {b}, γ0(a) = 1, γ1(b) = 1. Then we would have

Ê∩ (a, 0)∗(a, 1)∗(b, 0)∗(b, 1)∗ = {(a, 0)m(a, 1)n(b, 0)m(b, 1)n | m,n > 0},
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which is clearly not context-free. However, the language

E ′ = {wg(w)R | w ∈ {(a, 0), (a, 1)}∗},

where g : {(a, 0), (a, 1)}∗ → {(b, 0), (b, 1)}∗ is the morphism with g((a, j)) = (b, j)
for j = 0, 1, is context-free. Although it is only a proper subset of Ê, it is large
enough to satisfy πYi(E

′) = πYi(Ê) = πYi(h
−1(E)) for i = 0, 1. We will see that in

order to construct Parikh annotations, it suffices to use such under-approxima-
tions of L̂. Proposition 9.2.14 will provide us with a general method to compute
them. First, we need a combinatorial lemma (Lemma 9.2.13), whose formulation
requires the concepts of derivation trees and matchings.

Derivation trees and matchings By an X-labeled tree, we mean a finite or-
dered unranked tree in which each node carries a label from X ∪ {ε} for an al-
phabet X. For each node, there is a linear order on the set of its children. For
each node x, we write c(x) ∈ X∗ for the word obtained by reading the labels of
x’s children in this order. Furthermore, yield(x) ∈ X∗ denotes the word obtained
by reading leaf labels below the node x according to the linear order induced on
the leaves. Moreover, if r is the root of t, we also write yield(t) for yield(r). The
height of a tree is the maximal length of a path from the root to a leaf, i.e. a tree
consisting of a single node has height 0. A subtree of a tree t is the tree consisting
of all nodes below some node x of t. If x is a child of t’s root, the subtree is a direct
subtree.

Let G = (N, T ,P,S) be a C-grammar. A partial derivation tree (for G) is an
(N∪ T)-labeled tree t in which (i) each inner node x has a label A ∈ N and there
is some A → L in P with c(x) ∈ L, and (ii) no ε-labeled node has a sibling. If,
in addition, the root is labeled S and every leaf is labeled by T ∪ {ε}, it is called a
derivation tree for G.

Let t be a tree whose leaves are X ∪ {ε}-labeled. Let Li denote the set of Xi-
labeled leaves of t. An arrow collection for t is a finite set A together with maps
νi : A → Li for i = 0, 1. Hence, A can be thought of as a set of arrows pointing
from X0-labeled leaves to X1-labeled leaves. We say an arrow a ∈ A is incident
to a leaf ` if ν0(a) = ` or ν1(a) = `. If ` is a leaf, then dA(`) denotes the number
of arrows incident to `. More generally, for a subtree s of t, dA(s) denotes the
number of arrows incident to some leaf in s and some leaf outside of s. A is
called a k-matching if

1. each leaf labeled x ∈ Xi has precisely γi(x) incident arrows, and

2. dA(s) 6 k for every subtree s of t.

Here, the name matching stems from the fact that one can think of each sym-
bol x ∈ Xi as representing γi(x) items of some kind. Of course, the condition
γ0(w) = γ1(w) then states that inw, the same number of items is represented by
symbols in X0 as by symbols in X1. In this vein, a k-matching can be thought of
as a one-to-one correspondence between the items represented by symbols in X0
and those represented by symbols in X1. The second condition above then ex-
presses that in each subtree s, at most k items are in correspondence with items
outside of s.

The following lemma applies Lemma 9.2.12. The latter tells us that for nodes x
of a derivation tree, the balance γ0(πX0(yield(x)))−γ1(πX1(yield(x))) is bounded.
This can be used to construct k-matchings in a bottom-up manner.
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Lemma 9.2.13. Let X = X0 ] X1 and γi : X∗i → N for i = 0, 1 be a morphism. Let G
be a reduced Fi-grammar with L(G) ⊆ X∗ and γ0(πX0(w)) = γ1(πX1(w)) for every
w ∈ L(G). Then one can compute a bound k ∈ N such that each derivation tree of G
admits a k-matching.

Proof. Let G = (N,X,P,S) and let δ : X∗ → Z be the morphism with

δ(w) = γ0(πX0(w)) − γ1(πX1(w))

for w ∈ X∗. Since then δ(w) = 0 for every w ∈ L(G), by Lemma 9.2.12, δ ex-
tends uniquely to a G-compatible δ̂ : (N∪X)∗ → Z. We claim that for the choice
k = max{|δ̂(A)| | A ∈ N}, each derivation tree of G admits a k-matching.

Consider an (N ∪ X)-tree t and let Li be the set of Xi-labeled leaves. Let A
be an arrow collection for t and let dA(`) be the number of arrows incident to
` ∈ L0 ∪ L1. Moreover, let λ(`) be the label of the leaf ` and let

β(t) =
∑
`∈L0

γ0(λ(`)) −
∑
`∈L1

γ1(λ(`)).

A is a partial k-matching if the following holds:

1. if β(t) > 0, then dA(`) 6 γ0(λ(`)) for each ` ∈ L0 and dA(`) = γ1(λ(`))) for
each ` ∈ L1.

2. if β(t) 6 0, then dA(`) 6 γ1(λ(`)) for each ` ∈ L1 and dA(`) = γ0(λ(`))) for
each ` ∈ L0.

3. dA(s) 6 k for every subtree s of t.

Hence, while in a k-matching the number γi(λ(`)) is the degree of ` (with respect
to the matching), it is merely a capacity in a partial k-matching. The first two
conditions express that either all leaves in L0 or all in L1 (or both) are filled up to
capacity, depending on which of the two sets of leaves has less (total) capacity.

If t is a derivation tree of G, then β(t) = 0 and hence a partial k-matching is
already a k-matching. Therefore, we show by induction on n that every deriva-
tion subtree of height n admits a partial k-matching. This is trivial for n = 0
and for n > 0, consider a derivation subtree t with direct subtrees s1, . . . , sr.
Let B be the label of t’s root and Bj ∈ N ∪ X be the label of sj’s root. Then
δ̂(B) = β(t), δ̂(Bj) = β(sj) and β(t) =

∑r
j=1 β(sj). By induction, each sj

admits a partial k-matching Aj. Let A be the union of the Aj. Observe that
since

∑
`∈L0 dA(`) =

∑
`∈L1 dA(`) in every arrow collection (each side equals

the number of arrows), we have

β(t) =
∑
`∈L0

(γ0(λ(`)) − dA(`))︸ ︷︷ ︸
=:p>0

−
∑
`∈L1

(γ1(λ(`)) − dA(`))︸ ︷︷ ︸
=:q>0

. (9.4)

If β(t) > 0 and hence p > q, this equation allows us to obtain A ′ from A by
adding q arrows, such that each ` ∈ L1 has γ1(λ(`)) − dA(`) new incident ar-
rows. They are connected to X0-leaves so as to maintain γ0(`) − dA ′(`) > 0.
Symmetrically, if β(t) 6 0 and hence p 6 q, we add p arrows such that each
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` ∈ L0 has γ0(λ(`)) − dA(`) new incident arrows. They also are connected to X1-
leaves so as to maintain γ1(λ(`)) − dA ′(`) > 0. Then by construction, A ′ satisfies
the first two conditions of a partial k-matching. Hence, it remains to be shown
that the third is fulfilled as well.

Since for each j, we have either dA(`) = γ0(λ(`)) for all ` ∈ L0 ∩ sj or we have
dA(`) = γ1(λ(`)) for all ` ∈ L1 ∩ sj, none of the new arrows can connect two
leaves inside of sj. This means the sj are the only subtrees for which we have
to verify the third condition, which amounts to checking that dA ′(sj) 6 k for
1 6 j 6 r. As in Eq. (9.4), we have

β(sj) =
∑

`∈L0∩sj

(γ0(λ(`)) − dA(`))︸ ︷︷ ︸
=:u>0

−
∑

`∈L1∩sj

(γ1(λ(`)) − dA(`))︸ ︷︷ ︸
=:v>0

.

Since the arrows added in A ′ have respected the capacity of each leaf, we have
dA ′(sj) 6 u and dA ′(sj) 6 v. Moreover, since Aj is a partial k-matching, we
have u = 0 or v = 0. In any case, we have

dA ′(sj) 6 |u− v| = |β(sj)| = |δ̂(Bj)| 6 k,

proving the third condition.

We are now ready to construct the approximations that are necessary to ob-
tain PAIM for substitutions.

Proposition 9.2.14 (Consistent substitution). Let X = X0 ] X1 and γi : X⊕i → N

for i = 0, 1 be a morphism. Let L ∈ Alg(Fi), L ⊆ X∗, be a language with

γ0(πX0(w)) = γ1(πX1(w))

for everyw ∈ L. Furthermore, let Yi,hi,ηi for i = 0, 1 and Y,h be defined as in Eq. (9.2)
and Eq. (9.3). Moreover, let L be given by a reduced grammar. Then one can construct a
language L ′ ∈ Alg(Fi), L ′ ⊆ Y∗, with

1. L ′ ⊆ h−1(L),

2. πYi(L
′) = πYi(h

−1(L)) for i = 0, 1,

3. η0(πY0(w)) = η1(πY1(w)) for every w ∈ L ′.

Proof. Let G0 = (N,X,P0,S) be a reduced Fi-grammar with L(G0) = L. Let
G1 = (N, Y,P1,S) be the grammar with P1 = {A → ĥ−1(K) | A → K ∈ P0},
where ĥ : (N ∪ Y)∗ → (N ∪ X)∗ is the extension of h : Y∗ → X∗ that fixes N. With
L1 = L(G1), we clearly have L1 = h−1(L).

According to Lemma 9.2.13, we can find a k ∈ N such that every derivation
tree of G0 admits a k-matching. With this, let F = {z ∈ Z | |z| 6 k}, N2 = N× F,
and η be the morphism

η : (N2 ∪ Y)∗ −→ Z,
(A, z) 7−→ z for (A, z) ∈ N2,

y 7−→ η0(πY0(y)) − η1(πY1(y)) for y ∈ Y.
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S

(a, 0) S

(a, 0) S

(a, 1) S

ε

(b, 0)

(b, 1)

(b, 0)

(a) t; arrows inA

S

(a, 0) S

(a, 0) S

(a, 1) S

ε

(b, 0)

(b, 1)

(b, 0)

(b) t; i = 1; dashed
arrow is the one inA ′

S

(a, 0) S

(a, 1) S

(a, 0) S

ε

(b, 0)

(b, 1)

(b, 0)

(c) t ′

(S, 0)

(a, 0) (S, 0)

(a, 1) (S, 0)

(a, 0) (S, 0)

ε

(b, 0)

(b, 1)

(b, 0)

(d) t ′′

Figure 9.1: Derivation trees in the proof of Proposition 9.2.14 for the context-
free grammar G with productions S → aSb, S → ε and X0 = {a}, X1 = {b},
γ0(a) = γ1(b) = 1.

Moreover, let g : (N2 ∪ Y)∗ → (N ∪ Y)∗ be the morphism with g((A, z)) = A and
g(y) = y for y ∈ Y. This allows us to define the set of productions

P2 = {(A, z)→ g−1(K)∩ η−1(z) | A→ K ∈ P1}.

Note that since Fi is an effective Presburger closed full semi-trio, we have ef-
fectively g−1(K) ∩ η−1(z) ∈ Fi for K ∈ Fi. Finally, let G2 be the grammar
G2 = (N2, Y,P2, (S, 0)). We claim that L ′ = L(G2) has the desired properties.
Since L ′ ⊆ L1 = h−1(L), condition 1 is satisfied. Furthermore, the construc-
tion guarantees that for a production (A, z) → w in G2, we have η(w) = z. In
particular, every w ∈ Y∗ with (S, 0)⇒∗G2 w exhibits

η0(πY0(w)) − η1(πY1(w)) = η(w) = 0.

Thus, we have shown condition 3.
Note that the inclusion “⊆” of condition 2 follows from condition 1. In order

to prove the inclusion “⊇”, we shall use k-matchings in G0 to construct deriva-
tions inG2. See Fig. 9.1 for an example of the following construction of derivation
trees. Let w ∈ h−1(L) = L(G1) and consider a derivation tree t for w in G1. Let
t̄ be the (N ∪ X)-tree obtained from t by replacing each leaf label y ∈ Y by h(y).
Then t̄ is a derivation tree of G0 and admits a k-matching Ā. Since t̄ and t are
isomorphic up to labels, we can obtain a corresponding arrow collection A in t
(see Fig. 9.1a).

Let Li denote the set of Yi-labeled leaves of t for i = 0, 1. Now fix i ∈ {0, 1}.
We choose a subsetA ′ ⊆ A as follows. Since Ā is a k-matching, each leaf ` ∈ Li of
t has precisely γi(h(λ(`))) > ηi(λ(`)) incident arrows in A. For each such ` ∈ Li,
we include some arbitrary choice of ηi(λ(`)) arrows inA ′ (see Fig. 9.1b). The tree
t ′ is obtained from t by changing the label of each leaf ` ∈ L1−i from (x, j) to
(x, j ′), where j ′ is the number of arrows in A ′ incident to ` (see Fig. 9.1c). Note
that since we only change labels of leaves in L1−i, we have

πYi(yield(t
′)) = πYi(yield(t)) = πYi(w).
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For every subtree s of t ′, we define

β(s) = η0(πY0(yield(s))) − η1(πY1(yield(s))).

By construction of A ′, each leaf ` ∈ Lj has precisely ηj(λ(`)) incident arrows in
A ′ for j = 0, 1. Therefore,

β(s) =
∑

`∈L0∩s
dA ′(`) −

∑
`∈L1∩s

dA ′(`). (9.5)

The absolute value of the right-hand side of this equation is at most dA ′(s) and
hence

|η0(πY0(yield(s))) − η1(πY1(yield(s)))| = |β(s)| 6 dA ′(s) 6 dA(s) 6 k (9.6)

since Ā is a k-matching. In the case s = t ′, Eq. (9.5) also tells us that

η0(πY0(yield(t
′))) − η1(πY1(yield(t

′))) =
∑
`∈L0

dA ′(`) −
∑
`∈L1

dA ′(`) = 0. (9.7)

Let t ′′ be the tree obtained from t ′ as follows: For each N-labeled node x of
t ′, we replace the label B of x with (B,β(s)), where s is the subtree below x (see
Fig. 9.1d). By Eq. (9.6), this is a symbol inN2. The root node of t ′′ has label (S, 0)
by Eq. (9.7). Furthermore, it follows by an induction on the height of subtrees
that if (B, z) is the label of a node x, then z = η(c(x)). Hence, the tree t ′′ is a
derivation tree of G2. This means

πYi(w) = πYi(yield(t
′)) = πYi(yield(t

′′)) ∈ L(G2) = L ′,

completing the proof of condition 2.

Proposition 9.2.14 now allows us to construct PAIM for languages σ(L), where
σ is a letter substitution. The essential idea of Lemma 9.2.15’s proof is to use a
PAIM (K,C,P, (Pc)c∈C,ϕ, �) for L and then apply Proposition 9.2.14 to K with
X0 = Z∪ {�} and X1 = C∪ P. One can clearly assume that a single letter a from Z
is replaced by {a,b} ⊆ Z ′. We can therefore choose γ0(w) to be the number of a’s
inw and γ1(w) to be the number of a’s represented by symbols inC∪P. Then the
counting property of K entails γ0(w) = γ1(w) for w ∈ K and thus applicability
of Proposition 9.2.14. Condition 2 then yields the projection property for i = 0
and the commutative projection property for i = 1 and condition 3 yields the
counting property for the new PAIM.

Lemma 9.2.15 (Letter substitution). Let σ : Z→ P(Z ′) be a letter substitution. Given
i ∈N and a PAIM for L ∈ Gi in Gi, one can construct a PAIM in Gi for σ(L).

Proof. In light of Lemma 9.2.8, it clearly suffices to prove the statement in the
case that there are a ∈ Z and b ∈ Z ′ with Z ′ = Z ∪ {b}, b /∈ Z and σ(x) = {x} for
x ∈ Z \ {a} and σ(a) = {a,b}. Let (K,C,P, (Pc)c∈C,ϕ, �) be a PAIM for L in Gi.
We may clearly assume K to be given by a reduced Fi-grammar.

We want to use Proposition 9.2.14 to construct a PAIM for σ(L). To this end,
we define X0 = Z∪ {�} and X1 = C∪ P. Furthermore, let γi : X∗i →N for i = 0, 1
be the morphisms with

γ0(w) = |w|a, γ1(w) = ϕ(w)(a).

136

cf7212f0 2016-06-29 03:26:35 +0200



9.2. Constructing Parikh annotations

Then, by the counting property of PAIM, we have γ0(w) = γ1(w) for eachw ∈ K.
Let Y,h and Yi,hi,ηi be defined as in Eq. (9.2) and Eq. (9.3). Now Proposi-
tion 9.2.14 allows us to construct a language K̂ ∈ Gi, K̂ ⊆ Y∗, with K̂ ⊆ h−1(K)
and

πXi(K̂) = πXi(h
−1(K)) for i = 0, 1,

η0(πX0(w)) = η1(πX1(w)) for w ∈ K̂.

For each f ∈ C ∪ P, let Df = {(f ′,m) ∈ Y1 | f ′ = f}. With this, define
C ′ =

⋃
c∈CDc, P ′ =

⋃
p∈PDp, and P ′(c,m) =

⋃
p∈Pc Dp for (c,m) ∈ C ′. The

new morphism ϕ ′ : (C ′ ∪ P ′)⊕ → Z ′⊕ is defined by

ϕ ′((f,m))(z) = ϕ(f)(z) for z ∈ Z \ {a},
ϕ ′((f,m))(b) = m,
ϕ ′((f,m))(a) = ϕ(f)(a) −m.

Let g : Y∗ → (C ′ ∪ Z ′ ∪ P ′ ∪ {�})∗ be the morphism with g((z, 0)) = z for z ∈ Z,
g((a, 1)) = b, g(x) = x for x ∈ C ′ ∪ P ′ ∪ {�}. We claim that with K ′ = g(K̂), the
tuple (K ′,C ′,P ′, (P ′c)c∈C ′ ,ϕ ′, �) is a PAIM for σ(L). First, note that K ′ ∈ Gi and

K ′ = g(K̂) ⊆ g(h−1(K)) ⊆ g(h−1(C(Z∪ P)∗)) ⊆ C ′(Z ′ ∪ P ′)∗.

Note that g is bijective. We can therefore define

f : (C ′ ∪Z ′ ∪ P ′ ∪ {�})∗ → (C∪Z∪ P ∪ {�})∗

to be the morphism with f(w) = h(g−1(w)) for allw. Observe that then we have
f(a) = f(b) = a and f(z) = z for z ∈ Z \ {a,b}. Moreover, by the definition of K ′,
we have f(K ′) ⊆ K and σ(L) = f−1(L).

• Projection property. Note that whenever we have πY0(u) = πY0(v) for words
u, v ∈ Y∗, we also have πZ ′(g(u)) = πZ ′(g(v)). Thus, from the equality
πY0(K̂) = πY0(h

−1(K)), we deduce

πZ ′(K
′) = πZ ′(g(K̂)) = πZ ′(g(h

−1(K)))

= πZ ′(f
−1(K)) = f−1(L) = σ(L).

• Counting property. Note that by the definition of ϕ ′ and g, we have

ϕ ′(πC ′∪P ′(x))(b) = η1(x) = η1(g
−1(x)) (9.8)

for every x ∈ C ′ ∪ P ′.
For w ∈ K ′, we have f(w) ∈ K and hence ϕ(πC∪P(f(w))) = Ψ(πZ(f(w))).
Since for z ∈ Z \ {a}, we have ϕ ′(x)(z) = ϕ(f(x))(z) for every x ∈ C ′ ∪ P ′,
it follows that

ϕ ′(πC ′∪P ′(w))(z) = ϕ(πC∪P(f(w)))(z)

= Ψ(πZ(f(w)))(z) = Ψ(πZ ′(w))(z). (9.9)
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Moreover, by (9.8) and since g−1(w) ∈ K̂, we have

ϕ ′(πC ′∪P ′(w))(b) = η1(g
−1(w)) = η0(g

−1(w)) = |w|b

= Ψ(πZ ′(w))(b). (9.10)

and f(w) ∈ K yields

ϕ ′(πC ′∪P ′(w))(a) +ϕ
′(πC ′∪P ′(w))(b) = ϕ(πC∪P(f(w)))(a)

= Ψ(πZ(f(w)))(a)

= Ψ(πZ ′(w))(a) +Ψ(πZ ′(w))(b).

Together with (9.10), this impliesϕ ′(πC ′∪P ′(w))(a) = Ψ(πZ ′(w))(a). Com-
bining this with (9.9) and (9.10), we obtain ϕ ′(πC ′∪P ′(w)) = Ψ(πZ ′(w)).
This proves the counting property.

• Commutative projection property. Observe that

Ψ(πC ′∪P ′(K
′)) = Ψ(πY1(K̂)) = Ψ(πY1(h

−1(K)))

= Ψ(h−1(πC∪P(K))) =
⋃
c∈C ′

c+ P ′⊕c .

• Boundedness. Since |w|� = |h(v)|� for each w ∈ K ′ with w = g(v), there is a
constant bounding |w|� for w ∈ K ′.

• Insertion property. Let cw ∈ K ′ with c ∈ C ′ and µ ∈ P ′⊕c . Then f(µ) is
contained in P⊕

f(c)
and f(cw) belongs to K. Write

πZ ′∪{�}(cw) = w0 �w1 � · · · �wn

with w0, . . . ,wn ∈ Z ′∗. Then

πZ∪{�}(f(cw)) = f(πZ ′∪{�}(cw)) = f(w0) � · · · � f(wn).

By the insertion property of K and since f(cw) ∈ K, there is a v ∈ K with

πZ(v) = f(w0)v1f(w1) · · · vnf(wn),

v1, . . . , vn ∈ Z∗, and Ψ(πZ(v)) = Ψ(πZ(f(cw))) + ϕ(f(µ)). In particular,
we have Ψ(v1 · · · vn) = ϕ(f(µ)). Note that ϕ ′(µ) ∈ Z ′⊕ is obtained from
ϕ(f(µ)) ∈ Z⊕ by replacing some occurrences of a by b. Thus, by the
definition of f, we can find words v ′1, . . . , v ′n ∈ Z ′∗ with f(v ′i) = vi and
Ψ(v ′1 · · · v

′
n) = ϕ

′(µ). Then the word

w ′ = w0v
′
1w1 · · · v

′
nwn ∈ Z ′∗

satisfies πZ ′∪{�}(cw) �� w ′, Ψ(w ′) = Ψ(πZ ′(cw)) +ϕ ′(µ) and

f(w ′) = f(w0)v1f(w1) · · · vnf(wn) = πZ(v) ∈ πZ(K) = L.

Since f−1(L) = σ(L), this means w ′ ∈ σ(L). We have thus established the
insertion property.
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We conclude that the tuple (K ′,C ′,P ′, (P ′c)c∈C ′ ,ϕ ′, �) is a PAIM in Gi for σ(L).

We are now ready to describe the construction of PAIM for languages σ(L)
when given PAIM for L and for each σ(x). Here, the result on letter substitutions
(Lemma 9.2.15) allows us to assume that the PAIM for each σ(x) is linear. How-
ever, it remains the obstacle to make sure that the number of occurrences of �
stays bounded.

Lemma 9.2.16 (Substitutions). Let L ⊆ X∗ in Gi and σ be a Gi-substitution. Given a
PAIM in Gi for L and for each σ(x), x ∈ X, one can construct a PAIM for σ(L) in Gi.

Proof. Let σ : X∗ → P(Y∗). Assuming that for some a ∈ X, we have σ(x) = {x}
for all x ∈ X \ {a} means no loss of generality. According to Lemma 9.2.8, we
may also assume that σ(a) ⊆ Z∗ for some alphabet Z with Y = X ] Z. If
σ(a) = L1 ∪ · · · ∪ Ln, then first substituting a by {a1, . . . ,an} and then each ai
by Li has the same effect as applying σ. Hence, Lemma 9.2.15 allows us to as-
sume further that the PAIM given for σ(a) is linear. Finally, since we clearly have
σ(L) = (L \ X∗aX∗) ∪ σ(L ∩ X∗aX∗), Lemmas 9.2.7, 9.2.10, and 9.2.11 imply that
we may also assume L ⊆ X∗aX∗.

Let (K,C,P, (Pc)c∈C,ϕ, �) be a PAIM for L and (K̂, ĉ, P̂, ϕ̂, �) be a linear PAIM
for σ(a). The idea of the construction is to replace each occurrence of a in K by
words from K̂ after removing ĉ. However, in order to guarantee a finite bound
for the number of occurrences of � in the resulting words, we also remove � from
all but one inserted words from K̂. The new map ϕ ′ is then set up to so that if
f ∈ C∪P representedm occurrences of a, thenϕ ′(f) will representm times ϕ̂(ĉ).

Let C ′ = C, P ′c = Pc ∪ P̂, P ′ =
⋃
c∈C ′ P

′
c, and ϕ ′ : (C ′ ∪ P ′)⊕ → Y⊕ be the

morphism with

ϕ ′(f) = ϕ(f) − ϕ(f)(a) · a + ϕ(f)(a) · ϕ̂(ĉ) for f ∈ C∪ P,

ϕ ′(f) = ϕ̂(f) for f ∈ P̂.

Let a� be a new symbol and

K̄ = {ua�v | uav ∈ K, |u|a = 0}.

In other words, K̄ is obtained by replacing in each word from K the first occur-
rence of a with a�. The occurrence of a� will be the one that is replaced by
annotation words containing �, whereas the occurrences of a are replaced by an-
notation words without �. Hence, let τ be the substitution

τ : (C∪X∪ P ∪ {�,a�})∗ −→ P((C ′ ∪Z∪ P ′ ∪ {�})∗)
x 7−→ {x}, for x ∈ C∪X∪ P ∪ {�}, x 6= a,

a� 7−→ π
Z∪P̂∪{�}(K̂),

a 7−→ π
Z∪P̂(K̂).

We claim that with K ′ = τ(K̄), the tuple (K ′,C ′,P ′, (P ′c)c∈C ′ ,ϕ ′, �) is a PAIM in
Gi for σ(L). First, since Gi is closed under rational transductions and substitu-
tions, K ′ is in Gi.
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• Projection property. Since L = πX(K) and σ(a) = πZ(K̂), we have in fact the
equality σ(L) = πZ(K ′).

• Counting property. Let w ∈ K ′. Then by the definition of K ′, there is a word
u = cu0au1 · · ·aun ∈ K with ui ∈ (C ∪ X ∪ P ∪ {�})∗, c ∈ C, and |ui|a = 0

for i = 0, . . . ,n such that w = cu0w1u1 · · ·wnun with w1 ∈ πZ∪P̂∪{�}(K̂)
and wi ∈ πZ∪P̂(K̂) for i = 2, . . . ,n. The counting property of K̂ yields

Ψ(πZ(wi)) = ϕ̂(ĉ) + ϕ̂(πP̂(wi)). (9.11)

Since ϕ(πC∪P(u))(a) = Ψ(πX(u)) = n, we have

ϕ ′(πC ′∪P ′(u)) = ϕ(πC∪P(u)) −n · a+n · ϕ̂(ĉ) (9.12)
= Ψ(πX(u)) −n · a+n · ϕ̂(ĉ).

Equations (9.11) and (9.12) together imply

ϕ ′(πC ′∪P ′(w)) = ϕ
′(πC ′∪P ′(u)) +

n∑
i=1

ϕ ′(πP ′(wi))

= Ψ(πX(u)) −n · a+n · ϕ̂(ĉ) +
n∑
i=1

(Ψ(πZ(wi)) − ϕ̂(ĉ))

= Ψ(πX(u)) −n · a+
n∑
i=1

Ψ(πZ(wi)) = Ψ(πZ(w)).

• Commutative projection property. Let c ∈ C ′ and µ ∈ P ′⊕c . By definition of
P ′c, we can write µ = ν+ ν̂ with ν ∈ P⊕c and ν̂ ∈ P̂⊕. By the commutative
projection property of K, we find a cw ∈ K with Ψ(πC∪P(cw)) = c + ν.
Since L ⊆ X∗aX∗, we can write w = cu0au1 · · ·aun with |ui|a = 0 for
0 6 i 6 n and n > 1. Moreover, the commutative projection property
of K̂ yields words ĉŵ ∈ K̂ and ĉŵ ′ ∈ K̂ with Ψ(π

ĉ∪P̂(ĉŵ)) = ĉ + ν̂ and
Ψ(π

ĉ∪P̂(ĉŵ
′)) = ĉ. By definition of K ′, the word

w ′ = cu0ŵu1ŵ
′u2 · · · ŵ ′un

is in K ′ and satisfies Ψ(πC ′∪P ′(w ′)) = c+ ν+ ν̂ = c+ µ. This proves⋃
c∈C ′

c+ P ′⊕c ⊆ Ψ(πC ′∪P ′(K ′)).

The other inclusion is clear by definition. We have thus established that the
tuple (πC ′∪Z∪P ′(K

′),C ′,P ′, (P ′c)c∈C ′ ,ϕ ′) is a Parikh annotation in Gi for
σ(L).

• Boundedness. Note that if |w|� 6 k for all w ∈ K and |ŵ|� 6 ` for all ŵ ∈ K̂,
then |w ′|� 6 k+ ` for allw ′ ∈ K ′ by construction of K ′, implying bounded-
ness.

• Insertion property. The insertion property follows from the insertion prop-
erty of K and K̂.
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9.2.3 One nonterminal

The next step is to construct PAIM for languages L(G), whereG has just one non-
terminal S and PAIM are given for the right-hand-sides. This essentially amounts
to constructing a PAIM for SF(G) in the case that S occurs in every word on the
right-hand side (Lemma 9.2.17), because then, L(G) can be obtained from SF(G)
using a substitution. As in the proof of Lemma 2.6.10, we observe that applying
S→ L for some w ∈ L contributes Ψ(w) − S to the Parikh image of the sentential
form. This means Ψ(SF(G)) = S+ (Ψ(L) − S)⊕. Therefore, computing a PAIM
for SF(G) is akin to computing a semilinear representation for U⊕, where U is a
semilinear set.

Lemma 9.2.17 (Sentential forms). Let G = (N, T ,P,S) be an Gi-grammar with
N = {S}, P = {S→ L}, and L ⊆ (N∪ T)∗S(N∪ T)∗. Furthermore, suppose a PAIM in
Gi is given for L. Then one can construct a PAIM in Gi for SF(G).

Proof. As explained above, for the construction of the PAIM, we use an idea to ob-
tain a semilinear representation ofU⊕ for semilinear setsU. IfU =

⋃n
j=1 µj+ F

⊕
j

for µj ∈ X⊕ and finite Fj ⊆ X⊕, then

U⊕ =
⋃

D⊆{1,...,n}

∑
j∈D

µj

+

⋃
j∈D

{µj}∪ Fj

⊕ .

The symbols representing constant and period vectors for SF(G) are therefore set
up as follows. Let (K,C,P, (Pc)c∈C,ϕ, �) be a PAIM for L in Gi. We define S ′

and SD and dD to be new symbols for each D ⊆ C. Moreover, we use the sets
C ′ = {dD | D ⊆ C} and P ′ = C ∪ P with P ′dD = D ∪

⋃
c∈D Pc. We will use the

shorthand X = N ∪ T . Observe that since L ⊆ X∗SX∗, we have ϕ(c)(S) > 1 for
each c ∈ C. We can therefore define the morphism ϕ ′ : (C ′ ∪ P ′)⊕ → X⊕ as

ϕ ′(p) = ϕ(p) for p ∈ P,
ϕ ′(c) = ϕ(c) − S for c ∈ C, (9.13)

ϕ ′(dD) = S+
∑
c∈D

ϕ ′(c). (9.14)

The essential idea in our construction is to use modified versions of K as right-
hand-sides of a grammar. These modified versions are obtained as follows. For
each D ⊆ C, we define the rational transduction δD which maps each word
w0Sw1 · · ·Swn ∈ (C ∪ X ∪ P ∪ {�})∗, |wi|S = 0 for 0 6 i 6 n, to all words
w0SD1w1 · · ·SDnwn for which

D1 ∪ · · · ∪Dn = D, Di ∩Dj = ∅ for i 6= j.

Thus, δD can be thought of as distributing the elements of D among the occur-
rences of S in the input word. The modified versions of K are then given by

KD = δD(πC∪X∪P(K)), KcD = δD\c(c
−1K).

In the new annotation, the symbol dD represents S+
∑
c∈D(ϕ(c) − S). Since

each symbol c ∈ C still represents ϕ(c) − S, we cannot insert a whole word from
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K for each inserted word from L: This would insert a c ∈ C in each step and we
would count

∑
c∈D(ϕ(c) − S) twice. Hence, in order to compensate for the new

constant symbol dD, when generating a word starting with dD, we have to pre-
vent exactly one occurrence of c for each c ∈ D from appearing. To this end, we
use the nonterminal SD, which only allows derivation subtrees in which of each
c ∈ D, precisely one occurrence has been left out, i.e. a production SD → KcD (for
someD ⊆ C) has been applied. In the productions SD → KD the symbol from C
on the right-hand side is allowed to appear.

In order to have only a bounded number of occurrences of �, one of our mod-
ified versions of K (namely KcD) introduces � and the other one (KD) does not.
Since when generating a word starting with dD, our grammar makes sure that
for each c ∈ D, a production of the form SE → KcE is used precisely once (and
otherwise SE → KE), the set KcE is set up to contain �. This will guarantee that
during the insertion process simulating S → L, we insert at most |C| · ` occur-
rences of �, where ` is an upper bound for |w|� for w ∈ K.

Let N ′ = {S ′}∪ {SD | D ⊆ C} and let P̂ consist of the following productions:

S ′ → {dD � SD� | D ⊆ C} (9.15)
S∅ → {S} (9.16)
SD → KD for each D ⊆ C (9.17)
SD → KcD for each D ⊆ C and c ∈ D. (9.18)

Finally, letM be the regular language

M =
⋃
D⊆C

{w ∈ (C ′ ∪X∪ P ′ ∪ {�})∗ | πC ′∪P ′(w) ∈ dDP ′∗dD }.

By intersecting with M, we make sure that the commutative projection property
is satisfied. We shall prove that with G ′ = (N ′,C ′ ∪ X ∪ P ′ ∪ {�}, P̂,S ′) and the
language K ′ = L(G ′) ∩M, the tuple (K ′,C ′,P ′, (P ′c)c∈C ′ ,ϕ ′, �) is a PAIM for
SF(G) in Gi. By definition, L(G ′) is contained in Alg(Gi) = Gi and hence K ′ since
Gi is a full semi-AFL.

Let h : (N ′ ∪C ′ ∪ X ∪ P ′ ∪ {�})∗ → (C ′ ∪ X ∪ P ′ ∪ {�})∗ be the morphism that
fixes C ′ ∪ X ∪ P ′ ∪ {�} and satisfies h(S ′) = h(SD) = S for D ⊆ C. Moreover,
regard P(C) as a monoid with ∪ as its operation. Then ρ : (N ′ ∪ X)∗ → P(C) is
the morphism with ρ(SD) = D and ρ(S ′) = ρ(x) = ∅ for x ∈ X. Furthermore, let
|w|� 6 ` for all w ∈ K. We claim that for each n > 0, dD � SD� ⇒nG ′ w implies

1. if w = u0SD1u1 · · ·SDnun with ui ∈ X∗ for 0 6 i 6 n, then Di ∩Dj = ∅
for i 6= j.

2. h(πN ′∪X(w)) ∈ SF(G),

3. ϕ ′(πC ′∪P ′(w)) = Ψ(h(πN ′∪X(w))) +
∑
c∈ρ(w)ϕ

′(c),

4. |w|� 6 2+ |D \ ρ(w)| · `, and

5. for each µ ∈
(
D∪

⋃
c∈D\ρ(w) Pc

)⊕
, there is a w ′ ∈ SF(G) such that

h(πN ′∪X∪{�}(w)) �� w ′ and Ψ(w ′) = Ψ(h(πN ′∪X(w))) +ϕ ′(µ).
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We establish this claim using induction on n. Observe that all these conditions
are satisfied in the case n = 0, i.e. w = dD � SD�, conditions 1 to 4 follow di-
rectly by distinguishing among the productions in G ′. Therefore, we only prove
condition 5 in the induction step.

Suppose n > 0 and dD � SD� ⇒n−1G ′ w̄ ⇒G ′ w. If the production applied in
w̄⇒G ′ w is S∅ → {S}, then ρ(w) = ρ(w̄) and

h(πN ′∪X∪{�})(w) = h(πN ′∪X∪{�})(w̄),

so that condition 5 follows immediately from the same condition for w̄. If the
applied production is of the form (9.17) or (9.18), then we have ρ(w) ⊆ ρ(w̄) and
hence ρ(w̄) = ρ(w)∪ E for some E ⊆ D, |E| 6 1. Then⋃

c∈D\ρ(w)

Pc =
⋃

c∈D\ρ(w̄)

Pc ∪
⋃
c∈E

Pc.

We can therefore decompose µ ∈
(
D∪

⋃
c∈D\ρ(w) Pc

)⊕
into µ = µ̄ + ν with

µ̄ ∈
(
D∪

⋃
c∈D\ρ(w̄) Pc

)⊕
and ν ∈

(⋃
c∈E Pc

)⊕. By induction, we find a
w̄ ′ ∈ SF(G) such that

h(πN ′∪X∪{�}(w̄)) �� w̄ ′, Ψ(w̄ ′) = Ψ(h(πN ′∪X(w̄))) +ϕ
′(µ̄).

Let w̄ = xSy be the decomposition facilitating the step w̄ ⇒G ′ w and define
w = xzy.

• Suppose the production applied in w̄ ⇒G ′ w is of the form (9.17). Then
ρ(w) = ρ(w̄) and hence E = ∅ and ν = 0. Furthermore, z ∈ KF for some
F ⊆ C. We define z ′ = h(πN ′∪X(z)). Note that then z ′ ∈ πX(K) = L and
Ψ(z ′) = Ψ(πX(z)) +ϕ

′(ν).

• Suppose the production applied in w̄ ⇒G ′ w is of the form (9.18). Then
z ∈ KcF for some c ∈ F ⊆ C and thus h(z) ∈ c−1K. This implies that
ρ(w̄) = ρ(w) ∪ {c}, E = {c}, and hence ν ∈ P⊕c . The insertion property of K
provides a z ′ ∈ L such that πX∪{�}(h(z)) �� z ′ and

Ψ(z ′) = Ψ(πX(h(z))) +ϕ(ν) = Ψ(πX(h(z))) +ϕ
′(ν).

In any case, we have

z ′ ∈ L, h(πN ′∪X∪{�}(z)) �� z ′, Ψ(z ′) = Ψ(h(πN ′∪X(z))) +ϕ
′(ν).

Recall that w̄ = xSy and w = xzy. Since w̄ �� w̄ ′, we can find x ′,y ′ with

w̄ ′ = x ′Sy ′, h(πN ′∪X(x)) �� x ′, h(πN ′∪X(y)) �� y ′.

Choose w ′ = x ′z ′y ′. Then SF(G) 3 w̄ ′ ⇒G w ′ and thus w ′ ∈ SF(G). Moreover,

h(πN ′∪X∪{�}(w)) = h(πN ′∪X∪{�}(x))h(πN ′∪X∪{�}(z))h(πN ′∪X∪{�}(y))

�� x ′z ′y ′ = w ′.
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Finally, w ′ has the desired Parikh image:

Ψ(w ′) = Ψ(w̄ ′) − S+Ψ(z ′)

= Ψ(h(πN ′∪X(w̄))) +ϕ
′(µ̄) − S+Ψ(z ′)

= Ψ(h(πN ′∪X(w̄))) +ϕ
′(µ̄) − S+Ψ(h(πN ′∪X(z))) +ϕ

′(ν)

= Ψ(h(πN ′∪X(w))) +ϕ
′(µ̄) +ϕ ′(ν)

= Ψ(h(πN ′∪X(w))) +ϕ
′(µ).

This completes the induction step for condition 5.
We now use our claim to prove that we have indeed constructed a PAIM.

• Projection property. Our claim already entails πX(K ′) ⊆ SF(G): For words
w ∈ (C ′ ∪X∪P ′ ∪ {�})∗ with dD �SD� ⇒∗G ′ w, the projection πX(w) equals
h(πN ′∪X(w)), which belongs to SF(G) by condition 2. In order to prove
SF(G) ⊆ πX(K ′), suppose w ∈ SF(G) and let t be a partial derivation tree
for G with root label S and yield(t) = w. Since c(x) ∈ L for each inner node
x of t, we can find a cxwx ∈ K with πX(cxwx) = c(x). Then in particular
c(x) � cxwx, meaning we can obtain a tree t ′ from t as follows: For each
inner node x of t, add new leaves directly below x so as to have cxwx as
the new sequence of child labels of x. Note that the set of inner nodes of t ′

is identical to the one of t. Moreover, we have πX(yield(t ′)) = w.

Let D = {cx | x is an inner node in t ′}. We pick for each c ∈ D exactly one
inner node x in t ′ such that cx = c; we denote the resulting set of nodes
by R. We now obtain t ′′ from t ′ as follows: For each x ∈ R, we remove
its cx-labeled child; for each x /∈ R, we remove all �-labeled children. Note
that again, the inner nodes of t ′′ are the same as in t and t ′. Moreover, we
still have πX(yield(t ′′)) = w.

For each inner node x in t ′′, let Dx = {cy | y ∈ R is below x in t ′′}. Note
that in t, t ′, t ′′, every inner node has the label S. We obtain the tree t ′′′

from t ′′ as follows. For each inner node x in t ′′, we replace its label S by
SDx . Then we have πX(h(yield(t ′′′))) = w. Clearly, the root node of t ′′′ is
labeled SD. Furthermore, the definition of KE and KcE yields that t ′′′ is a
partial derivation tree for G ′. Hence

S ′ ⇒G ′ dD � SD� ⇒∗G ′ dD � yield(t
′′′) � .

Since in t ′′′, every leaf has a label in T ∪ {S∅}, we have

S ′ ⇒∗G ′ dD � h(yield(t
′′′))�,

and hence dD � h(yield(t ′′′))� ∈ L(G ′). The word dD � h(yield(t ′′′))� is also
clearly contained in M and since πX(dD � h(yield(t ′′′))�) = w, this implies
w ∈ πX(K ′).

• Counting property. Suppose w ∈ (C ′ ∪X∪ P ′ ∪ {�})∗ with dD � SD� ⇒∗G ′ w.
We apply condition 3 in our claim to w. Since we have ρ(w) = ∅ and
also h(πN ′∪X(w)) = πX(w), this yields ϕ ′(πC ′∪P ′(w)) = Ψ(πX(w)). In
particular, this equality holds for elements of K ′.

• Commutative projection property. Since we have K ′ ⊆ M, there is clearly an
inclusion Ψ(πC ′∪P ′(K ′)) ⊆

⋃
c∈C ′ c+ P

′⊕
c .
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For the other inclusion, let D ⊆ C with D = {c1, . . . , cn}. Suppose that
µ ∈

⋃
c∈C ′ c+ P

′⊕
c , µ = dD + ν+

∑n
i=1 ξi with ν ∈ D⊕ and ξi ∈ P⊕ci for

1 6 i 6 n.

The commutative projection property of K allows us to choose for each
index 1 6 i 6 nwords ui, vi ∈ K such that

Ψ(πC∪P(ui)) = ci, Ψ(πC∪P(vi)) = ci + ξi.

The words v ′0, . . . , v ′n are constructed as follows. Let v ′0 = dD � S� and let
v ′i+1 be obtained from v ′i by replacing the first occurrence of S by c−1i+1vi+1.
Furthermore, let v ′′i be obtained from v ′i by replacing the first occurrence of
S by S{ci+1,...,cn} and all other occurrences by S∅. Then we clearly have the
derivation

dD � SD� = v ′′0 ⇒G ′ · · · ⇒G ′ v
′′
n

and v ′′n ∈ (T ∪ {S∅})∗. Moreover, we have Ψ(πC ′∪P ′(v ′′n)) = dD +
∑n
i=1 ξi.

Let g : X∗ → (T ∪ {S∅})
∗ be the morphism with g(S) = S∅ and that fixes

the elements of T . For a word w ∈ (N ′ ∪ X)∗ that contains S∅ and for
1 6 i 6 n, let Ui(w) be the word obtained from w by replacing the first
occurrence of S∅ by g(ui). Then Ui(w) satisfies w ⇒G ′ Ui(w) and the
equality Ψ(πC ′∪P ′(Ui(w))) = Ψ(πC ′∪P ′(w)) + ci. Thus, with

u = U
ν(cn)
n · · ·Uν(c1)1 (v ′′n)

(that is, we apply ν(c1) times the functionU1, then ν(c2) times the function
U2, etc.), we have v ′′n ⇒∗G ′ u ⇒

∗
G ′ h(u) and hence h(u) ∈ L(G ′). By

construction, h(u) belongs toM and thus h(u) ∈ K ′. Moreover, we have

Ψ(πC ′∪P ′(h(u))) = Ψ(πC ′∪P ′(u)) = Ψ(πC ′∪P ′(v
′′
n)) + ν

= dD +

n∑
i=1

ξi + ν = µ.

This proves
⋃
c∈C ′ c+ P

′⊕
c ⊆ Ψ(πC ′∪P ′(K ′)).

• Boundedness. Let w ∈ (C ′ ∪ X ∪ P ′ ∪ {�})∗ and dD � SD� ⇒∗G ′ w. By condi-
tion 4 of our claim, we have |w|� 6 2+ |C| · `.

• Insertion property. Let w ∈ (C ′ ∪ X ∪ P ′ ∪ {�})∗ and dD � SD� ⇒∗G ′ w. Then
ρ(w) = ∅ and h(πN ′∪X∪{�}(w)) = πX∪{�}(w). Hence condition 5 states
that for each µ ∈ P ′⊕dD , there is a w ′ ∈ SF(G) with πX∪{�}(w) �� w ′ and
Ψ(w ′) = Ψ(πX(w)) +ϕ

′(µ).

Lemma 9.2.18 (One nonterminal). Let G be a Gi-grammar with one nonterminal.
Furthermore, suppose PAIM in Gi are given for the right-hand-sides in G. Then we can
construct a PAIM for L(G) in Gi.

Proof. Let G = (N, T ,P,S). By Lemma 9.2.7, we may assume that there is only
one production S → L in P. By Lemmas 9.2.10 and 9.2.11, one can construct
PAIM for L0 = L \ (N∪ T)∗S(N∪ T)∗ and for L1 = L∩ (N∪ T)∗S(N∪ T)∗.
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We define G ′ to be the grammar G ′ = (N, T ,P ′,S), in which P ′ = {S → L1}.
Moreover, let σ : (N∪ T)∗ → P((N∪ T)∗) be the substitution with σ(S) = L0 and
σ(t) = {t} for t ∈ T . Then we have L(G) = σ(SF(G ′)). Hence, one can construct a
PAIM for L(G) using Lemmas 9.2.16 and 9.2.17.

Thanks to Lemmas 9.2.16 and 9.2.18, we can now use the van Leeuwen de-
composition (see Section 2.6, Page 32) to construct PAIM recursively with respect
to the number of nonterminals in G.

Lemma 9.2.19 (PAIM for algebraic extensions). Given i ∈ N and an Fi-grammar
G, along with a PAIM in Fi for each right-hand side, one can construct a PAIM for L(G)
in Gi.

Proof. Our algorithm works recursively with respect to the number of nontermi-
nals. In order to make the recursion work, we need the algorithm to work with
right-hand sides in Gi. We show that, given i ∈ N, a Gi-grammar G, along with
a PAIM in Gi for each right-hand side in G, we can construct a PAIM for L(G) in
Gi. Since a PAIM for a language L in Fi can easily be turned into a PAIM for L in
Gi, this statement implies the lemma.

LetG = (N, T ,P,S) be a Gi-grammar with n = |N| and letGA andG ′ be a van
Leeuwen decomposition of G. Since GA has only one nonterminal and its right-
hand sides are among those of G, we have a PAIM for each right-hand side of
GA and Lemma 9.2.18 allows us to construct a PAIM for L(GA). This means, the
right-hand sides of G ′ are obtained by substitutions from languages for which
we have PAIMs. Hence, we can use Lemma 9.2.16 to construct a PAIM in Gi for
each right-hand side of G ′. Since G ′ has n− 1 nonterminals, we can recursively
construct a PAIM for L(G ′) = L(G).

The last step is to compute PAIM for languages in SLI(Gi).

Lemma 9.2.20 (Semilinear intersection). Given i ∈ N, a language L ⊆ X∗ in Gi, a
semilinear S ⊆ X⊕, and a morphism h : X∗ → Y∗, along with a PAIM in Gi for L, one
can construct a PAIM for h(L∩Ψ−1(S)) in SLI(Gi).

Proof. According to Lemma 9.2.8, it suffices to show that we can construct a
PAIM for L∩Ψ−1(S). Moreover, if L = L1 ∪ · · ·Ln, then

L∩Ψ−1(S) = (L1 ∩Ψ−1(S))∪ · · · ∪ (Ln ∩Ψ−1(S)).

Thus, by Lemmas 9.2.7 and 9.2.9, we may assume that the PAIM for L is linear.
Let (K, c,P,ϕ, �) be a linear PAIM for L in Gi.

The set T = {µ ∈ P⊕ | ϕ(c+ µ) ∈ S} is semilinear as well, hence T =
⋃n
i=1 Ti

for linear Ti ⊆ P⊕. Write Ti = µi + F
⊕
i with µi ∈ P⊕, and Fi ⊆ P⊕ being a finite

set. Let P ′i be an alphabet with new symbols in bijection with the set Fi and let
ψi : P

′⊕
i → P⊕ be the morphism extending this bijection. Moreover, let Ui be the

linear set

Ui = µi + {p+ψi(p) | p ∈ P ′i}
⊕ + (X∪ {�})⊕

and let Ri = p∗1 · · ·p
∗
m, where P ′i = {p1, . . . ,pm}. We claim that with new symbols
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c ′i for 1 6 i 6 n, C ′ = {c ′i | 1 6 i 6 n}, P
′ =

⋃n
i=1 P

′
i and

ϕ ′(c ′i) = ϕ(c) +ϕ(µi),
ϕ ′(p) = ϕ(ψi(p)) for p ∈ P ′i,

K ′ =
n⋃
i=1

c ′iπC ′∪X∪P ′∪{�}

(
c−1KRi ∩Ψ−1(Ui)

)
,

the tuple (K ′,C ′,P ′, (P ′i)c ′i∈C ′ ,ϕ
′, �) is a PAIM for L∩Ψ−1(S).

• Projection property. For w ∈ L ∩ Ψ−1(S), we find a cv ∈ K that satisfies
πX(cv) = w. Then ϕ(π{c}∪P(cv)) = Ψ(w) ∈ S and hence Ψ(πP(v)) ∈ T .
By definition of the P ′i, there is a decomposition Ψ(πP(v)) = µi +ψi(κ) for
some 1 6 i 6 n and some κ ∈ P ′⊕i . Let P ′i = {p1, . . . ,pm}. Then the word

v ′ = vp
κ(p1)
1 · · ·pκ(pm)

m

is in c−1KRi ∩ Ψ−1(Ui) and satisfies πX(v ′) = πX(v) = w. Moreover,
v ′′ = c ′iπC ′∪X∪P ′∪{�}(v

′) ∈ K ′ and hence w = πX(v
′′) ∈ πX(K ′). This

proves L∩Ψ−1(S) ⊆ πX(K ′).
We clearly have πX(K ′) ⊆ πX(K) = L. It therefore suffices to prove the
inclusion Ψ(πX(K ′)) ⊆ S. Suppose w = c ′iv ∈ K ′. Then we can find
some v ′ ∈ c−1KRi ∩Ψ−1(Ui) such that we have v = πC ′∪X∪P ′∪{�}(v ′). Let

P ′i = {p1, . . . ,pm}. Then we can write v ′ = v ′′p
κ(p1)
1 · · ·pκ(pm)

m for some
κ ∈ P ′⊕i . This means cv ′′ ∈ K and thus Ψ(πX(cv ′′)) = ϕ(π{c}∪P(cv

′′)) by
the counting property of K. Since v ′ ∈ Ψ−1(Ui), we have

Ψ(πP(cv
′′)) = Ψ(πP(v

′)) = µi +ψi(κ) ∈ Ti.

This implies

Ψ(πX(w)) = Ψ(πX(c
′
iv)) = Ψ(πX(v

′)) = Ψ(πX(cv
′′))

= ϕ(π{c}∪P(cv
′′)) ∈ ϕ(c+ Ti) ∈ S.

• Counting property. Let w = c ′iv ∈ K
′ with v = πC ′∪X∪P ′∪{�}(v

′) for some
v ′ ∈ c−1KRi ∩Ψ−1(Ui). By definition of Ui, this implies

πP(v
′) = µi +ψi(πP ′(v

′))

and hence

ϕ(πP(v
′)) = ϕ(µi) +ϕ(ψi(πP ′(v

′))) = ϕ(µi) +ϕ
′(πP ′(v

′)).

Moreover, if we write v ′ = v ′′rwith cv ′′ ∈ K and r ∈ Ri, then

ϕ ′(πC ′∪P ′(w)) = ϕ
′(c ′i) +ϕ

′(πP ′(v
′))

= ϕ(c) +ϕ(µi) +ϕ
′(πP ′(v

′))

= ϕ(c) +ϕ(πP(v
′)) = ϕ(πC∪P(cv

′′))

= Ψ(πX(cv
′′)) = Ψ(πX(w)).

This proves the counting property.
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• Commutative projection property. Let µ ∈ c ′i + P
′⊕
i . This means we have

µ = c ′i + κ with some κ ∈ P ′⊕i . Then ξ = ψi(κ) belongs to P⊕ and the
commutative projection property of K yields a cv ∈ K for which we have
Ψ(πC∪P(cv)) = c+ µi + ξ. Let P ′i = {p1, . . . ,pm}. Then the word

v ′ = vp
κ(p1)
1 · · ·pκ(pm)

m

is contained in c−1KRi ∩Ψ(Ui). Furthermore, Ψ(πP ′(v ′)) = κ and hence

Ψ(πC ′∪P ′(c
′
iπC ′∪X∪P ′∪{�}(v

′))) = c ′i + κ = µ.

This proves
⋃n
i=1 c

′
i + P

′⊕
i ⊆ Ψ(πC ′∪P ′(K ′)). The other inclusion follows

directly from the definition of K ′.

• Boundedness. Since π{�}(K ′) ⊆ π{�}(K), K ′ inherits boundedness from K.

• Insertion property. Let c ′iw ∈ K
′ and µ ∈ P ′⊕i . Write w = πC ′∪X∪P ′∪{�}(v)

for some v ∈ c−1KRi ∩ Ψ−1(Ui), and v = v ′r for some r ∈ Ri. Then
cv ′ belongs to K and applying the insertion property of K to cv ′ and to
ψi(µ) ∈ P⊕ yields a v ′′ ∈ Lwith πX∪{�}(cv ′) �� v ′′ and

Ψ(v ′′) = Ψ(πX(cv
′)) +ϕ(ψi(µ)).

This word satisfies

πX∪{�}(c
′
iw) = πX∪{�}(v) = πX∪{�}(cv

′) �� v ′′,
Ψ(πX(v

′′)) = Ψ(πX(cv
′)) +ϕ(ψi(µ))

= Ψ(πX(c
′
iw)) +ϕ(ψi(µ)) = Ψ(πX(c

′
iw)) +ϕ

′(µ).

and it remains to be shown that v ′′ ∈ L ∩ Ψ−1(S). Since v ′′ ∈ L, this
amounts to showing Ψ(v ′′) ∈ S.

Since Ψ(v ′) ∈ Ui, we have Ψ(πP(v ′)) ∈ µi + F⊕i and ψi(µ) ∈ F⊕i and hence
also Ψ(πP(v ′)) +ψi(µ) ∈ µi + F⊕i = Ti. Therefore,

Ψ(v ′′) = Ψ(πX(cv
′)) +ϕ(ψi(µ))

= ϕ(πC∪P(cv
′)) +ϕ(ψi(µ))

= ϕ(πC∪P(cv
′) +ψi(µ)) ∈ ϕ(c+ Ti) ⊆ S.

The foregoing lemmas now almost immediately imply Theorem 9.2.5.

Proof of Theorem 9.2.5. We compute the PAIM for L recursively:

• If L ∈ F0, we can construct a PAIM for L in F0 using Lemma 9.2.6.

• If L ∈ Fi and i > 1, then L = h(L ′ ∩ Ψ−1(S)) for some L ′ ⊆ X∗ in Gi−1, a
semilinear S ⊆ X⊕, and a morphism h : X∗ → Y∗. We compute a PAIM for
L ′ in Gi−1 and then use Lemma 9.2.20 to construct a PAIM for L.

• If L ∈ Gi, then L = L(G) for an Fi-grammar G. We construct PAIM for the
right-hand-sides of G and then using Lemma 9.2.19, we construct a PAIM
for L in Gi.
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9.3 Further applications of Parikh annotations

In this section, we demonstrate the utility of Parikh annotations by presenting
two further applications. These applications are new proofs of existing results.
In Chapter 10, we will put Parikh applications to use in yet another context by
showing that the hierarchy F0 ⊆ G0 ⊆ F1 ⊆ · · · is strict at every level.

9.3.1 Context-freeness of bounded languages

Our first application is a simple proof of a result of GinsburgSpanier1966 [GinsburgSpanier1966],
namely a characterization of those sets S ⊆Nk for which the language

{a
n1
1 · · ·a

nk
k | (n1, . . . ,nk) ∈ S}

is context-free. The characterization involves stratified sets. A set P ⊆ Nk is
called stratified if

1. each element of P has at most two nonzero coordinates and

2. there are no indices 0 6 r < s < t < u 6 k such that xrysxtyu 6= 0 for
some (x1, . . . , xk), (y1, . . . ,yk) ∈ P.

The result we are concerned with is the following. It recently attracted atten-
tion in [IbarraSeki2013, LerouxPenelleSutre2013]. Let X = {a1, . . . ,ak} and let
τ : a∗1 · · ·a

∗
k →Nk be the restriction of Ψ to a∗1 · · ·a

∗
k.

Theorem 9.3.1 (GinsburgSpanier1966 [GinsburgSpanier1966]). For S ⊆Nk, the
set τ−1(S) is context-free if and only if S is a finite union of linear sets with stratified
sets of periods.

It should be noted that the question of whether context-freeness of τ−1(S) is
decidable was left open in [GinsburgSpanier1966]. To the author’s knowledge
(and according to [IbarraSeki2013, LerouxPenelleSutre2013]), it still is.

It is easy to see that τ−1(S) is context-free when S is a finite union of lin-
ear sets with stratified sets of periods. The proof for the opposite direction
in [GinsburgSpanier1966, GinsburgSpanier1964] is not difficult, but involves a
technical induction on k. Albeit rather involved itself, the existence of Parikh an-
notations provides a simple and conceptual proof of this latter direction. Hence,
although the combination of Section 9.2 and the following is by no means sim-
pler than GinsburgSpanier1966’s proof, it still illustrates the utility of Parikh
annotations.

Suppose L = τ−1(S) is context-free and (K,C,P, (Pc)c∈C,ϕ) is a context-free
Parikh annotation for L, which exists by Theorem 9.2.5. We claim that for each
c ∈ C, ϕ(Pc) is stratified. Since S = Ψ(L) =

⋃
c∈Cϕ(c) +ϕ(Pc)

⊕, this clearly
suffices. Let ρ be the rational transduction that, for each a ∈ X, removes from
the input word the first ϕ(c)(a) occurrences. If condition 1 were violated with
xrxsxt 6= 0 for 0 6 r < s < t 6 k and some ϕ(p) = (x1, . . . , xk), then

π{ar,as,at}(ρ(K∩ c({p}∪X)
∗)) = {amxrr amxss amxtt | m ∈N}.

However, the left hand side is context-free, while the right-hand side is clearly
not. If condition 2 were violated with ϕ(p) = (x1, . . . , xk),ϕ(q) = (y1, . . . ,yk),
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p,q ∈ Pc, and 0 6 r < s < t < u 6 k with xrysxtyu 6= 0, then condition 1
implies xm = yn = 0 form /∈ {r, t}, n /∈ {s,u} and hence

πX(ρ(K∩ c({p,q}∪X)∗)) = {amxrr anyss amxtt anyuu | m,n ∈N}.

Again, the left hand side is context-free and the right-hand side is clearly not.

9.3.2 Regularity of unambiguous constrained automata

Our next application is a new proof of a result of CadilhacFinkelMcKenzie2012b [CadilhacFinkelMcKenzie2012b].
It concerns constrained automata, a definitional variant of Parikh automata. The
latter were introduced by KlaedtkeRuess2003 [KlaedtkeRuess2003] in order to
obtain decidability of a fragment of Monadic Second Order Logic on finite words
with cardinality constraints.

For general constrained automata (and hence Parikh automata), it is undecid-
able whether their accepted language is regular [CadilhacFinkelMcKenzie2012a].
However, CadilhacFinkelMcKenzie2012b [CadilhacFinkelMcKenzie2012b] have
shown that in the case of unambiguous constrained automata, this problem becomes
decidable. While the proof of CadilhacFinkelMcKenzie2012b is structurally
similar, the one presented here is arguably conceptually simpler: Although it
requires the somewhat involved machinery of Parikh annotations, the result is a
relatively straightforward consequence of their existence for regular languages
(with the slight extension of pseudo-boundedness), which is not hard to see
(Lemma 9.3.5). Note that the proof here does not rely on the complex construc-
tion of Parikh annotations for F, but is self-contained.

Constrained automata A constrained automaton is a pair (A,C), where the first
component A = (Q,X,E,q0, F) is a finite automaton and C ⊆ E⊕ is a semilinear
set (here, we regard E as an alphabet). A run of (A,C) is a sequence

r = (p1,w1,q1)(p2,w2,q2) · · · (pn,wn,qn) ∈ E∗

with pi = qi−1 for 1 < i 6 n, p1 = q0, and qn ∈ F. Byω(r), we denote the word
w1 · · ·wn. The language accepted by (A,C) is

L(A,C) = {ω(r) | r ∈ Ψ−1(C) is a run of (A,C)}.

(A,C) is said to be unambiguous if for each w ∈ L(A,C), there is at most one run
rwithω(r) = w.

Observe that in their general form, constrained automata accept precisely the
languages in SLI(Reg) =

⋃
n∈N VA(Zn), in other words, those of blind multi-

counter automata. Note that unambiguous constrained automata subsume de-
terministic blind multicounter automata. In fact, they are slightly more expres-
sive [CadilhacFinkelMcKenzie2012b].

As mentioned above, we prove the following result.

Theorem 9.3.2 (CadilhacFinkelMcKenzie2012b [CadilhacFinkelMcKenzie2012b]).
Given an unambiguous constrained automaton (A,C), it is decidable whether L(A,C)
is regular.

We will use the following result by Ginsburg and Spanier.
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Theorem 9.3.3 (GinsburgSpanier1966 [GinsburgSpanier1966, GinsburgSpanier1966a]).
Given a semilinear set S ⊆ X⊕, it is decidable whether Ψ−1(S) is regular. Moreover, if
X = {a1, . . . ,an}, then Ψ−1(S) is regular if and only if Ψ−1(S)∩ a∗1 · · ·a

∗
n is regular.

As in [CadilhacFinkelMcKenzie2012b], the first step is to reduce the problem
to the regularity problem for languages of the form L∩Ψ−1(S), where L ⊆ X∗ is
regular and S ⊆ X⊕ is semilinear.

Lemma 9.3.4. Given an unambiguous constrained automaton (A,C), one can construct
a regular language R ⊆ Y∗ and a semilinear set S ⊆ Y⊕ such that L(A,C) is regular if
and only if R∩Ψ−1(S) is regular.

Proof. Let (A,C) be an unambiguous constrained automaton with the automaton
A = (Q,X,E,q0, F) and the semilinear set C ⊆ E⊕. Let R ⊆ E∗ be the set of runs
of (A,C), which is regular. We claim that then L(A,C) is regular if and only if
R∩Ψ−1(C) is regular.

The “if” direction is clear: L(A,C) = ω(R∩Ψ−1(C)) and morphisms preserve
regularity.

For the “only if” direction, let T ⊆ X∗ × E∗ be the rational transduction
that outputs for each input w ∈ X∗, every run r ∈ E∗ with ω(r) = w. Then
clearly, R ∩ Ψ−1(C) ⊆ T(L(A,C)). Moreover, since (A,C) is unambiguous, we
have T(L(A,C)) ⊆ R ∩ Ψ−1(C): If w ∈ L(A,C), then there is at most one run
r ∈ E∗ with ω(r) = w. This means, r must the run satisfying r ∈ Ψ−1(C).
Thus, R ∩ Ψ−1(C) = T(L(A,C)) and regularity of L(A,C) implies regularity of
R∩Ψ−1(C).

The remaining task is to decide regularity of sets of the form L ∩ Ψ−1(S).
To this end, we construct a regular Parikh annotation (K,C,P, (Pc)c∈C,ϕ) for L
and then, using Theorem 9.3.3, we decide whether the sets Ψ−1(Sc) are regular,
where Sc = {µ ∈ P⊕c | ϕ(c + µ) ∈ S}. It is not hard to see that regularity of
Ψ−1(Sc) implies regularity of L ∩Ψ−1(S) for any Parikh annotation. In order to
have the converse, we use Parikh annotations with the additional guarantee of
pseudo-boundedness.

Pseudo-boundedness A Parikh annotation (K,C,P, (Pc)c∈C,ϕ) for L is said to
be pseudo-bounded if on each of the sets Pc, one can establish a linear order (Pc,<)
such that

cp∗1 · · ·p
∗
n ⊆ πC∪P(K),

where Pc = {p1, . . . ,pn} and p1 < · · · < pn.
In other words, in a pseudo-bounded PA, when projecting to the annotation

alphabet {c}∪Pc, every description of a Parikh image appears as some word from
the bounded language cp∗1 · · ·p

∗
n. It is not hard to see that regular languages

admit pseudo-bounded Parikh annotations.

Lemma 9.3.5. Given a regular language R, one can construct a regular pseudo-bounded
Parikh annotation for R.

Proof. Let R ⊆ X∗ be regular. The proof proceeds by structural induction with
respect to a rational expression for R. The statement is trivial for singletons. Since
pseudo-bounded PAs are easy to construct for union and concatenation, we only
consider the case that R = S∗ and we have constructed a pseudo-bounded PA
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(K,C,P, (Pc)c∈C,ϕ) for S ⊆ X∗. Then for each c ∈ C, (Pc,<) is linearly ordered
such that the pseudo-boundedness condition holds. Here, we may assume that
the sets Pc are pairwise disjoint.

For each D ⊆ C, let cD be a new symbol. Moreover, let C ′ = {cD | D ⊆ C}
and P ′cD = D ∪

⋃
c∈D Pc, P ′ = C ∪ P. Furthermore, for words w ∈ (C ∪ X ∪ P)∗

with |w|c > 1 for each c ∈ D, let δD(w) be the word obtained fromw by deleting
the first occurrence of each c ∈ D. With this, let TD be the rational transduction
with

TD(M) = {cDδD(w) | w ∈M, πC(w) ∈ D∗, |w|c > 1 for each c ∈ D}.

Moreover, let ϕ ′(cD) =
∑
c∈Dϕ(c) and ϕ ′(x) = ϕ(x) for x ∈ C ∪ P. We claim

that (K ′,C ′,P ′, (P ′cD)cD∈C ′ ,ϕ
′) with K ′ =

⋃
D⊆C TD(K∗) is a pseudo-bounded

PA for S∗. We construct the linear order on P ′cD as follows. Choose an arbitrary
linear order (D,<) on D. Moreover, let

(P ′cD ,<) =
∑
c∈D

(Pc,<) + (D,<)

be the order theoretic sum of the (Pc,<) for c ∈ D and of (D,<).
We claim that (K ′,C ′,P ′, (P ′cD)cD∈C ′ ,ϕ

′) is a pseudo-bounded PA for S∗.
Since completeness is subsumed by pseudo-boundedness, it is not necessary to
prove the former.

• Projection property. Clearly, πX(K ′) ⊆ πX(K∗) = S∗. In order to prove the
other inclusion, suppose w1, . . . ,wn ∈ S. For each i, we find a ciui ∈ K
with πX(ciui) = wi. We define the set D = {c1, . . . , cn} and the word
w ′ = cDδD(c1u1 · · · cnun). Then, we clearly have w ′ ∈ K ′ and also
πX(w

′) = w1 · · ·wn. Thus, πX(K ′) = S∗.

• Counting property. Let cDδD(w) ∈ K ′. Then w ∈ K∗ and |w|c > 1 for c ∈ D.
The counting property of K yields ϕ(πC∪P(w)) = Ψ(πX(w)). By definition
of δD, we have

ϕ ′(πC ′∪P ′(cDδD(w))) = ϕ ′(cD) +ϕ ′(πC∪P(w)) −
∑
c∈D

ϕ ′(c)

= ϕ(πC∪P(w)) = Ψ(πX(w))

= πX(cDδD(w)).

• Pseudo-boundedness. Let cD ∈ C ′ and suppose P ′cD = {q1, . . . ,qm} is or-
dered so that q1 < · · · < qm. Furthermore, let µ ∈ P ′⊕cD . Then we can write
µ = (

∑
c∈D µc) + κ for µc ∈ P⊕c and κ ∈ D⊕. The pseudo-boundedness

of K implies that for each c ∈ D, we can find some wc in (X ∪ P)∗ with
cwc ∈ K and πC∪P(wc) = p

µc(p1)
1 · · ·pµc(pn)n , where Pc = {p1, . . . ,pn},

p1 < · · · < pn. Furthermore, for each c ∈ D, there is a vc ∈ K with
πC∪P(vc) = c. Now if D = {c1, . . . , ck}, c1 < · · · < ck, then

c1wc1 · · · ckwckv
κ(c1)
c1 · · · vκ(ck)ck ∈ K∗

and hence
w = cDwc1 · · ·wckv

κ(c1)
c1 · · · vκ(ck)ck ∈ K ′.
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Then clearly πC ′∪P ′(w) = cDq
µ(q1)
1 · · ·qµ(qm)

m . This proves the inclusion
cDq

∗
1 · · ·q

∗
m ⊆ πC ′∪P ′(K ′).

The pseudo-bounded Parikh annotations now allow us to reduce the regular-
ity problem for languages R∩Ψ−1(S) to languages of the form Ψ−1(S).

Lemma 9.3.6. Given a regular language R ⊆ X∗ and a semilinear set S ⊆ X⊕, one can
construct semilinear sets S1, . . . ,Sn, Si ⊆ Y⊕i , such that R ∩Ψ−1(S) is regular if and
only if each Ψ−1(Si) is regular for 1 6 i 6 n.

Proof. Let R ⊆ X∗ be regular, S ⊆ X⊕ be semilinear, and (K,C,P, (Pc)c∈C,ϕ)
be a pseudo-bounded Parikh annotation for R. Furthermore, note that the set
Sc = {µ ∈ P⊕c | ϕ(c + µ) ∈ S} is Presburger definable and hence effectively
semilinear. We shall prove that the sets Sc ⊆ P⊕c have the desired property.

Suppose R∩Ψ−1(S) is regular and c ∈ C. Then the language

Kc = {cv ∈ K | πX(cv) ∈ R∩Ψ−1(S)}

inherits regularity from K and R∩Ψ−1(S). Since πX(K) = R, we have

Kc = {v ∈ K | πX(cv) ∈ Ψ−1(S)}

= {v ∈ K | ϕ(πC∪P(cv)) ∈ Ψ−1(S)}

= {v ∈ K | πP(v) ∈ Ψ−1(Sc)}

Let Pc = {p1, . . . ,pn} with p1 < · · · < pn. The pseudo-boundedness of K implies

Ψ(πP(Kc)∩ p∗1 · · ·p
∗
n) = Ψ(πP(Kc)) = Sc.

This means the set Bc = πP(Kc) ∩ p∗1 · · ·p
∗
n ⊆ p∗1 · · ·p

∗
n is regular and satisfies

Ψ(Bc) = Sc. According to Theorem 9.3.3, this implies regularity of Ψ−1(Sc).
Now suppose Ψ−1(Sc) is regular for each c ∈ C. Then regularity of R ∩Ψ−1(S)
follows because

R∩Ψ−1(S) = {πX(w) | w ∈ K, Ψ(πX(w)) ∈ S}
= {πX(cv) | c ∈ C, cv ∈ K, Ψ(πP(v)) ∈ Sc}
= {πX(cv) | c ∈ C, cv ∈ K, πP(v) ∈ Ψ−1(Sc)}.

We are now ready to prove Theorem 9.3.2.

Proof of Theorem 9.3.2. The theorem follows directly from Lemmas 9.3.4 and 9.3.6
and Theorem 9.3.3.

9.4 Conclusion

The computation of downward closures is a task that is still little understood, but
promises applications and is theoretically appealing. In this chapter, we have
added our class F to the list of language classes for which downward closures
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are computable. On the one hand, this class appears to be relatively large and
exhibits pleasant closure properties—it is a Presburger closed full AFL. On the
other hand, it permits modeling recursive programs with numeric data types
(see Chapter 12 for details).

The technique for proving this main result is the concept of Parikh annota-
tions. They can be thought of as giving finite state transducers access to Parikh
decompositions and hence endow the individual levels of our hierarchy with
more closure properties.

We have also applied Parikh annotations to provide new proofs of existing
results. On the one hand, this concerns a characterization of strictly bounded
context-free languages by GinsburgSpanier1966 [GinsburgSpanier1966]. On
the other hand, we presented a new proof for the decidability of the regular-
ity problem for unambiguous constrained automata, which had originally been
shown by CadilhacFinkelMcKenzie2012b [CadilhacFinkelMcKenzie2012b]. These
applications demonstrate the utility of Parikh annotations.

The results of this section have appeared in [Zetzsche2015a].

Related work As mentioned above, methods for computing downward clo-
sures have been obtained for other language classes. For context-free languages
and, slightly more general, for algebraic extensions, this has been shown by
vanLeeuwen1978 [vanLeeuwen1978]. A different approach for the context-free
languages was then presented by Courcelle1991 [Courcelle1991]. For 0L-systems
and context-free FIFO rewriting systems, computability has been established by
AbdullaBoassonBouajjani2001 [AbdullaBoassonBouajjani2001]. Finally, HabermehlMeyerWimmel2010 [HabermehlMeyerWimmel2010]
were able to show computability for the Petri net languages.

Furthermore, it was shown by GruberHolzerKutrib2007 [GruberHolzerKutrib2007]
that downward closures are not computable for Church-Rosser languages and
Mayr2003 [Mayr2003] has shown that reachability sets of lossy channel systems
cannot be computed.

Complexity issues, both descriptional and computational, have been consid-
ered by GruberHolzerKutrib2009 [GruberHolzerKutrib2009], Okhotin2010 [Okhotin2010],
KarandikarNiewerthSchnoebelen2016 [KarandikarNiewerthSchnoebelen2016],
and BachmeierLuttenbergerSchlund2015 [BachmeierLuttenbergerSchlund2015].

Open problems

1. Of course, it remains the task of providing more language classes with
methods to compute downward closures. In particular, it is not clear for
which graph monoids downward closures are computable. The result of
HabermehlMeyerWimmel2010 [HabermehlMeyerWimmel2010], together
with vanLeeuwen1978’s [vanLeeuwen1978], implies computability for B∗Bn

and the result here covers the monoids in SL. Hence, the question is: For
which graphs Γ is there an algorithm to compute downward closures of
VA(MΓ)? It should be mentioned that the author of this work is currently
developing a new approach to downward closure computation that will
likely be applicable to a wide range of language classes. While this new
approach subsumes the computability for F, its complexity is likely much
higher than the algorithm presented here.
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2. Furthermore, the decidability status of the context-freeness of sets of the
form {a

n1
1 · · ·a

nk
k | (n1, . . . ,nk) ∈ S} for a given semilinear S ⊆Nk remains

open. Equivalent decision problems have been presented by IbarraSeki2013 [IbarraSeki2013].
For partial solutions, see [Lisovik1996].
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discovered before [Abdulla2004] (and were called ideal decompositions in the
earlier work [Jullien1969]).
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Chapter 10

Non-expressibility results

10.1 Introduction

A crucial part of studying the expressiveness of automata models is to show that
certain languages cannot be accepted by a particular model. Moreover, the proofs
for such results often provide an intuition for the limits of the model at hand.
While in Chapters 3, 6, and 7, we have investigated when the classes VA(M) are
confined to regular, context-free, or semilinear languages, this is rarely sufficient
when we want to compare the expressiveness of two monoids. Therefore, in this
chapter, we turn to results that prove certain languages not to be accepted.

First, we survey a few known results. Then, we prove here that all inclusions
F0 ⊆ G0 ⊆ F1 ⊆ G1 ⊆ · · · in our hierarchy, which exhausts graph-defined
storage mechanisms that guarantee semilinearity, are strict. The following results
all pertain to language classes induced by graph monoids.

The main contribution in this chapter, the strictness of the hierarchy, appeared
in [Zetzsche2015a].

Known results The following was shown by Latteux [Latteux1977]. Alterna-
tive proofs have been obtained by Fernau and Stiebe [FernauStiebe2002a] and
by ClearyElderOstheimer2006 [ClearyElderOstheimer2006].

Theorem 10.1.1 (Latteux [Latteux1977]). For each k ∈N, VA(Zk) ( VA(Zk+1).

It can also be derived from the material in this work. Since VA(Zk) equals
VA+(Zk) (Theorem 8.1.1), it suffices to show VA+(Zk) ( VA+(Zk+1). Moreover,
the proof of Lemma 8.5.2 yields that for L ∈ VA+(Zk), the function fL is bounded
from above by a polynomial of degree k. If we then choose

Lk = {a
n1
1 · · ·a

nk
k b

n1
1 · · ·b

nk
k | n1, . . . ,nk ∈N},

it is easy to see that Lk ∈ VA+(Zk) and that fLk is also bounded from below by a
polynomial of degree k. Hence, Lk+1 ∈ VA+(Zk+1) \VA+(Zk). Coming back to
our motivation for studying non-expressibility results, namely getting an intu-
ition for expressiveness, this teaches us that the number of counters determines
the magnitude of growth of the number of configurations we must be able to
distinguish in order to accept a language.
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Using the same argument, one can show that Lk+1 ∈ VA+(Bk+1) \VA+(Bk).
However, since we have no ε-removal for Bk, this does not tell us whether the
inclusions VA(Bk) ⊆ VA(Bk+1) are all strict and to the best of the author’s
knowledge, this is still an open problem [Jantzen1979]. However, according to
Lemma 2.3.8, if these were not all strict, then there would be a fixed n ∈ N such
that VA(Bn) contains VA(Bk) for all k ∈N. This seems very unlikely.

A non-expressibility result for valence grammars has been obtained by Vicolov1994
and re-proved by FernauStiebe2002a [FernauStiebe2002a] using an iteration lemma
based on linear algebraic arguments.

Theorem 10.1.2 (Vicolov1994 [Vicolov1994]). For each k ∈N, VG(Zk) ( VG(Zk+1).

A simple construction shows that for each k ∈ N, the class VA(B(2) ×Zk)
equals VG(Zk) (see, for example, [Hoogeboom2002]). We can therefore conclude
the following from Theorem 10.1.2.

Corollary 10.1.3. For each k ∈N, VA(B(2) ×Zk) ( VA(B(2) ×Zk+1).

Strictness of the hierarchy Using Parikh annotations with insertion markers,
one can show that the inclusions F0 ⊆ G0 ⊆ F1 ⊆ G1 ⊆ · · · in the hierarchy are,
in fact, all strict. More precisely, we have the following.

Theorem 10.1.4. Let Xi and Yi for i ∈ N be the alphabets X0 = ∅, Yi = Xi ∪ {#i},
Xi+1 = Yi ∪ {ai+1,bi+1, ci+1}. Moreover, define the sets Ui ⊆ X∗i and Vi ⊆ Y∗i as
U0 = {ε} and

Vi = (Ui#i)∗, Ui+1 = Vi� {ani+1b
n
i+1c

n
i+1 | n > 0}

for i > 0. Then Vi ∈ Gi \ Fi and Ui+1 ∈ Fi+1 \Gi.

Recall that the levels correspond to the alternation of the two transformations
building stacks and adding blind counters (see the proof of Proposition 7.1.2) of stor-
age mechanisms. Therefore, Theorem 10.1.4 means in particular that statements
about stacked counter automata, such as the ε-removal in Chapter 8, must in-
deed consider arbitrarily deep nestings of these two transformations. Of course,
this is also true for algorithms that work directly with the hierarchy, such as the
computation of downward closures in Chapter 9.

Before we prove Theorem 10.1.4 in the next section, let us record some conse-
quences. Exhibiting a strict hierarchy of full trios that exhausts a language class
always implies that the language class cannot be a principal full trio. Intuitively,
and as explained before Corollary 2.3.5, this means that there is no fixed set of
operations that suffices to accept all languages.

Corollary 10.1.5. F is not a principal full trio. In particular, there is no finitely gener-
ated monoidM with VA(M) = F.

Proof. Suppose F were generated as a full trio by a language L ∈ F. Then L ∈ F
means that L ∈ Fi for some i ∈N. Since Fi is a full trio, this implies F ⊆ Fi, con-
tradicting Theorem 10.1.4. The second statement follows from Corollary 2.3.5.

By paying attention to what storage we actually need to accept the separat-
ing languages Ui and Vi, we can conclude that strictness is already achieved by

158

cf7212f0 2016-06-29 03:26:35 +0200



10.1. Introduction

adding two counters (as opposed to some finite number) in each transformation.
In the following corollary, we use the notation

Z(M) =M×Z, B(M) = B ∗M.

For example, we have

ZiB(M) = (B ∗M)×Zi, (ZB)2(M) = (B ∗ ((B ∗M)×Z))×Z.

Corollary 10.1.6. Let i ∈N and n1, . . . ,ni ∈N. Then we have

VA(B(Z2B)i(1)) \VA(Zn1B · · ·ZniB(1)) 6= ∅, (10.1)

VA(Z2B(Z2B)i(1)) \VA(BZn1B · · ·ZniB(1)) 6= ∅. (10.2)

Proof. Observe that U0 ∈ VA(1) and if Ui ∈ VA(M), then Vi ∈ VA(B(M)). More-
over, if Vi ∈ VA(M), then Ui+1 ∈ VA(Z2(M)). Therefore,

Vi ∈ VA(B(Z2B)i(1)), Ui+1 ∈ VA(Z2B(Z2B)i(1)) (10.3)

for all i ∈N.
Furthermore, if VA(M) ⊆ Fi for some i ∈ N, then VA(B(M)) ⊆ Alg(Fi) = Gi

(see Theorem 2.6.6). If VA(M) ⊆ Gi, then VA(Zn(M)) ⊆ SLI(Gi) = Fi+1 (see
Proposition 2.5.3). We have VA(B(1)) = VA(B) ⊆ G0 and hence

VA(BZn1B · · ·ZniB(1)) ⊆ Gi for i > 0,
VA(Zn1B · · ·ZniB(1)) ⊆ Fi for i > 1.

Since Ui+1 /∈ Gi and Vi /∈ Fi, together with (10.3), this proves (10.2) for i > 0
and (10.1) for i > 1.

Note that (10.1) also holds for i = 0: This amounts to showing that VA(1) is
strictly included in VA(B), which is trivial since VA(B) contains the non-regular
language {anbn | n > 0}.

Furthermore, we can conclude that in a stacked counter mechanism whose
outermost applied transformation was building stacks, already adding a single
blind counter yields strictness.

Corollary 10.1.7. For everyM ∈ SC−, we have VA(B ∗M) ( VA((B ∗M)×Z).

Proof. Suppose there were an M ∈ SC− with VA((B ∗M) ×Z) = VA(B ∗M).
Since M ∈ SC−, there is an i ∈ N with VA(B ∗M) ⊆ Fi (see the proof of Propo-
sition 7.1.2). If M = 1, our assumption reads VA(B×Z) = VA(B), which con-
tradicts the fact that the class VA(B×Z) contains the non-context-free language
{anbncn | n > 0}, while VA(B) contains only context-free languages. Hence, we
may assumeM 6= 1.

According to Theorem 2.6.6, this implies Alg(VA(B ∗M)) = VA(B ∗M). By
Lemma 2.3.8, we have VA((B ∗M)×Zn) = VA(B ∗M) for every n ∈ N and
hence VA(B ∗M) =

⋃
n>0 VA((B ∗M)×Zn) = SLI(VA(B ∗M)). In other words,

VA(B ∗M) is closed under taking the algebraic extension and under imposing
Presburger constraints. Since F0 ⊆ VA(B ∗M), this implies F ⊆ VA(B ∗M) ⊆ Fi,
contradicting Theorem 10.1.4.
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As an amusing byproduct of the proof of Theorem 10.1.4, we will obtain the
following result. While it is well-known that the classes VA(Zn) are not closed
under marked Kleene iteration, this states that the marked Kleene iteration is
available only in trivial cases. Note that this is not true for the ordinary Kleene
iteration, since the language L = {w ∈ {a,b}∗ | |w|a = |w|b} belongs to VA(Z) and
satisfies L = L∗.

Corollary 10.1.8. Let L ⊆ X∗ and # /∈ X. If (L#)∗ ∈ VA(Zn), then L is regular.

Note that Lemma 11.3.3 states that the same is true of torsion groups (as op-
posed to Zn). However, Lemma 11.3.3 and Corollary 10.1.8 use quite different
arguments.

10.2 Strictness of the hierarchy

This section is devoted to the proof of Theorem 10.1.4. It is of course easy to see
that F0 ( G0 ( F1, since F0 contains only finite sets, G0 is the class of context-
free languages, and F1 contains, for example, {anbncn | n > 0}. In order to
prove strictness at higher levels, we present two transformations: The first turns
a language from Fi \Gi−1 into one in Gi \ Fi (Proposition 10.2.1) and the second
turns one from Gi \ Fi into one in Fi+1 \Gi (Proposition 10.2.3).

The essential idea of Proposition 10.2.1 is the following. For the sake of sim-
plicity, assume (L#)∗ = L ′ ∩ Ψ−1(S) for L ′ ∈ C, L ′ ⊆ (X ∪ {#})∗. Consider a
PAIM (K ′,C,P, (Pc)c∈C,ϕ, �) for L ′ in C. Using a rational transduction, we ob-
tain from K ′ a language L̂ ⊆ (X∪ {#, �})∗ in C such that every member of L̂ admits
an insertion at � that yields a word from (L#)∗ = L ′ ∩ Ψ−1(S). Using rational
transductions again, we can then pick all words that appear between two # in
some member of L̂ and contain no �. Since there is a bound on the number of �
in K ′ (and hence in L̂), every word from L has to occur in this way. On the other
hand, since inserting at � yields a word in (L#)∗, every such word without �must
be in L.

Proposition 10.2.1. Let C be a full trio such that every language in C has a PAIM in C.
Moreover, let X be an alphabet with # /∈ X. If (L#)∗ ∈ SLI(C) for L ⊆ X∗, then L ∈ C.

Proof. Let Y = X ∪ {#}. Suppose (L#)∗ ∈ SLI(C). This means that we can write
(L#)∗ = h(L ′ ∩Ψ−1(S)) for some L ′ ⊆ Z∗, a semilinear S ⊆ Z⊕, and a morphism
h : Z∗ → Y∗. Since C has PAIMs, there is a PAIM (K,C,P, (Pc)c∈C,ϕ, �) for L ′ in
C. Let Sc = {µ ∈ P⊕c | ϕ(c+ µ) ∈ S}. Moreover, let g be the morphism with

g : (C∪Z∪ P ∪ {�})∗ −→ (Y ∪ {�})∗

z 7−→ h(z) for z ∈ Z,
x 7−→ ε for x ∈ C∪ P,
� 7−→ �.

Finally, we need the rational transduction T ⊆ (Y ∪ {�})∗ ×X∗ with

T(M) = {s ∈ X∗ | r#s#t ∈M for some r, t ∈ (Y ∪ {�})∗}.

We claim that

L = T(L̂), where L̂ = {g(cw) | c ∈ C, cw ∈ K, πP(w) ∈ Ψ−1(Sc↓)}.
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10.2. Strictness of the hierarchy

According to Corollary 2.8.3, the language Ψ−1(Sc↓) is regular, meaning L̂ ∈ C

and hence T(L̂) ∈ C. Thus, proving L = T(L̂) establishes the proposition.
We begin with the inclusion T(L̂) ⊆ L. Let s ∈ T(L̂) and hence r#s#t = g(cw)

for r, t ∈ (Y ∪ {�})∗, c ∈ C, cw ∈ K and πP(w) ∈ Ψ−1(Sc↓). The latter means there
is a µ ∈ P⊕c such that Ψ(πP(w)) + µ ∈ Sc and hence

Ψ(πZ(cw)) +ϕ(µ) = ϕ(c+Ψ(πP(w)) + µ) ∈ S.

By the insertion property of K, there is a v ∈ L ′ with πZ∪{�}(cw) �� v and
Ψ(v) = Ψ(πZ(cw)) +ϕ(µ). This means Ψ(v) ∈ S and thus v ∈ L ′ ∩ Ψ−1(S) and
hence g(v) = h(v) ∈ (L#)∗. Since g(�) = �, the relation πZ∪{�}(cw) �� v implies

r#s#t = g(cw) = g(πZ∪{�}(cw)) �� g(v) ∈ (L#)∗.

However, � does not occur in s, meaning #s# ∈ #X∗# is a factor of g(v) ∈ (L#)∗

and hence s ∈ L. This proves T(L̂) ⊆ L.
In order to show L ⊆ T(L̂), suppose s ∈ L. The boundedness property of K

means there is a bound k ∈N with |w|� 6 k for every w ∈ K. Consider the word
v = (s#)k+2. Since v ∈ (L#)∗, we find a v ′ ∈ L ′ ∩Ψ−1(S) with v = h(v ′). This, in
turn, means there is a cw ∈ K with c ∈ C and πZ(cw) = v ′. Then

ϕ(c+Ψ(πP(w))) = ϕ(πC∪P(cw)) = Ψ(πZ(cw)) = Ψ(v
′) ∈ S

and hence Ψ(πP(w)) ∈ Sc ⊆ Sc↓. Therefore, g(cw) ∈ L̂ ⊆ (Y ∪ {�})∗. Note that
g agrees with h(πZ(·)) on all symbols but �, which is fixed by the former and
erased by the latter. Since h(πZ(cw)) = h(v ′) = v = (s#)k+2, the word g(cw)
is obtained from (s#)k+1 by inserting occurrences of �. In fact, it is obtained by
inserting at most k of them since |g(cw)|� = |cw|� 6 k. This means g(cw) has at
least one factor #s# ∈ #X∗# and hence s ∈ T(g(cw)) ⊆ T(L̂). This completes the
proof of L = T(L̂) and thus of the proposition.

Proposition 10.2.1 now allows us to prove that (L#)∗ can only be accepted by
a blind multicounter automaton when L is regular.

Proof of Corollary 10.1.8. In Lemma 9.3.5, we have seen that regular languages
admit Parikh annotations. It is not hard to extend the proof so as to construct
Parikh annotations with insertion markers. Hence, applying Proposition 10.2.1
to C = Reg and noting that

⋃
n∈N VA(Zn) equals SLI(Reg) (Proposition 2.5.3)

yields the corollary.

In order to prove Proposition 10.2.3, we need a new concept. A bursting
grammar is one in which essentially the entire word is generated in a single ap-
plication of a production. Here, ‘essentially’ means: aside from a subsequent
replacement by terminal words of bounded length.

Bursting grammars Let C be a language class and k ∈ N. A C-grammar G is
called k-bursting if for every derivation tree t for G and every node x of t we
have: |yield(x)| > k implies yield(x) = yield(t). A grammar is said to be bursting if
it is k-bursting for some k ∈N.

In a bursting C-grammar, we can, using a rational transduction, extract L(G)
(finitely many exceptions aside) from those right-hand sides that essentially gen-
erate the entire word.
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Chapter 10. Non-expressibility results

Lemma 10.2.2. If C is a union closed full semi-trio and G a bursting C-grammar, then
L(G) ∈ C.

Proof. Suppose G = (N, T ,P,S) is k-bursting. Let σ : (N ∪ T)∗ → P(T∗) be the
substitution with σ(x) = {w ∈ T6k | x ⇒∗G w} for x ∈ N ∪ T . Since σ(x) is
finite for each x ∈ N ∪ T , there is clearly a locally finite rational transduction T
with T(M) = σ(M) for every language M ⊆ (N ∪ T)∗. In particular, σ(M) ∈ C

wheneverM ∈ C. Let R ⊆ N be the set of reachable nonterminals. We claim that

L(G)∩ T>k =
⋃
A∈R

⋃
A→L∈P

σ(L)∩ T>k. (10.4)

This clearly implies L(G) ∩ T>k ∈ C. Furthermore, since C is a union closed
full semi-trio and thus closed under adding finite sets of words, it even implies
L(G) ∈ C and hence the lemma.

We start with the inclusion “⊆”. Suppose w ∈ L(G) ∩ T>k and let t be a
derivation tree for G with yield(t) = w. Since |w| > k, t clearly has at least one
node x with |yield(x)| > k. Let y be maximal among these nodes (i.e. such that
no descendent of y has a yield of length > k). Since G is k-bursting, this means
yield(y) = w. Furthermore, each child c of y has |yield(c)| 6 k. Thus, if A is the
label of y, then A is reachable and there is a production A → L with w ∈ σ(L).
Hence, w is contained in the right-hand side of (10.4).

In order to show “⊇” of (10.4), suppose w ∈ σ(L)∩ T>k for some A → L ∈ P
and a reachable A ∈ N. By the definition of σ, we have A ⇒∗G w. Since A is
reachable, there is a derivation tree t for G with an A-labeled node x such that
yield(x) = w. Since G is k-bursting and |w| > k, this implies

w = yield(x) = yield(t) ∈ L(G)

and thus w ∈ L(G)∩ T>k.

We can now use Lemma 10.2.2 and Lemma 9.2.12 to prove the next propo-
sition. The essential idea for Proposition 10.2.3 is the following. We construct a
C-grammar G ′ for L by removing from a C-grammar G for

M = (L� {anbncn | n > 0})∩ a∗(bX)∗c∗

all terminals a,b, c. If Y = X ∪ {a,b, c}, the morphisms α,β : Y∗ → Z with
α(w) = |w|a − |w|b and β(w) = |w|b − |w|c always yield 0 on words in M.
Therefore, Lemma 9.2.12 provides a bound on the values of α and β on yields
of subtrees in derivation trees of G. This allows us to prove that G ′ must be
bursting: If a node x generates a sufficiently long word from X∗, then the corre-
sponding node in Gmust have a large number of b’s below it. The boundedness
of α and β then implies that it also has at least one a and one c below it, meaning
that x already generates the whole word.

Proposition 10.2.3. Let C be a union closed full semi-trio and let a,b, c /∈ X and
L ⊆ X∗. If L� {anbncn | n > 0} ∈ Alg(C), then L ∈ C.

Proof. Let K = L� {anbncn | n > 0}. If K ∈ Alg(C), then also the intersection
M = K ∩ a∗(bX)∗c∗ belongs to Alg(C). Hence, let M = L(G) for a reduced C-
grammar G = (N, T ,P,S). This means T = X ∪ {a,b, c}. Let α,β : T∗ → Z be the
morphisms with

α(w) = |w|a − |w|b, β(w) = |w|b − |w|c.
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10.3. Conclusion

Then α(w) = β(w) = 0 for each w ∈ M ⊆ K. Thus, Lemma 9.2.12 provides
G-compatible extensions α̂, β̂ : (N∪ T)∗ → Z of α and β, respectively.

We define k = max{|α̂(A)|, |β̂(A)| | A ∈ N}+ 1 and consider the C-grammar
G ′ = (N,X,P ′,S), where P ′ = {A → πN∪X(L) | A → L ∈ P}. Then clearly
L(G ′) = πX(M) = L. We claim that G ′ is k-bursting. By Lemma 10.2.2, this
implies L = L(G ′) ∈ C and hence the proposition.

Let t be a derivation tree for G ′ and x a node in t with |yield(x)| > k. Then
by definition of G ′, then there is a derivation tree t̄ for G such that t is obtained
from t̄ by deleting or replacing by an ε-leaf each {a,b, c}-labeled leaf. Since x has
to be an inner node, it has a corresponding node x̄ in t̄. Since G generatesM, we
have

yield(t̄) = anbx1bx2 · · ·bxncn

for some n > 0 and x1, . . . , xn ∈ X, x1 · · · xn ∈ L. Moreover, yield(x̄) is a fac-
tor of yield(t̄) and πX(yield(x̄)) = yield(x). This means |πX(yield(x̄))| > k and
since in yield(t̄), between any two consecutive X-symbols, there is a b, this im-
plies |yield(x̄)|b > k − 1. Let A be the label of x and x̄. By the choice of k, we
have |α̂(yield(x̄))| = |α̂(A)| 6 k − 1 and |β̂(yield(x̄))| = |β̂(A)| 6 k − 1. Hence,
|yield(x̄)|b > k− 1 implies |yield(x̄)|a > 1 and |yield(x̄)|c > 1. However, a factor of
yield(t̄) that contains an a and a c has to comprise all of bx1 · · ·bxn. Hence

yield(x) = πX(yield(x̄)) = x1 · · · xn = πX(yield(t̄)) = yield(t).

This proves that G ′ is k-bursting.

We are now ready to prove Theorem 10.1.4.

Proof of Theorem 10.1.4. First, note that if Vi ∈ Gi \ Fi, then Ui+1 ∈ Fi+1 \Gi: By
construction of Ui+1, the fact that Vi ∈ Gi implies Ui+1 ∈ SLI(Gi) = Fi+1. By
Proposition 2.7.2, Fi is a union closed full semi-trio. Thus, if we had Ui+1 ∈ Gi,
then Ui+1 ∈ Alg(Fi) and Proposition 10.2.3 would imply Vi ∈ Fi, which is not
the case.

Second, observe that Ui+1 ∈ Fi+1 \ Gi implies Vi+1 ∈ Gi+1 \ Fi+1: By con-
struction of Vi+1, the fact that Ui+1 ∈ Fi+1 implies Vi+1 ∈ Alg(Fi+1), mean-
ing Vi+1 ∈ Gi+1. By Proposition 2.7.2, Gi is a full semi-AFL and according
to Theorem 9.2.5, every language in Gi has a PAIM in Gi. Hence, if we had
Vi+1 ∈ Fi+1 = SLI(Gi), then Proposition 10.2.1 would imply Ui+1 ∈ Gi, which
is not the case.

Hence, it remains to be shown that V0 ∈ G0 \ F0. That, however, is clear
because V0 = #∗0, which is context-free and infinite.

10.3 Conclusion

We have presented several results concerning strict inclusions between language
classes induced by graph monoids. Most notably, we have shown that alter-
nating the transformations building stacks and adding blind counters yields more
languages in every step. This establishes some foundation to understand how
far we have to nest the stacked counters to arrive at the behavior we want. The
proof relies on two ingredients, the Parikh annotations with insertion marker
from Chapter 9 and bursting grammars, which were introduced in this chapter.
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Chapter 10. Non-expressibility results

The main result of this chapter, the strictness of the hierarchy, appeared in
[Zetzsche2015a].

Open problems

1. While the author strongly suspects that

VA(M×Zk) ( VA(M×Zk+1), (10.5)
VA(M×Z) ( VA(B ∗ (M×Z)) (10.6)

for each M ∈ SC− and k ∈ N, this does not seem to follow easily with
the available proof techniques. Note that aside from Corollary 10.1.6, this
would generalize every result in this chapter.

The reason why the techniques do not provide these finer distinctions is
twofold. First, in Section 9.2, Parikh annotations are only shown to exist
on each level of the hierarchy. It is therefore conceivable that a PAIM for L
might require more counters than L itself. This, in turn, calls into question
whether there is an analog of Proposition 10.2.1 for constructing languages
in the class VA(M×Z) \VA(M).

Regarding (10.6), the problem is that the current separating languages re-
quire two extra counters for each level of the hierarchy. Thus, ifM in (10.5)
always only adds one counter before building another stack, the separating
language may not be included in the right-hand side.

2. The problem of whether the inclusions VA(Bk) ⊆ VA(Bk+1) are strict re-
mains open. Strictness has been conjectured by Jantzen1979 [Jantzen1979].

Related work As mentioned above, several non-expressibility results had been
obtained before, either explicitly or implicitly. Proofs for the fact that VA(Zk)
is strictly included in VA(Zk+1) have been obtained by Latteux [Latteux1977],
FernauStiebe2002a [FernauStiebe2002a], and by ClearyElderOstheimer2006 [ClearyElderOstheimer2006].
Vicolov1994 [Vicolov1994] and later again FernauStiebe2002a [FernauStiebe2002a]
have shown that valence grammars over Zk are less powerful than over Zk+1,
which, together with an observation by Hoogeboom2002 [Hoogeboom2002], im-
plies that VA(B(2) ×Zk) is strictly included in the class VA(B(2) ×Zk+1).
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Chapter 11

Language classes arising from
valence automata

11.1 Introduction

Our aim is to use valence automata to obtain general insights on how structural
properties of the storage mechanisms impact the computational properties of
the result automata model. It is thus important to understand which storage
mechanisms can can be captured by valence automata. Therefore, this chapter
explores the limits of valence automata in terms of the language classes that arise
from them.

The material is divided into two sections. In Section 11.2, we present neces-
sary conditions that every language class VA(M) fulfills. In Section 11.3, we will
investigate whether a common construction for storage mechanisms, adding a ze-
rotest, has a counterpart for monoids. In other words, we ask: Given a monoidM,
is there always a way to construct a monoid M̃ such that M̃ has the capabilities
ofM, plus a zero test?

11.2 Necessary conditions

In this section we present necessary conditions for a language class to arise from
valence automata.

The first result has been obtained by RenderKambites2010 [RenderKambites2010].
Its statement requires some terminology. Let M be a monoid. A subset I ⊆ M
is an ideal if MIM ⊆ I. It is called proper if it is non-empty and a strict subset.
Moreover, an element z ∈ M is called a zero if xz = zx = x for every x ∈ M.
Clearly, a monoid can have at most one zero, which is why one usually denotes
this element by 0. A monoid is called simple if it has no proper ideals. Monoids
with zero always have the ideal {0}, which is why they cannot be simple unless
they are trivial. Therefore, we call them 0-simple if {0} is their only proper ideal.
RenderKambites2010 have shown the following.

Theorem 11.2.1 (RenderKambites2010 [RenderKambites2010]). For each monoid
M, there is a simple or 0-simple monoidM ′ with VA(M) = VA(M ′).
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Chapter 11. Language classes arising from valence automata

Let us sketch the proof. Given an ideal I of a monoid M, we write x ≡I y if
x,y ∈ I or x = y. Then, ≡I is a congruence and the quotient monoid M/≡I is
called Rees quotient and also denoted M/I. RenderKambites2010 prove that for
each proper ideal I, one has VA(M) = VA(M/I). Then, Theorem 11.2.1 is shown
as follows. If M is not already simple or 0-simple itself, then the union I of all
proper ideals is proper, since none of the proper ideals can contain the identity.
Furthermore,M/I is 0-simple and henceM ′ =M/I is as required.

Using Theorem 11.2.1 and algebraic results on simple and 0-simple monoids,
Render proved the following. Here, it can also be derived from Proposition 3.2.2
by noting that each group is either a torsion group or contains an isomorphic
copy of Z. Recall that a group G is called torsion group if for each g ∈ G, there is
a k ∈N \ {0} such that gk = 1.

Theorem 11.2.2 (Render2010 [Render2010]). For each monoidM, at least one of the
following holds:

1. VA(M) contains the blind one-counter languages,

2. VA(M) contains the partially blind one-counter languages,

3. VA(M) = VA(G) for some torsion group G.

Note that none of the two conditions 1 and 2 implies the other since the classes
VA(B) and VA(Z) are incomparable. The fact that VA(B) is not contained in
VA(Z) follows by semilinearity arguments (see, for example, Corollary 7.1.4).
On the other hand, Boasson [Boasson1973] proved hat VA(Z) is not contained in
VA(B).

We use Theorem 11.2.2 to derive a more language-theoretic necessary con-
dition for language classes VA(M). Since VA(G) is semilinear whenever G is a
torsion group (Theorem 7.1.3), we immediately obtain the following.

Theorem 11.2.3. For each monoidM, at least one of the following holds:

1. VA(M) contains the blind one-counter languages,

2. VA(M) contains the partially blind one-counter languages,

3. VA(M) is semilinear.

As an application, we show that valence automata cannot realize automata
with a counter that can only increase and checks in the end whether the counter
value is a square. More precisely, we show that T(S), where S = {cn

2
| n > 0},

cannot be written as VA(M).

Corollary 11.2.4. There is no monoidM with VA(M) = T(S).

Proof. Towards a contradiction, suppose VA(M) = T(S). Then, since T(S) con-
tains the non-semilinear language S, it has to contain either the blind one-counter
languages, VA(Z), or the partially blind one-counter languages, VA(B). In any
case, it contains {anbn | n > 0}.

We show that this is not true by proving the following claim: For every
L ∈ T(S), there is a constant k such that every w ∈ Lwith |w| > k decomposes as
w = xyz such that |y| > 0 and for some m > 1, we have xymz ∈ L. Clearly, the
claim refutes that {anbn | n > 0} belongs to T(S) and thus completes the proof.
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Suppose L = TS for some rational transduction T . If k is larger than the
number of states in a transducer for T , then each w ∈ L with |w| > k causes the
transducer to repeat a state after reading a positive number of symbols. For the
resulting decomposition w = xyz, we let ` be the number of c’s the transducer
reads while it outputs y and let n2 be the number of c’s it reads during the whole
computation. In the case ` = 0, we can clearly choose any m > 1, so suppose
` > 0. Now observe that

n2 + (2n+ `)` = n2 + 2n`+ `2 = (n+ `)2

is also a square, meaning xy2n+`+1z ∈ L. Thus, with m = 2n+ `+ 1, the claim
is satisfied.

11.3 Zero tests

In order to model storage mechanisms using monoids, it is important to under-
stand which transformations of storage mechanisms correspond to transforma-
tions of monoids. For example, taking the direct product M×N of monoids M
and N corresponds to combining two storage mechanisms such that they can
be used simultaneously and independently. Another example is taking the free
product B ∗M with the bicyclic monoid: As explained in Section 2.4 (page 19),
this corresponds to building stacks of configurations of an old storage mechanism.

Zero tests A very common transformation of storage mechanisms is the intro-
duction of a zero test: One adds a new operation that succeeds only if the current
configuration is empty. As an example, consider one counter automata [Berstel1979],
in which one counter can be incremented, decremented, or tested for zero. Here,
the counter cannot go below zero. Hence, these automata can be thought of as
extending partially blind one counter automata with a zero test.

In this section, we are concerned with the question whether there is a trans-
formation of monoids corresponding to adding zero tests. In other words, can
we, for each monoid M, find a monoid M ′ that extends the storage mechanism
represented by M with a zero test? Of course, we want M ′ to add precisely
the capabilities of a zero test and nothing more. Otherwise, a trivial solution
would be B ∗M, since popping the stack always requires that the topmost en-
try is empty; but B ∗M will sometimes add more computational power than
mere zero testing would: If M = B, then valence automata over B ∗B accept
all context-free languages whereas one-counter automata (with zero test) do not
(see, for example, [Berstel1979]).

Formalization Let us formalize our question. SupposeM is a finitely generated
monoid with an identity language L ⊆ X∗. If we could find a monoid M ′ with
identity language (L#)∗ for some # /∈ X, this would certainly constitute a solution:
Elements represented by X∗ would correspond to elements inM and the zero test
could be realized by multiplying the element represented by #. However, it is
easy to see that (L#)∗ does not, in general, arise as an identity language: Suppose
ι : X∗ → M is a surjective morphism and ι(u), ι(v) ∈ M with ι(u)ι(v) = 1 and
ι(v) 6= 1. Then uv# ∈ (L#)∗ and if (L#)∗ were an identity language, we would
also have u(uv#)v# ∈ (L#)∗, contradicting ι(v) 6= 1.
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Chapter 11. Language classes arising from valence automata

While we cannot hope to construct a monoid with identity language (L#)∗,
we can describe the class of languages resulting from a storage mechanism con-
sisting of “M plus zero test”. It consists of those obtainable from (L#)∗ by rational
transductions: A finite state transducer with input language (L#)∗ can be thought
of as a finite automaton with access to the storage of M and a zero test. In other
words, the language class is the principal full trio T((L#)∗). We can therefore ask
whether we can at least find a monoid that realizes “M plus zero test” with re-
spect to the generated class of languages. In other words: Is there a monoid M ′

such that VA(M ′) = T((L#)∗)? Unfortunately, the answer is negative again, as
stated by the main result of this section.

Theorem 11.3.1. Let L ⊆ X∗ be an identity language of a finitely generated infinite
torsion group and # /∈ X. There is no monoidM with VA(M) = T((L#)∗).

It should be mentioned that finitely generated infinite torsion groups indeed
exist. Whether this is true had been a long-standing open question—known as
the Burnside problem—before it was answered positively by GolodShafarevich1964 [GolodShafarevich1964,
Golod1964]. For simple constructions of such groups, see [GuptaSidki1983,
Grigorchuk1980].

We shall prove Theorem 11.3.1 by showing that the class T((L#)∗) violates
each of the three conditions of Theorem 11.2.2. If condition 1 or 2 is fulfilled, then
VA(M) contains {ambm | m > 0}. The first step in the proof of Theorem 11.3.1 is
to show that T((L#)∗) is too small to contain {ambm | m > 0}.

Lemma 11.3.2. Let L be an identity language of a finitely generated torsion group and
let K ∈ T((L#)∗). Then there is an n ∈ N such every w ∈ K with |w| > n decom-
poses into w = xyz with |y| > 1 and xytz ∈ K for infinitely many t. In particular,
{ambm | m > 0} does not belong to T((L#)∗).

Proof. It clearly suffices to prove the first statement. Let L ⊆ X∗ be an identity
language of G and let ι : X∗ → G be the surjective morphism inducing L. More-
over, let Y = X ∪ {#} and K = T(L#)∗, K ⊆ Z∗, for some rational transduction
T ⊆ Y∗ × Z∗. Let T be given by the automaton A = (Q, Y,Z,E,q0, F). We may
assume that

E ⊆ (Q× Y × {ε}×Q)∪ (Q× {ε}×Z×Q)

and that every edge entering a final state is labeled with (#, ε), that is, it reads #
and outputs nothing. Moreover, let k = |Q| and n = k2 + 1. Consider a word
v ∈ K with |v| > n. Then

(q0, (ε, ε))→∗A (q ′1, (u1, v1))
→A (q1, (u1#, v1))

...
→∗A (q ′m, (u1# · · ·um, v1 · · · vm))

→A (qm, (u1# · · ·um#, v1 · · · vm))

for some m ∈ N, q ′1,q1, . . . ,q ′m,qm ∈ Q, u1, . . . ,um ∈ X∗, v1 · · · vm = v, and
qm ∈ F. We distinguish two cases.

• Suppose |vi| > k for some 1 6 i 6 m. Then write vi = y1 · · ·y` for
y1, . . . ,y` ∈ Z and define û = u1# · · ·ui−1# and v̂ = v1 · · · vi−1. Refin-
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ing the run (qi, (û, v̂))→∗A (q ′i+1, (ûui, v̂vi)) yields

(p0, (û, v̂))→∗A (p1, (ûx1, v̂y1))
→∗A (p2, (ûx1x2, v̂y1y2))

...
→∗A (p`, (ûx1 · · · x`, v̂y1 · · ·y`))

with p0, . . . ,p` ∈ Q and x1, . . . , x` ∈ X∗, where p0 = qi and p` = q ′i+1.
Since ` > k = |Q|, there are 1 6 r < s 6 ` with pr = ps. Since G is
a torsion group, there are infinitely many t > 1 that satisfy the equality
ι((xr+1 · · · xs)t) = ι(xr+1 · · · xs) and hence

v1 · · · vi−1(y1 · · ·yr(yr+1 · · ·ys)tys+1 · · ·y`)vi+1 · · · vm ∈ K.

Since |yr+1 · · ·ys| = |s− r| > 1, we have found the desired decomposition.

• Suppose |vi| 6 k for all 1 6 i 6 m. Consider the set J = {i | |vi| > 1}. Since∑
i∈J |vi| = |v| > k2, we have |J| > k. This means there are i, j ∈ J, i < j,

with qi = qj. For each t > 1, we have

u1# · · ·ui#(ui+1# · · ·uj#)tuj+1 · · ·um ∈ (L#)∗.

Hence, the equality qi = qj implies v1 · · · vi(vi+1 · · · vj)tvj+1 · · · vm ∈ K.
Since |vi+1 · · · vj| > |vj| > 1, we have found the desired decomposition.

Together with Theorem 11.2.2, the foregoing lemma implies that if T((L#)∗)
is of the form VA(M) for some monoid M, then there is a torsion group G with
VA(G) = VA(M). The next step in our proof of Theorem 11.3.1 is to show that
T((L#)∗) is too large to be contained in VA(G) for a torsion group G.

Lemma 11.3.3. Let L ⊆ X∗ and # /∈ X. If (L#)∗ ∈ VA(G) for a torsion group G, then L
is regular.

Note that Corollary 10.1.8 states that the same is true of groups Zn (as op-
posed to torsion groups). However, Lemma 11.3.3 and Corollary 10.1.8 use quite
different arguments.

Proof of Lemma 11.3.3. Towards a contradiction, suppose (L#)∗ = L(A) for a va-
lence automaton A = (Q,X∪ {#},G,E,q0, F). First, we define

R = {p ∈ Q | (q0, ε, 1)→∗A (p, s, f)→∗A (r, st, 1)
for some f ∈ G, s, t ∈ (X∗#)∗, and r ∈ F}.

In other words, R consists of those states that can be entered in a valid compu-
tation after reading a prefix in (X∗#)∗. Moreover, for states p,q ∈ R, we write
p  q if (p, ε, 1) →∗A (q,w,g) for some w ∈ (X∗#)∗ and g ∈ G. With this, let
P = {(p,q) ∈ R× R | q  p}. Finally, for each (p,q) ∈ P, define Kp,q to be the
regular language

Kp,q = {w ∈ X∗ | (p, ε, 1)→∗A (q,w#,g) for some g ∈ G}.
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We claim that

L =
⋃

(p,q)∈P
Kp,q (11.1)

which clearly implies the lemma.
We begin with the inclusion “⊆”. Let w ∈ L and k = |Q|. Since (w#)k+2

belongs to (L#)∗, we have

(q0, ε, 1)→∗A (q1,w#,g1)

→∗A (q2, (w#)2,g1)
...

→∗A (qk+1, (w#)k+1,gk+1) = (qk+1, (w#)k+1, 1).

Then q0, . . . ,qk+1 ∈ R and there are indices 1 6 i < j 6 k+ 1 such that qi = qj.
Since qi+1  qj = qi, we have (qi,qi+1) ∈ P. Since furthermore w ∈ Kqi,qi+1 ,
the wordw is contained in the right-hand side of (11.1). This proves “⊆” of (11.1).

Now suppose u ∈ Kp,q with p,q ∈ R and q p. Then we have

(q0, ε, 1)→∗A (p, s, f)→∗A (r, st, 1) since p ∈ R (11.2)
(p, ε, 1)→∗A (q,u#,g) since u ∈ Kp,q (11.3)
(q, ε, 1)→∗A (p, v,h) since q p (11.4)

for some g,h, f ∈ G, v, s, t ∈ (X∗#)∗, r ∈ F. Together, (11.3) and (11.4) tell us that

(p, ε, 1)→∗A (q,u#,g)→∗A (p,u#v,gh).

Since G is a torsion group, there is an ` > 1 with (gh)` = 1. Hence, repeating the
former run yields

(p, ε, 1)→∗A (p, (u#v)`, (gh)`) = (p, (u#v)`, 1).

By inserting this into (11.2), we can construct the run

(q0, ε, 1)→∗A (p, s, f)

→∗A (p, s(u#v)`, f)

→∗A (r, s(u#v)`t, 1),

meaning w = s(u#v)`t ∈ (L#)∗. Since s ∈ (X∗#)∗ and ` > 1, the word w starts
with u# or has a factor #u#. In any case, u ∈ L. This proves (11.1) and thus the
lemma.

We are now ready to prove Theorem 11.3.1.

Proof of Theorem 11.3.1. Suppose T((L#)∗) = VA(M) for a monoid M. We distin-
guish the cases of Theorem 11.2.2.

If condition 1 or 2 is fulfilled, then {anbn | n > 0} is in VA(M). According
to Lemma 11.3.2, this language does not belong to T((L#)∗). Therefore, VA(M)
has to satisfy condition 3 and we have T((L#)∗) = VA(H) for a torsion group H.
This means in particular (L#)∗ ∈ VA(H), but then Lemma 11.3.3 implies that L is
regular. However, L is the identity language of a finitely generated infinite group
and hence non-regular by Theorem 3.3.1.
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11.4 Conclusion

We have investigated which languages classes arise from valence automata. Ex-
ploiting a result of Render2010 [Render2010], we have obtained the following
results. First, we have shown that every language class induced by valence au-
tomata contains VA(B), contains VA(Z), or is semilinear. We have applied this
to a type of automata that has access to a counter (that can only increase) and
accepts if the counter value is a square in the end. Our result implies that the
class of languages accepted by such automata is not of the form VA(M).

We have also shown that there is no way to transform any monoid M into
another monoid M̃ such that M̃ has the expressive power ofM, plus zero tests.

Open problems

1. We have seen that it is not possible to turn each monoid M into a mon-
oid M ′ such that M ′ represents the storage mechanism of M plus a zero
test. The monoidsM for which this turned out to be impossible are finitely
generated infinite torsion groups. Since these seem to be of limited inter-
est in the context of modeling infinite-state systems, one is inclined to ask
whether adding zero tests is possible for a restricted class of monoids.

2. A particular case of the first problem is interesting in its own right: Does the
class of languages accepted by one-counter automata with zero test arise as
VA(M)?

Related work The range of language classes that can be captured with monoid-
defined storage mechanisms increases when one considers valence automata
with target sets. These have been considered by RedkoLisovik1980 [RedkoLisovik1980],
FernauStiebe2001 [FernauStiebe2001], and RenderKambites2009 [RenderKambites2009].
Here, one specifies a subset of the storage monoid that has to be reached in order
to accept. It should be noted that allowing arbitrary target sets leads very quickly
to extremely powerful models. For example, with target sets and the free monoid
as storage, one can accept any language. Therefore, the considered target sets are
usually restricted to rational subsets of the storage monoid.

Another variant has been suggested later by RenderKambites2010 [RenderKambites2010].
When one has target sets, it is not necessary to require the storage to be given by
a monoid and it makes sense to consider arbitrary semigroups (which does not
necessarily have an identity) instead. Once the requirement for an identity is
dropped, allowing initial sets potentially increases the range of appearing lan-
guage classes further.

Acknowledgements I would like to thank Dietrich Kuske for asking the ques-
tion of the second open problem.
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Chapter 12

Conclusion

We have studied various facets of expressiveness and analyzability of autom-
ata with storage. Specifically, for a series of computational properties, we have
identified ways in which the structure of a storage mechanism impacts its com-
putational properties. These investigations have been pursued using the formal
framework of valence automata, in most cases over graph monoids. Since each
of these properties is assigned its own chapter with its own conclusion section,
we refer the reader to those sections for the individual properties.

On the whole, we can say that valence automata, especially over graph mon-
oids, permit meaningful characterizations of computational properties of storage
mechanisms. Furthermore, aside from the particular results that were obtained,
the research on these models yielded new models that raise interesting questions.

New models For example, the results in Chapter 4 leave us with an interesting
extension of the open problem of whether reachability is decidable for Petri nets
with one pushdown storage: The extension starts from partially blind counters
and allows building stacks and adding partially blind counters. The results here
suggest that reachability might even be decidable even for this general model,
which puts the problem for Petri nets with a pushdown in a new context.

There is another model that emerged from the foregoing investigations. In
the course of this work, we have identified stacked counter automata as a model
that is, on the one hand, rather expressive: Stacked counters are expressively
complete among those storages that guarantee semilinearity. On the other hand,
it seems to be well-suited for various kinds of analysis. We have seen that they
guarantee semilinearity (Chapter 7), permit the removal of ε-transitions (Chap-
ter 8), and allow the computation of downward closures (Chapter 9). It would
therefore be interesting to explore applications.

Applications In the case that one has just a pushdown store and blind counters,
an equivalent model has been studied and applied by HagueLin2011 [HagueLin2011].
While their counters permit zero tests, they have to be reversal bounded, which
makes them interchangeable with blind counters. This simple case of stacked
counter automata corresponds to recursive programs with access to a set of (un-
bounded) global numeric variables. In more complex configurations, when we
also build stacks, stacked counter automata can also model variables that are con-
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fined to the scope of the current execution instance. Interestingly, while HagueLin2011
show that reachability is NP-complete (for a fixed number of reversals) for their
model, Theorem 8.1.1 means that at the least the membership problem remains
in NP (albeit perhaps not uniformly) even when we use the full power of stacked
counter automata.

Another source of applications of stacked counter automata is group theory.
As already mentioned in Section 8.6, further insights on the uniform complexity
of their membership problem would entail complexity bounds for the rational
subset membership problem of graph groups.

These potential applications also call for the investigation of decidability and
complexity of further problems. For example, extending the popular approach to
LTL model checking of Büchi pushdown systems by BouajjaniEsparzaMaler1997 [BouajjaniEsparzaMaler1997]
to some form of Büchi stacked counter systems seems promising. Another inter-
esting problem to study would be the regularity problem for deterministic vari-
ants. It asks whether the accepted language of an automaton is regular. This is
known to be decidable for deterministic pushdown automata [Stearns1967] and
for deterministic blind multicounter automata (see Section 9.3.2). This suggests
that the same could be true of a deterministic variant of stacked blind counter
automata.
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List of symbols

Monoids
1 trivial monoid. 13
B bicyclic monoid. 14
T(X, I) traces over Xwith independence relation I. 98
M ∗N free product. 13
M ∗FN free product with amalgamation. 27
M(n) n-fold free product ofM. 14
Mn n-fold direct product ofM. 13
M(Γ , (Mv)v∈V ) graph product. 75
M�∆ graph product, restricted to subgraph. 76
MΓ graph monoid defined by Γ . 20
〈S〉 submonoid generated by S if S ⊆M for a monoidM. 7
S∗ submonoid generated by S if S ⊆M for a monoidM. 8
S⊕ submonoid generated by S if S ⊆ C for a commutative

monoid C. 8
Subsets of monoids

R1(M) right-invertible elements ofM. 13
L1(M) left-invertible elements ofM. 13
H1(M) invertible elements ofM. 13
J1(M) elements b ∈M such that abc = 1 for some a, c ∈M. 13
−→
I (x) right inverses of x. 43
←−
I (x) left inverses of x. 43

Classes of monoids
SL class of monoids with 1, B ∈ SL and where M,N ∈ SL

impliesM ∗N ∈ SL, M×Z ∈ SL. 84
DEC class of monoids with Bn ∈ DEC and where M,N ∈ DEC

impliesM ∗N,M×Z ∈ DEC. 58
REM class of monoids MΓ where Γ− does not contain C4 or P4,

but Γ contains a PPN-graph. 59
SC− class of monoids with 1 ∈ SC− and where M ∈ SC− im-

plies B ∗M,M×Z ∈ SC−. 84
SC± class of monoids with Bn ∈ SC± and where M ∈ SC±

implies B ∗M,M×Z ∈ SC±. 59
SC+ class of monoids with (B ∗ Bn) × B ∈ SC+ and where

M ∈ SC+ implies B ∗M,M×B ∈ SC+. 59
Languages

Dn Dyck language (over n pairs of parentheses). 12
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D ′n semi-Dyck language (over n pairs of parentheses). 12
L�K shuffle product of L and K. 8
L↓ downward closure of L. 33
L↑ upward closure of L. 33
SF(G) sentential forms of C-grammar G. 25

Functions and relations
� subword ordering. 34
�� insertion at marker. 126
6k component-wise 6; k divides differences. 88
≡Γ congruence induced by graph Γ . 20
≡k component-wise congruent modulo k. 88
Ψ(w) Parikh image of w. 8
πY(w) projection of w onto subalphabet Y. 8
ρ(w,U) number of U-factors in U-decomposition of w. 45
dep(w) dependence graph corresponding to w. 98
[w]Γ congruence class induced by graph Γ . 20
[w]I trace induced by wwith independence relation I. 98
[w]Γ |T trace induced by w with independence relation given by

graph Γ . 98
bin(w) number obtained by interpreting w as binary representa-

tion. 87
Language classes

Reg regular languages. 9
CF context-free languages. 11
RE recursively enumerable languages. 54
Σn n-th level of the arithmetical hierarchy. 66
Σn(L) n-th level of the arithmetical hierarchy relative to L. 66
Prio languages accepted by priority multicounter machines. 61
VA(M) languages accepted by valence automata overM. 15
VA+(M) languages accepted by ε-free valence automata overM. 93
detVA(M) languages accepted by deterministic valence automata

overM. 41
VG(M) languages generated by valence grammars overM. 40
T(L) full trio generated by L. 10
BT(L) Boolean closed full trio generated by L. 69
SLI(C) languages h(L ∩ Ψ−1(S)) with h morphism, L ∈ C, and S

semilinear. 23
Alg(C) algebraic extension of language class C. 25
F union of all levels of the hierarchy F. 33
Fi level of hierarchy F. 33
Gi level of hierarchy F. 33

Graphs
Γ− Γ ’s underlying simple graph. 20
P4 path on four vertices. 20
C4 cycle on four vertices. 20

Transduction classes
VT(M) transductions performed by valence transducers over M.

41
VT(M,C) transductions performed by valence transducers over M

with output in C. 104
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VT+(M,C) transductions performed by ε-free valence transducers
overMwith output in C. 104

Miscellaneous
XΓ alphabet {av, āv | v ∈ V} for graph Γ = (V ,E). 20
N set of natural numbers. 7
Z set of integers. 7
M ↪→ N there is a morphism ϕ : M→ N with ϕ−1(1) = {1}. 28
Rat(M) set of rational subsets ofM. 9
SL(M) set of semilinear subsets of commutative monoidM. 9
X⊕ multisets over X if X is an alphabet. 8
X∗ words over X if X is an alphabet. 8
ε empty word. 8
P(A) power set of A. 7
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