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Abstract
The downward closure of a language is the set of all (not necessarily contiguous) subwords of its
members. It is well-known that the downward closure of every language is regular. Moreover,
recent results show that downward closures are computable for quite powerful system models.

One advantage of abstracting a language by its downward closure is that then equivalence and
inclusion become decidable. In this work, we study the complexity of these two problems. More
precisely, we consider the following decision problems: Given languages K and L from classes C
and D, respectively, does the downward closure of K include (equal) that of L?

These problems are investigated for finite automata, one-counter automata, context-free
grammars, and reversal-bounded counter automata. For each combination, we prove a com-
pleteness result either for fixed or for arbitrary alphabets. Moreover, for Petri net languages,
we show that both problems are Ackermann-hard and for higher-order pushdown automata of
order k, we prove hardness for complements of nondeterministic k-fold exponential time.
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1 Introduction

The downward closure of a language is the set of (not necessarily contiguous) subwords of
its members. It is a well-known result of Haines [17] that the downward closure of every
language is regular. Of course, it is not always possible to compute the downward closure of
a given language, but oftentimes it is. For example, it has been shown to be computable for
such powerful models as Petri net languages by Habermehl, Meyer, and Wimmel [14] and
higher-order pushdown automata by Hague, Kochems, and Ong [15]. A sufficient condition
for computability can be found in [34].

Moreover, not only are downward closures often computable, they are also a meaningful
abstraction of infinite-state systems. In a complex system, one can abstract a component
by the downward closure of the messages it sends to its environment. This corresponds to
the assumption that messages can be dropped on the way. Furthermore, recent work of La
Torre, Muscholl, and Walukiewicz [25] shows that among other mild conditions, computing
downward closures is sufficient for verifying safety conditions of parametrized asynchronous
shared-memory systems.

The advantage of having an abstraction of an infinite-state systems as regular languages is
that the latter offer an abundance of methods for analysis. An important example is deciding
behavioral equivalence or inclusion. This is notoriously hard to do and for nondeterministic
infinite-state systems, language equivalence and inclusion are usually undecidable. Using
downward closures, such behavioral comparisons can be made in an approximative manner.

Despite these facts, results about the complexity of deciding whether the downward clo-
sure of one language includes or equals that of another mainly considered regular languages.
Bachmeier, Luttenberger, and Schlund [4] have shown that the equivalence problem for
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XX:2 The complexity of downward closure comparisons

downward closures of two given NFAs is coNP-complete. Karandikar, Niewerth, and Sch-
noebelen [22] strengthened coNP-hardness to the case of DFAs over binary alphabets and
proved coNP-completeness for the inclusion variant. They also obtained NL-completeness
of inclusion in the case of NFAs over a unary alphabet. Together with exponential-time
downward closure constructions [4, 7, 10, 26, 29], these results imply that equivalence and
inclusion are in coNEXP for context-free grammars. Rampersad, Shallit, and Xu [33] proved
that one can decide in linear time whether the downward closure of a given NFA contains all
words. Subsequently, Karandikar, Niewerth, and Schnoebelen [22] showed that this problem
is NL-complete. Similar questions have been studied for upward closures [4, 22].

Previous work on downward closures of infinite-state systems has mainly focused on
mere computability [1, 2, 7, 14, 15, 26, 34, 35] or on descriptional complexity [3, 10, 11,
22, 29]. This work studies the complexity of the inclusion and the equivalence problem
of downward closures between some prominent types of system models—finite automata,
one-counter automata, reversal-bounded counter automata [19], and context-free grammars.
More precisely, we are interested in the following questions: For two system modelsM and
N and languages L and K generated by some device in M and N , respectively, what is
the complexity of (i) deciding whether K↓ ⊆ L↓ (downward closure inclusion problem) or
(ii) deciding whether K↓ = L↓ (downward closure equivalence problem)?

Contribution We determine the complexity of the downward closure inclusion problem and
the downward closure equivalence problem among finite automata, one-counter automata,
reversal-bounded counter automata (either with a fixed number of counters and reversals or
without), and context-free grammars.

For the inclusion problem, we prove completeness results in all cases except for two. The
complexities range from coNP over ΠP

2 to coNEXP (see Table 1). The two cases for which
we provide no completeness compare context-free grammars or general reversal-bounded
counter automata on the one side with reversal-bounded counter automata with a fixed
number of counters and reversals on the other side. However, we prove that both of these
problems are coNP-complete for each fixed input alphabet. For the equivalence problem, the
situation is similar. We prove completeness for each of the cases except for the combination
above. Again, fixing the alphabet leads to coNP-completeness.

The tools developed to achieve these results fall into three categories. First, there are
several generic results guaranteeing small witnesses to yield upper bounds. Second, we prove
model-specific results about downward closures that yield the upper bounds in each case.
Third, we have a general method to prove lower bounds for downward closure comparisons.
In fact, it applies to more models than the above: We prove that for Petri net languages,
the two comparison problems are Ackermann-hard. For higher-order pushdown automata
of order k, we show co-k-NEXP-hardness.

Related work Another abstraction of formal languages is the well-known Parikh image [30].
The Parikh image of a language L ⊆ X∗ contains for each word w ∈ L a vector in N|X|
that counts the number of occurrences of each letter. For some language classes, it is known
that their Parikh image is effectively semilinear, which implies decidability of the inclusion
and equivalence problem for Parikh images. The investigation of these problems’ complexity
has been initiated by Huynh [18] in 1985, who showed that this problem is ΠP

2 -hard and
in coNEXP for regular and context-free languages. Kopczyński and To [23, 24] have then
shown that these problems are ΠP

2 -complete for fixed alphabets. Only very recently, Haase
and Hofman [13] have shown that the case of general alphabets is coNEXP-complete.
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Ideal NFA OCA RBCk,r CFG RBC
Ideal ∈ L NL NL NL P NP
NFA NL coNP [4, 22] coNP [3, 4, 22] coNP coNP ΠP

2

OCA NL coNP [3, 4, 22] coNP [3, 4, 22] coNP coNP ΠP
2

RBCk,r NL coNP coNP coNP coNP ΠP
2

CFG P coNP coNP coNP† coNEXP coNEXP
RBC coNP coNP coNP coNP† coNEXP coNEXP

Table 1 Complexity of the inclusion problem. The entry in row M and column N is the
complexity of M ⊆↓ N . Except in the case Ideal ⊆↓ Ideal, all entries indicate completeness. A †
means that the entry refers to the fixed alphabet case (for at least two letters).

2 Concepts and Results

If X is an alphabet, X∗ (X≤n) denotes the set of all words (of length ≤ n) over X. The
empty word is denoted by ε ∈ X∗. For words u, v ∈ X∗, we write u � v if u = u1 · · ·un and
v = v0u1v1 · · ·unvn for some u1, . . . , un, v0, . . . , vn ∈ X∗. It is well-known that � is a well-
quasi-order on X∗ and that therefore the downward closure L↓ = {u ∈ X∗ | ∃v ∈ L : u � v}
is regular for every L ⊆ X∗ [17]. An ideal is a set of the form Y ∗0 {x1, ε}Y ∗1 · · · {xn, ε}Y ∗n ,
where Y0, . . . , Yn are alphabets and x1, . . . , xn are letters. We will make heavy use of the
fact that every downward closed language can be written as a finite union of ideals, which
was first discovered by Jullien [21]. By P(S), we denote the powerset of the set S.

A finite automaton is a tuple A = (Q,X,∆, q0, Qf ), where Q is a finite set of states, X
is its input alphabet, ∆ ⊆ Q × X∗ × Q is a finite set of edges, q0 ∈ Q is its initial state,
and Qf ⊆ Q is the set of its final states. The language accepted by A is denoted L(A).
Sometimes, we write |A| for the number of states of A.

A context-free grammar is a tuple G = (N,T, P, S) where N and T are pairwise disjoint
alphabets, whose members are called the nonterminals and terminals, respectively. S ∈ N
is the start symbol and P is the finite set of productions of the form A→ w with A ∈ N and
w ∈ T ∗. The language generated by G is defined as usual.

One-counter Automata A one-counter automaton (OCA) is a nondeterministic finite au-
tomaton that has access to one counter that assumes natural numbers as values. The possible
operations are increment, decrement, and test for zero. We will not require a formal defi-
nition, since in fact, all we need is the well-known fact that membership and emptiness are
NL-complete and the recent result that given an OCA A, one can compute in polynomial
time an NFA B with L(B) = L(A)↓ [3].

Reversal-bounded counter automata Intuitively, an r-reversal-bounded k-counter automa-
ton [19] (short (k, r)-RBCA) is a nondeterministic finite automaton with k counters that
can store natural numbers. For each counter, it has operations increment, decrement, and
zero test. Moreover, a computation is only valid if each counter reverses at most r times.
Here, a computation reverses a counter c if on c, it first executes a sequence of increments
and then a decrement command or vice versa. See [19] for details.

Instead of working directly with RBCA, we will work here with the model of blind counter
automata [9]. It is not as well-known as RBCA, but simpler and directly amenable to linear
algebraic methods. A blind k-counter automaton is a tuple A = (Q,X, q0,∆, Qf ), where Q,
X, q0, andQf are defined as in NFAs, but ∆ is a finite subset ofQ×(X∪{ε})×{−1, 0, 1}k×Q.
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A walk is a word δ1 · · · δm ∈ ∆∗ where δi = (pi, xi, di, p
′
i) for i ∈ [1,m] and p′j = pj+1 for

j ∈ [1,m−1]. The effect of the walk is d1 + · · ·+dm. Its input is x1 · · ·xm ∈ X∗. If the walk
has effect 0 and p0 = q0 and pm ∈ Qf , then the walk is accepting. The language accepted by
A is the set of all inputs of accepting walks.

Using blind counter automata is justified because to each (k, r)-RBCA, one can construct
in logarithmic space a language-equivalent (kr, 1)-RBCA [5], which is essentially a blind kr-
counter automaton. On the other hand, every blind k-counter automaton can be turned in
logarithmic space into a (k+ 1, 1)-RBCA [20]. Hence, decision problems about (k, r)-RBCA
for fixed k and r correspond to problems about blind k-counter automata for fixed k.

In the following, by a model, we mean a way of specifying a language. In order to suc-
cinctly refer to the different decision problems, we use symbols for the models above. By
Ideal, NFA, OCA, RBCk,r, RBC, CFG, we mean ideals, finite automata, OCA, RBCA with a
fixed number of counters and reversals, general RBCA, and context-free grammars, respec-
tively. Then, for M,N ∈ {Ideal,NFA,OCA,RBCk,r,RBC,CFG}, we consider the following
problems. In the downward closure inclusion problem M⊆↓ N , we are given a language K
in M and a language L in N and are asked whether K↓ ⊆ L↓. For the downward closure
equivalence problem M =↓ N , the input is the same, but we are asked whether K↓ = L↓.

Results The complexity results for the inclusion problem are summarized in Table 1. For
the equivalence problem, we will see that every hardness result for M ⊆↓ N also holds
for M =↓ N . Since for non-ideal models, the appearing complexity classes are pairwise
comparable, this implies that the complexity for M =↓ N is then the harder of the two
classes forM⊆↓ N and N ⊆↓M. For example, the problem NFA =↓ RBC is ΠP

2 -complete
and for fixed alphabets, RBCk,r =↓ CFG is coNP-complete.

3 Ideals and Witnesses

Our algorithms for inclusion use three types of witnesses. The first type is a slight variation
of a result of [4]. The latter authors were interested in equivalence problems, which caused
their bound to depend on both input languages. The proof is essentially the same.

I Proposition 3.1 (Short witness). If A is an NFA and K↓ 6⊆ L(A)↓, then there exists a
w ∈ K↓ \ L(A)↓ with |w| ≤ |A|+ 1.

The other types of witnesses strongly rely on ideals, which requires some notation. An
ideal is a product I = Y ∗0 {x1, ε}Y ∗1 · · · {xn, ε}Y ∗n where the Yi are alphabets and the xi are
letters. Its length |I|I is the smallest n such that I can be written in this form. Since every
downward closed language can be written as a finite union of ideals, we can extend this
definition to languages: |L|I is the smallest n such that L↓ is a union of ideals of length ≤ n.

Sometimes, it will be convenient to work with a different length measure of ideals. An
ideal expression (of length n) is a product L1 · · ·Ln, where each Li is of the form Y ∗ or
{x, ε}, where Y is an alphabet and x is a letter. Note that Y ∗ = Y ∗{x, ε} if x ∈ Y and
{x, ε} = ∅∗{x, ε}. Therefore, an ideal expression of length n defines an ideal of length
≤ n. In analogy to | · |I, for a language L, we define its expression length |L|E to be the
smallest n such that L↓ can be written as a finite union of ideal expressions of length ≤ n.
The expression length has the advantage of being subadditive: For languages K,L we have
|KL|E ≤ |K|E + |L|E. Moreover, we have |L|I ≤ |L|E ≤ 2|L|I + 1.

The measure | · |I turns out to be instrumental for the inclusion problem. Note that
K↓ 6⊆ L↓ if and only if there is an ideal I ⊆ K↓ of length ≤ |K|I with I 6⊆ L↓. We can
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therefore guess ideals and check inclusion for them. From now on, we assume alphabets to
come linearly ordered. This means for every alphabet Y , there is a canonical word wY in
which every letter from Y occurs exactly once.

I Proposition 3.2 (Ideal witness). Let I = Y ∗0 {x1, ε}Y ∗1 · · · {xn, ε}Y ∗n . Then the following
are equivalent: (i) I ⊆ L↓. (ii) wm

Y0
x1w

m
Y1
· · ·xnw

m
Yn
∈ L↓ for every m ≥ |L|I + 1. (iii)

wm
Y0
x1w

m
Y1
· · ·xnw

m
Yn
∈ L↓ for some m ≥ |L|I + 1.

A word of the form wm
Y0
x1w

m
Y1
· · ·xnw

m
Yn
∈ L↓ with m ≥ |L|I + 1 is therefore called an ideal

witness for I and L. The proof of Proposition 3.2 is a simple pumping argument based on
the fact that an ideal of length ≤ m admits an NFA with ≤ m + 1 states. Ideal witnesses
are useful when we have a small bound on |K|I and |L|I but only a large bound on the NFA
size of L↓. Observe that putting a bound on |L|I amounts to proving a pumping lemma: We
have |L|I ≤ n if and only if for every w ∈ L, there is an ideal I with |I|I ≤ n and x ∈ I ⊆ L↓.

However even if, say, |K|I is polynomial and |L|I is exponential, ideal witnesses can be
stored succinctly in polynomial space, by keeping a binary representation of the power m.
For instance, this will be used in the case NFA ⊆↓ RBC.

Sometimes, we have a small bound on |L|I, but |K|I may be large. Then, ideal witnesses
are too large to achieve an optimal algorithm. In these situations, we can guarantee smaller
witnesses if we fix the alphabet.

I Proposition 3.3 (Small alphabet witness). Let K,L ⊆ X∗. If K↓ 6⊆ L↓, then there exists
a w ∈ K↓ \ L↓ with |w| ≤ |X| · (|L|I + 1)|X|.

The proof of Proposition 3.3 is more involved than Propositions 3.1 and 3.2. Note that a
naive bound can be obtained by intersecting exponentially (in |L|I) many automata for the
ideals of L↓ and complementing the result. This would yield a doubly exponential (in |L|I)
bound, even considering the fact that ideals have linear-size DFAs. We can, however, use
the latter fact in a different way.

A DFA is ordered if its states can be partially ordered so that for every transition p x−→ q,
we have p ≤ q. In other words, the automaton is acyclic except for loop transitions. The
following lemma is easy to see: In order to check membership in an ideal, one just has to
keep a pointer into the expression that never moves left.

I Lemma 3.4. Given an ideal representation of length n, one can construct in logarithmic
space an equivalent ordered DFA with n+ 2 states.

An ordered DFA cycles at a position of an input word if that position is read using a loop.
The following lemma is the key idea behind Proposition 3.3. Together with Lemma 3.4, it
clearly implies Proposition 3.3. For unary alphabets, it is easy to see. We use induction on
|X| and show, roughly speaking, that without such a position, no strict subalphabet can be
used for too long. Then, all letters have to appear often, meaning a state has to repeat after
seeing the whole alphabet. Hence, the automaton stays in this state until the end.

I Lemma 3.5. If w ∈ X∗ with |w| > |X| · (n− 1)|X|, then w has a position at which every
ordered n-state DFA cycles.

4 Insertion trees

In Section 5, we will show upper bounds for the size of downward closure NFAs and for ideal
lengths for counter automata. These results employ certain decompositions of NFA runs
into trees, which we discuss here.
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Let A = (Q,X,∆, q0, Qf ) be a finite automaton. A walk is a word w = δ1 · · · δm ∈ ∆∗
where δi = (pi, xi, p

′
i) for i ∈ [1,m] and p′j = pj+1 for j ∈ [1,m−1]. The walk is a (p1-)cycle

if p1 = p′m. In this case, we define σ(w) := p1. A cycle is prime if pi = p1 implies i = 1. A
cycle is simple if pi = pj implies i = j. A state q occurs on the cycle if pi = q for some i. If
i 6= 1, then q occurs properly.

A common operation in automata theory is to take a run and delete cycles until the run
has length at most |Q|. The idea behind an insertion tree is to record where we deleted
which cycles. This naturally leads to a tree.

For our purposes, trees are finite, unranked and ordered. An insertion tree is a tree
t = (V,E) together with a map γ : V → ∆∗ that assigns to each vertex v ∈ V a simple cycle
γ(v) such that if u is the parent of v, then σ(γ(v)) properly occurs in γ(u). Note that we
allow multiple children for a state that occurs in γ(u).

Since t is ordered and in every simple cycle there is at most one proper occurrence of
each state, an insertion tree defines a unique (typically not simple) cycle α(t). Formally, if
t is a single vertex v, then α(t) := γ(v). If t consists of a root r and subtrees t1, . . . , ts, then
α(t) is obtained by inserting each α(ti) in γ(r) at the (unique) occurrence of σ(α(ti)). The
height of an insertion tree is the height of its tree.

I Lemma 4.1. Every prime cycle of A admits an insertion tree of height at most |Q|.

The idea is to pick a cycle c strictly contained in the prime cycle, but of maximal length.
Then, after removing c, no state occurs both before and after the old position of c. This
forces any insertion tree t of the remainder to place this position in the root. We then apply
induction to the subtrees of t and to c. The resulting trees can then all be attached to the
root, increasing the height by at most one.

One application of Lemma 4.1 is to construct short ideals in a pumping lemma for counter
automata. Part of this construction is independent from counters, so we stay with NFAs
for a moment. Suppose we have an insertion tree t = (V,E) with map γ : V → ∆∗ and a
subset F ⊆ V , whose members we call fixed vertices or fixed cycles. Those in V \ F are
called pumpable vertices/cycles.

We use fixed and pumpable vertices to guide a pumping process as follows. A sequence
s = t1 · · · tm of insertion trees is called compatible if σ(α(t1)) = · · · = σ(α(tm)). We assume
that we have a global set F of vertices that designates the fixed vertices for all these trees.
Suppose v is a pumpable vertex. We obtain new compatible sequences in two ways:

Let v1, . . . , v` be the children of v. We choose i ∈ [0, `] and split up v at i, meaning that
we create a new vertex v′ with γ(v′) = γ(v) to the right of v and move vi+1, . . . , v` (and,
of course, their subtrees) to v′.
If the whole subtree under v is pumpable (we call such subtrees pumpable), then we can
duplicate this subtree and attach its root somewhere as a sibling of v.

If v is a root, these operations mean that we introduce a new tree in the sequence. If a
compatible sequence s′ is obtained from s by repeatedly performing these operations, we
say that s′ is obtained by pumping s. This allows us to define the following language:

P (t1 · · · tm, F ) = {ι(α(t′1) · · ·α(t′k)) | t′1 · · · t′k results from pumping t1 · · · tm}.

Here, for a walk w, ι(w) denotes the input word read by w. The following lemma will yield
the desired short ideals.

I Lemma 4.2. Let s = t1 · · · tm be a compatible sequence of insertion trees of height ≤ h

and let F be a set of fixed vertices. Then, the language P (s, F )↓ is an ideal that satisfies
|P (s, F )↓|E ≤ h|F |(2|Q|+ |F |)2.
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Roughly speaking, the pumping process is designed so that pumpable subtrees only cause
alphabets Y in factors Y ∗ of the ideal to grow and thus do not affect the ideal length. Hence,
the only vertices that contribute to the length are those that are ancestors of vertices in F .
Since the trees have height ≤ h, there are at most h|F | such ancestors.

5 Counter Automata

In this section, we construct downward closure NFAs for counter automata and prove up-
per bounds for ideal lengths. Mere computability of downward closures of blind counter
automata can be deduced from computability for Petri net languages [14]. However, that
necessarily results in non-primitive recursive automata (see Section 8). As a special case of
stacked counter automata, blind counter automata were provided with a new construction
method in [35]. That algorithm, however, yields automata of non-elementary size. Here, we
prove an exponential bound.

I Theorem 5.1. For each n-state blind k-counter automaton A, there is an NFA B with
L(B) = L(A)↓ and |B| ≤ (3n)5nk+7k3 . Moreover, B can be computed in exponential time.

Linear Diophantine equations In order to show correctness of our construction, we employ
a result of Pottier [31], which bounds the norm of minimal non-negative solutions to a
linear Diophantine equation. Let A ∈ Zk×m be an integer matrix. We write ‖A‖1,∞ for
supi∈[1,k](

∑
j∈[1,m] |aij |), where aij is the entry of A at row i and column j. A solution

x ∈ Nm to the equation Ax = 0 is minimal if there is no y ∈ Nm with Ay = 0 and y ≤ x,
y 6= x. The set of all solutions clearly forms a submonoid of Nm, which is denoted M . The
set of minimal solutions is denoted H(M) and called the Hilbert basis of M . Let r be the
rank of A. Pottier showed the following.

I Theorem 5.2 (Pottier [31]). For each x ∈ H(M), ‖x‖1 ≤ (1 + ‖A‖1,∞)r.

By applying Theorem 5.2 to the matrix (A|−b), it is easy to deduce that for each x ∈ Nm

with Ax = b, there is a y ∈ Nm with Ay = b, y ≤ x, and ‖y‖1 ≤ (1 + ‖(A| − b)‖1,∞)r+1.

Automata for the downward closure Let A be a blind k-counter automaton with n states.
The idea of the construction of B is to traverse insertion trees of prime cycles of A. Although
insertion trees were introduced for finite automata, they also apply to blind counter automata
if we regard the counter updates as input symbols. B keeps track of where it is in the tree
using a stack of bounded height. The stack alphabet will be Γ = Q × [−n, n]k. We define
B = n+ n · (3n)(k+1)2 . The state set of our automaton B1 is the following:

Q1 = Q× Γ≤n × [−B,B]k × P([−n, n]k)× P([−n, n]k).

Here, the number of states is clearly doubly exponential, but we shall make the automaton
smaller in two later steps. The idea behind B1 is that counter values in the interval [−B,B]
are simulated precisely (in the factor [−B,B]k). Roughly speaking, whenever we encounter
a cycle, we can decide whether to (i) add its effect to this precise counter or to (ii) remember
the effect as “must be added at least once”. We call the former precise cycles; the latter are
dubbed obligation cycles and are stored in the first factor P([−n, n]k). In either case, the
effect of a cycle is kept as “repeatable” in the second factor P([−n, n]k).

In order to be able to guess for each cycle whether it should be a precise cycle or an
obligation cycle, we traverse an insertion tree of (the prime cycles on) a walk of A. On
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the stack (the factor Γ≤n), we keep the cycles that we have started to traverse. Suppose
we are executing a cycle in a vertex v and the path from the root to v consists of the
vertices v1, . . . , vm. Let γ(vi) be a qi-cycle for i ∈ [1,m]. Then, the stack content is
(q1, u1) · · · (qm, um), where ui is the effect of the part of γ(vi) that has already been traversed.

In the end, we verify that (i) the precise counter is zero and (ii) one can add up obligation
cycles (each of them at least once) and repeatable cycles to zero. The latter condition is
captured in the following notion. Let S, T ⊆ Zk be finite sets with S = {u1, . . . , us},
T = {v1, . . . , vt}. We call the pair (S, T ) cancellable if there are x1, . . . , xs ∈ N \ {0} and
y1, . . . , yt ∈ N with

∑s
i=1 xiui +

∑t
i=1 yivi = 0. In particular, (∅, T ) is cancellable for any

finite T ⊆ Zk. Together, (i) and (ii) guarantee that the accepted word is in the downward
closure: They imply that we could have executed all of the obligation cycles and some others
(again) to fulfill our obligation. Hence, there is a run of A accepting a superword.

The number of cycles we can use as precise cycles is limited by the capacity B of our
precise counter. We shall apply Theorem 5.2 to show that there is always a choice of cycles
to use as precise cycles so as to reach zero in the end and not exceed the capacity.

The first type of transition in B1 is the following. For each transition (p, a, d, q) ∈ ∆ and
state (p, ε, v, S, T ) ∈ Q1 such that v + d ∈ [−B,B]k, we have a transition

(p, ε, v, S, T ) a−→ (q, ε, v + d, S, T ). (1)

These allow us to simulate transitions in a walk of A that are not part of a cycle. We can
guess that a cycle is starting. If we are in state p, then we push (p, 0) onto the stack:

(p, w, v, S, T ) ε−→ (p, w(p, 0), v, S, T ). (2)

While we are traversing a cycle, new counter effects are stored in the topmost stack entry. For
each transition (p, a, d, q) ∈ ∆ and state (p, w(r, u), v, S, T ) ∈ Q1 such that u+ d ∈ [−n, n]k,
we have a transition

(p, w(r, u), v, S, T ) a−→ (q, w(r, u+ d), v, S, T ). (3)

When we are at the end of a cycle, we have to decide whether it should be a precise cycle or
an obligation cycle. The following transition means it should be precise: The counter effect
u of the cycle is added to the counter v, the stack is popped, and u is added to the set of
repeatable effects T . For each state (p, w(p, u), v, S, T ) ∈ Q1 such that v+u ∈ [−B,B]k, we
have a transition

(p, w(p, u), v, S, T ) ε−→ (p, w, v + u, S, T ∪ {u}). (4)

In order to designate the cycle as an obligation cycle, we have the following transition: The
stack is popped and u is added to both S and T . For each state (p, w(p, u), v, S, T ) ∈ Q1,
we include the transition

(p, w(p, u), v, S, T ) ε−→ (p, w, v, S ∪ {u}, T ∪ {u}) (5)

The initial state is (q0, ε, 0, ∅, ∅) and the final states are all those of the form (q, ε, 0, S, T )
where q is final in A and (S, T ) is cancellable. Employing Lemma 4.1 and Theorem 5.2, one
can now show that L(A) ⊆ L(B1) ⊆ L(A)↓.

State space reduction I We have thus shown that L(B1)↓ = L(A)↓. However, B1 has a
doubly exponential number of states. Therefore, we now reduce the number of states in
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two steps. First, instead of remembering the set S of obligation effects, we only maintain
a linearly independent set of vectors generating the same vector space. For a set R ⊆ Qk,
let span(R) denote the Q-vector space generated by R. Moreover, I(R) denotes the set of
linearly independent subsets of R. Our new automaton B2 has states

Q2 = Q× Γ≤n × [−B,B]k × I([−n, n]k)× P([−n, n]k)

and a state in B2 is final if it is final in B1. B2 has the same transitions as B1, except that
aside from those of type (5), it has

(p, w(p, u), v, S, T ) ε−→ (p, w, v, S′, T ∪ {u}) (6)

for each linearly independent subset S′ ⊆ S ∪ {u} such that span(S′) = span(S ∪ {u}). Of
course, such an S′ exists for any S and u. This means, by induction on the length, for any
walk of B1 from (p, w, v, S, T ) to (q, w′, v′, S′, T ′), we can find a walk with the same input
in B2 from (p, w, v, S, T ) to (q, w′, v′, S′′, T ′) with S′′ ⊆ S′ and span(S′′) = span(S′). Since
(S′, T ′) is cancellable and S′ ⊆ T ′, the pair (S′′, T ′) is cancellable as well. This means, our
walk in B2 is accepting and hence L(B1) ⊆ L(B2). It remains to verify that L(B2) ⊆ L(B1).

Observe that for any walk arriving in (q, w, v, S, T ) in B2, there is a corresponding walk
in B1 arriving in (q, w, v, S′, T ) for some S′ ⊇ S with span(S′) = span(S). The next lemma
tells us that if (q, w, v, S, T ) is a final state in B2, then (q, w, v, S′, T ) is final in B1. This
implies that L(B2) ⊆ L(B1) and hence L(B2) = L(B1).

I Lemma 5.3. Let T ⊆ Zk and S1 ⊆ S2 ⊆ Zk such that span(S1) = span(S2). If (S1, T ) is
cancellable, then so is (S2, T ).

State space reduction II We apply a similar transformation to the last factor of the state
space. In B3, we have the state space

Q3 = Q× Γ≤n × [−B,B]k × I([−n, n]k)× I([−n, n]k).

and a state is final in B3 if and only if it is final in B2. Analogous to B2, we change the
transitions so that instead of adding u ∈ [−n, n]k to T , we store an arbitrary T ′ ∈ I(T ∪{u}).

This time, it is clear that L(B3) ⊆ L(B2): For every walk in B3 arriving at (q, w, v, S, T ),
there is a corresponding walk in B2 arriving at (q, w, v, S, T ′) such that T ⊆ T ′. Clearly,
if (S, T ) is cancellable, then (S, T ′) must be cancellable as well. The following lemma
implies L(B2) ⊆ L(B3): It says that for each walk in B2 arriving at (q, w, v, S, T ), there is
a corresponding walk in B3 arriving at (q, w, v, S, T ′) for some linearly independent T ′ ⊆ T
such that (S, T ′) is cancellable and hence (q, w, v, S, T ′) is final.

I Lemma 5.4. Let S, T ⊆ Zk such that (S, T ) is cancellable. Then there is a linearly
independent subset T ′ ⊆ T such that (S, T ′) is cancellable.

We have thus shown that L(B3)↓ = L(A)↓. An estimation of the size ofQ3 now completes
the proof of Theorem 5.1. We apply Theorem 5.1 to derive an algorithm for Ideal ⊆↓ RBC.

I Corollary 5.5. The problem Ideal ⊆↓ RBC is in NP.

Since Theorem 5.1 provides an exponential bound on |L(A)|I, we can use an ideal witness
w = wm

Y0
x1w

m
Y1
· · ·x`w

m
Y`

(Proposition 3.2) for which we have to check membership in L(A).
Since ` is polynomial and m exponential, we can compute a compressed representation of w
in form of a straight-line program, a context-free grammar that generates one word [27]. It
follows easily from work of Hague and Lin [16] that membership of such compressed words
in languages of blind (or reversal-bounded) counter automata is decidable in NP.
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Fixed number of counters Unfortunately, the size bound for the NFAs provided by The-
orem 5.1 has the number of states in the exponent, meaning that if we fix the number k
of counters, we still have an exponential bound. In fact, we leave open whether one can
construct polynomial-size NFAs for fixed k. However, in many cases it suffices to have a
polynomial bound on the length of ideals.

I Theorem 5.6. If A is an n-state blind k-counter automaton, then |L(A)|I ≤ (5n)7(k+1)2 .

Recall that an upper bound on |L|I is essentially a pumping lemma (see Section 3). Here,
the idea is to take a walk of A and delete cycles until the remaining walk u is at most n
steps. For the deleted cycles, we take an insertion tree of height at most n (Lemma 4.1).
Then, using Theorem 5.2, we pick a subset F (whose size is polynomial when fixing k) of
cycles that can balance out the effect of u. We then employ Lemma 4.2 to the insertion
trees to construct an ideal whose length is polynomial in |F |.

6 Context-Free Grammars

We turn to context-free grammars. First, we mention that given a context-free grammar G,
one can construct in exponential time an (exponential-size) NFA accepting L(A)↓ [4, 7, 10,
26, 29]. Second, we provide an algorithm for the problem Ideal ⊆↓ CFG.

I Theorem 6.1. The problem Ideal ⊆↓ CFG is in P.

In [34], this problem has been reduced to the simultaneous unboundedness problem (SUP)
for context-free languages. The latter asks, given a language L ⊆ a∗1 · · · a∗n, whether we
have L↓ = a∗1 · · · a∗n. Moreover, this reduction is clearly polynomial. Hence, we assume that
L(G) ⊆ a∗1 · · · a∗n and that the grammar G = (N,T, P, S) is productive and in Chomsky
normal form, meaning that productions are of the form A → BC, A → ai, or A → ε for
A,B,C ∈ N . First, we add productions A→ ε for all A ∈ N , so that the resulting grammar
G′ satisfies L(G′) = L(G)↓. For each A ∈ N , we can in polynomial time construct a CFG
for {w ∈ (N ∪ T )∗ | A⇒∗G′ w}, so we can compute the sets Li = {A ∈ N | A⇒∗G′ aiA} and
Ri = {A ∈ N | A⇒∗G′ Aai} using membership queries. We can thus compute the grammar
Gω, which results from G′ by (i) removing all productions A → ai, (ii) adding A → aω

i A

for each A ∈ Li and (iii) adding A → Aaω
i for each A ∈ Ri. Clearly, an occurrence of aω

i

certifies the ability to generate an unbounded number of ai’s. Thus, if aω
1 · · · aω

n ∈ L(Gω),
then a∗1 · · · a∗n ⊆ L(G′) = L(G)↓. It is not hard to see that the converse is true as well. We
have thus reduced the SUP to the membership problem.

7 Algorithms

Algorithms forM⊆↓ Ideal. SupposeM = Ideal and we want to decide whether I ⊆ J for
ideals I, J ⊆ X∗. In logspace, we construct an ideal witness w for I and J (Proposition 3.2)
and a DFA A for X∗ \ J (Lemma 3.4) and check whether w ∈ L(A). In all other cases, to
decide L↓ ⊆ I, we construct a DFA A for X∗ \ I and check whether L↓ ∩ L(A) = ∅.

Algorithms forM⊆↓ NFA. SupposeM = Ideal and we want to decide whether I ⊆ L(A)↓
for an NFA A. Since |L(A)|I ≤ |A|, we can construct in logspace an ideal witness w for I and
L(A)↓ and verify w ∈ L(A)↓. In all other cases, we use a short witness for coNP-membership.
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Algorithms forM⊆↓ OCA. SupposeM = Ideal and we want to decide whether I ⊆ L(A)↓
for an OCA A. We have a polynomial bound on |L(A)|I (see Section 2). Hence, we construct
in logspace an ideal witness w for I and L(A)↓. We can also construct in logspace an OCA
A′ with L(A′) = L(A)↓. Membership for OCA is in NL = coNL, so we can verify w ∈ I and
w /∈ L(A′) = L(A)↓. In all other cases, we convert the OCA to an NFA (see Section 2).

Algorithms for M ⊆↓ RBCk,r. Let A be drawn from RBCk,r. First, suppose M = Ideal
and we want to decide whether I ⊆ L(A). By Theorem 5.6, we have a polynomial bound
on |L(A)|I and can construct in logspace an ideal witness w for I and L(A). We can also
construct in logspace an RBCA A′ with L(A′) = L(A)↓. Since membership for RBCk,r is
in NL [12], we can check whether w ∈ L(A′). Now let M ∈ {NFA,OCA,RBCk,r} and we
are given L inM and an automaton A from RBCk,r. For NFA, OCA, and RBCk,r, we have
a polynomial bound on |L|I (see Section 2 and Theorem 5.6). Thus, we guess an ideal I
of polynomial length and then verify that I ⊆ L↓ but I 6⊆ L(A)↓. Since Ideal ⊆↓ M and
Ideal ⊆↓ RBCk,r are in NL, the verification is done in NL. Hence, non-inclusion is in NP.
ForM ∈ {CFG,RBC}, we assume a fixed alphabet. Let L be inM. Then Proposition 3.3
and Theorem 5.6 provide us with a witness of polynomial length. Since (non-)membership
in L↓ and in L(A)↓ can be decided in NP, non-inclusion is in NP.

Algorithms for M ⊆↓ CFG. The case Ideal ⊆↓ CFG is shown in Theorem 6.1. Suppose
M ∈ {NFA,OCA,RBCk,r} and we are given L inM and a CFG G. We have a polynomial
bound on |L|I (see Section 2 and Theorem 5.6), so that we can guess a polynomial-length
ideal I. Since Ideal ⊆↓ M is in NL in every case and Ideal ⊆↓ CFG is in P, we can verify
in polynomial time that I ⊆ L↓ and I 6⊆ L(G)↓. Thus, non-inclusion is in NP. In the
case M ∈ {RBC,CFG}, we construct exponential-size downward closure NFAs and check
inclusion for them (and the latter problem is in coNP). This yields a coNEXP algorithm.

Algorithms forM⊆↓ RBC. Let A be from RBC. The ideal case is treated in Torollary 5.5.
When given L inM∈ {NFA,OCA,RBCk,r}, we guess a polynomial length ideal I and verify
that I ⊆ L↓ in NL. Since Ideal ⊆↓ RBC is in NP, we can also check in coNP that I 6⊆ L(A)↓.
Hence, non-inclusion is in ΣP

2 . ForM∈ {CFG,RBC}, we proceed as forM⊆↓ CFG.

8 Hardness

In this section, we prove hardness results. Most of them are deduced from a generic hardness
theorem that, under mild assumptions, derives hardness from the ability to generate finite
sets with long words. We will work with bounds that exhibit the following useful property.
A monotone function f : N→ N will be called amplifying if f(n) ≥ n for n ≥ 0 and there is
a polynomial p such that f(p(n)) ≥ f(n)2 for large enough n ∈ N. We say that a model has
property ∆(f) (or short: is ∆(f)) if for each given n ∈ N, one can construct in polynomial
time a description of a finite language whose longest word has length f(n). For the sake
of simplicity, we will abuse notation slightly and write ∆(f(n)) instead of ∆(f). For a
function t : N→ N, we use coNTIME(t) to denote the complements of languages accepted by
nondeterministic Turing machines that are time bounded by O(t(nc)) for some constant c.

We also need two mild language theoretic properties. A transducer is a finite automaton
where every edge reads input and produces output. For a transducer T and a language L,
the language T L consists of all words output by the transducer while reading a word from
L. We call a modelM a full trio model if given a transducer T and a language L described
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withM, one can compute in polynomial time a description of T L. A substitution is a map
σ : X → P(Y ∗) that replaces each letter by a language. For languages L, we define σ(L)
in the obvious way. We call σ simple if X ⊆ Y and there is some x ∈ X such that for all
x′ ∈ X \ {x}, we have σ(x′) = {x′} and x occurs in each word from L at most once. We say
thatM has closure under simple substitutions if given a description of L and of σ(x) inM,
we can compute in polynomial time a description of σ(L).

I Theorem 8.1. Let t : N→ N be amplifying and letM and N be full trio models that are
∆(t) and have closure under simple substitutions. Then both M ⊆↓ N and M =↓ N are
hard for coNTIME(t). Moreover, this hardness already holds for binary alphabets.

Since NFAs are ∆(n), Theorem 8.1 yields coNP-hardness for inclusion and equivalence.
In [4], hardness of equivalence was shown directly. RBCA and CFG clearly exhibit closure
under simple substitutions and can generate exponentially long words. This yields:

I Corollary 8.2. ForM,N ∈ {CFG,RBC},M⊆↓ N andM =↓ N are coNEXP-hard.

From Theorem 8.1, we can also deduce hardness for other models. It was shown by
Habermehl, Meyer, and Wimmel [14] that downward closures or Petri net languages are
computable, which implies decidability of our problems. We use Theorem 8.1 to prove an
Ackermann lower bound. Let An : N → N be defined as A0(x) = x + 1, An+1(0) = An(1),
and An+1(x+ 1) = An(An+1(x)). Then, the function A : N→ N with A(n) = An(n) is the
Ackermann function. Of course, for large enough n, we have An(x) ≥ x2. For such n, we
have A(n + 1) = An(An+1(n)) ≥ An+1(n)2 ≥ A(n)2, so A is amplifying. A result of Mayr
and Meyer [28] (see also [32]) states that given n ∈ N, one can construct in polynomial time
a Petri net that, from its initial marking, can produce up to A(n) tokens in an output place.
Hence, Petri nets are ∆(A) and they clearly satisfy the language-theoretic conditions.

I Corollary 8.3. For Petri net languages, inclusion and equivalence of downward closures
is Ackermann-hard.

Building on the sufficient condition of [34], Hague, Kochems, and Ong [15] have shown
that downward closures are computable for higher-order pushdown automata. However, the
method of [34] does not yield any information about the complexity of this computation.
For k ∈ N, we denote by expk the function with exp0(n) = n and expk+1(n) = 2expk(n). It
is easy to see that order-k pushdown automata are ∆(expk) (for instance, one can adapt
Example 2.5 of [8]). By co-k-NEXP, we denote the complements of languages accepted by
nondeterministic Turing machines in time O(expk(nc)) for some constant c.

I Corollary 8.4. For higher-order pushdown automata of order k, inclusion and equivalence
of downward closures is hard for co-k-NEXP.

Our last hardness result could also be shown using the method of Theorem 8.1. However,
it is simpler to reduce a variant of the subset sum problem [6].

I Proposition 8.5. NFA ⊆↓ RBC and NFA =↓ RBC are ΠP
2 -hard, even for binary alphabets.

We have thus shown hardness for all inclusion problems that do not involve ideals. The
remaining cases inherit hardness from the emptiness problem (forM ⊆↓ Ideal) or the non-
emptiness problem (Ideal ⊆↓M).
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A Ideals and Witnesses

Proof of Proposition 3.1. LetA = (Q,X,∆, q0, Qf ). Consider the DFA B = (P(Q), X,∆′, Q,Q′f ),
where from a state P ⊆ Q on input x ∈ X, we enter the state P ′, consisting of all q′ ∈ Q
that are reachable from a state in P via a path on which x occurs. Moreover, Q′f is the set
of all P ⊆ Q with P ∩Qf = ∅. Then clearly B accepts X∗ \ L(A)↓.

Choose w ∈ K↓\L(A)↓ of minimal length and write w = w1 · · ·wm for letters w1, . . . , wm.
Suppose m > |A|+ 1 and consider the run of w in B. For each i ∈ [0,m], let Pi ⊆ Q be the
state entered after reading w1 · · ·wi. Then we have P0 ⊇ P1 ⊇ · · · and since m > |Q| + 1,
there are i < j with Pi = Pj . Yet this means that also w′ = w1 · · ·wiwj+1 · · ·wm is a member
of L(B) = X∗ \ L(A)↓. Moreover, we have w′ � w and thus w′ ∈ K↓. This contradicts our
choice of w. J

Proof of Proposition 3.2. The implications “(i)⇒(ii)” and “(ii)⇒(iii)” are trivial, so as-
sume (iii). Write L↓ =

⋃`
i=1 Ii as a union of ideals of length ≤ |L|I. Then we have

wm
Y0
x1w

m
Y1
· · ·xnw

m
Yn
∈ Ii for some i. Since Ii has length at most |L|I, there is an NFA

A with at most |L|I + 1 states for Ii. However, we have m ≥ |L|I + 1, so in the computation
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of the NFA for wm
Y0
x1w

m
Y1
· · ·xnw

m
Yn

, for each i ∈ [0, n], some power wki

Yi
, ki > 0, has to lie on

a cycle of A. We can therefore pump each of these cycles, which implies I ⊆ Ii ⊆ L↓. J

Proof of Lemma 3.4. Let I = Y ∗0 {x1, ε}Y ∗1 · · · {xn, ε}Y ∗n with. For i ∈ [0, n] and a ∈ X, let

Ji,a = {j ∈ [i, n] | a ∈ Y ∗i {xi+1, ε}Y ∗i+1 · · · {xj , ε}Y ∗j }

Our DFA has states Q = {0, . . . , n+ 1} and for i ∈ Q, we have i a−→ j if and only if

j =
{

min Ji,a if Ji,a 6= ∅
n+ 1 if Ji,a = ∅

Moreover, 0 is the initial state and the states 0, . . . , n are final. Clearly, the automaton is
ordered, has n+ 2 states, and can be constructed in logarithmic space. In order to show the
correctness, we define the ideal Ik = Y ∗0 {x1, ε}Y ∗1 · · · {xk, ε}Y ∗k for each k ∈ [0, n]. Observe
that I0 ⊆ I1 ⊆ · · · ⊆ In = I. By induction on the length of w, it is easy to see that if 0 w−→ j,
then

if j ∈ [0, n], then j is the smallest number with w ∈ Ij .
if j = n+ 1, then w /∈ I.

In particular, the automaton accepts I. J

Proof of Lemma 3.5. To make our induction work, we define fn : N→ N by fn(1) = n− 1
and fn(k) = (fn(k− 1) + 1) · (n− 1). We claim that if w > fn(|X|) for w ∈ X∗, then w has
a position at which every ordered n-state DFA cycles.

We proceed by induction on |X|. IfX = {a}, then it suffices to consider w = an. Consider
an ordered n-state DFA A and let q0, q1, . . . , qn be the states occupied while reading w. Then
there are i < j with qi = qj and since A is ordered, we have qi = qi+1. This means, qi has
an a-labeled loop and therefore qi = qi+1 = qi+2 = · · · = qn. In particular, A cycles at the
last position of w.

Now suppose k = |X| > 1 and |w| > fn(k) = (fn(k − 1) + 1)(n − 1). For every word
v ∈ X∗, let α(v) ∈ X∗ be the shortest prefix of v in which every letter from X occurs. If v
does not contain every letter from X, then we define α(v) = v. We factorize w as p1 · · · pm

by applying α to w, then applying α to the rest of the word, and so on. Formally, we set
r0 = w, pi = α(ri−1), and define ri so that ri−1 = piri. For some smallest m ≥ 1, we have
pm = rm. Then clearly w = p1 · · · pm and every pi is non-empty.

For each i ∈ [1,m], let p′i be obtained from pi by removing its last position. By the
choice of pi, the word p′i contains at most k − 1 distinct letters. Hence, if |p′i| > fn(k − 1)
for some i ∈ [1,m], then p′i contains a position at which every ordered n-state DFA cycles.
In particular, w contains such a position (because every computation on w contains some
computation on p′i). Therefore, we may assume that |pi| = |p′i|+ 1 ≤ fn(k− 1) + 1 for every
i ∈ [1,m].

If we had m ≤ n− 1, this would imply |w| = |p1 · · · pm| ≤ (fn(k − 1) + 1)(n− 1), which
is not the case. Hence, we have m ≥ n. Now consider an ordered n-state DFA A with its
computation

q0
p1−→ q1

p2−→ · · · pm−−→ qm.

Since m + 1 > n, there are i < j with qi = qj and since A is ordered, we have qi = qi+1 =
· · · = qj . We distinguish two cases.
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If j = m, then our computation cycles at every position in pm.
If j < m, then pj contains every letter from X at least once. This means qi has an a-loop
for every a ∈ X. Therefore, qi = qi+1 = · · · = qm. In particular, our computation cycles
on every position in pm.

Thus, we have shown that any ordered n-state DFA cycles on every position in pm, which
proves our claim.

From the definition of fn, it follows easily by induction that fn(k) =
∑k

i=1(n− 1)i and
hence fn(k) ≤ k · (n− 1)k. J

B Insertion trees

Proof of Lemma 4.1. Let w ∈ ∆∗ be a prime q-cycle and let Pw ⊆ Q be the set of states
occurring properly in w. We show by induction on |Pw| that every prime cycle w admits an
insertion tree of height at most |Pw|.

If no state from Pw repeats in w, then w is simple and the statement is trivial. For each
p ∈ Pw that does repeat in w, let λ(p) be the length of the longest p-cycle that is a factor
of w. Among all states from Pw that repeat in w, we choose p such that λ(p) is maximal.
Then w = xyz where y is a p-cycle of length λ(p). Observe that by the maximality of p,
there is no state that occurs properly both in x and in z.

We write y = y1 · · · yr such that each yi is a prime p-cycle. Then since p does not occur
properly in yi, each yi admits an insertion tree ti of height |Pw| − 1.

Consider any insertion tree t of xz. Observe that since there is no state that occurs
properly both in x and in z, the only cycle in t where p can occur is t’s root. Therefore, if
s1, . . . , sk are the subtrees of t immediately below the root, then no α(si) contains p. We
can therefore factorize each α(si) into prime cycles that each have an insertion tree of height
at most |Pw| − 1. Thus, by replacing in t each si by this sequence of trees, we obtain an
insertion tree t′ of xz of height at most |Pw|.

Since p occurs in the root of t′ and this is the only occurrence of p in t′, we can attach
the trees ti directly below the root of t′ to obtain a insertion tree t′′ of w. Moreover, since
each ti has height at most |Pw| − 1, t′′ has height at most |Pw|. J

Proof of Lemma 4.2. If F = ∅, then we can duplicate every tree in the sequence, leading
to P (s, F )↓ = Y ∗, where Y is the set of letters occurring anywhere on a tree in s. Hence,
P (s, F )↓ is an ideal of expression length one. Thus, we assume F 6= ∅.

As the first step, we consider the case where s consists of one tree t. Let A be the set of
vertices in t that are ancestors of vertices in F . We show by induction on h that P (t, F )↓ is
an ideal and |P (t, F )|E ≤ |A| · (2|Q|+ |F |).

Let r be the root of t and γ(r) = e1 · · · e`, where e1, . . . , e` ∈ ∆. Let C be the set of
children of r that are in A. Moreover, let ei = (qi−1, ai, qi) for i ∈ [1, ` − 1]. Recall that
every child of r is assigned a qi-cycle for some i ∈ [1, `− 1]. For each i ∈ [1, `− 1], consider
the subtrees ‘inserted after ei’: In other words, those subtrees directly below r whose root
node is assigned a qi-cycle by γ. Some of them contain a fixed vertex; let si,1, . . . , si,ki

be
those subtrees. The other subtrees inserted after ei are pumpable; let Yi be the set of input
letters occurring in them. Let Fi,j ⊆ F be the set of fixed nodes in si,j . Moreover, let Ai,j

be the set of vertices in si,j that are ancestors of fixed vertices (in si,j). Note that since
F 6= ∅, we have r ∈ A and thus

|A| = 1 +
`−1∑
i=1

ki∑
j=1
|Ai,j |.
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By induction, P (si,j , Fi,j)↓ is an ideal and we have

|P (si,j , Fi,j)↓|E ≤ |Ai,j | · (2|Q|+ |Fi,j |) ≤ |Ai,j | · (2|Q|+ |F |). (7)

Suppose r ∈ F . Then we have P (t, F )↓ = {a1, ε}I1{a2, ε} · · · I`−1{a`, ε}, where

Ii = Y ∗i (P (si,1, Fi,1)↓)Y ∗i · · · (P (si,ki
, Fi,ki

)↓)Y ∗i

for i ∈ [1, `−1]. Hence, P (t, F )↓ is an ideal. Let us estimate the expression length. Note
that (7) yields

|Ii|E ≤ ki + 1 +
ki∑

j=1
|P (si,j , Fi,j)↓|E ≤ ki + 1 + (2|Q|+ |F |) ·

ki∑
j=1
|Ai,j |

and therefore

|P (t, F )↓|E ≤ `+
`−1∑
i=1
|Ii| ≤ `+

`−1∑
i=1

(ki + 1) + (2|Q|+ |F |)
`−1∑
i=1

ki∑
j=1
|Ai,j |

≤ 2`+
`−1∑
i=1

ki︸ ︷︷ ︸
≤|F |

+ (2|Q|+ |F |)
`−1∑
i=1

ki∑
j=1
|Ai,j |︸ ︷︷ ︸

=|A|−1

≤ 2|Q|+ |F | + (2|Q|+ |F |) · (|A| − 1)
≤ |A| · (2|Q|+ |F |).

Suppose r /∈ F . Then we have P (t, F )↓ = I1 · · · I`−1, where

Ii = Z∗i (P (si,1, Fi,1)↓)Z∗i · · · (P (si,ki , Fi,ki)↓)Z∗i ,

for i ∈ [1, `− 1] with Zi = Yi ∪ {a1, . . . , a`}. Hence, P (t, F )↓ is an ideal. Let us estimate
the expression length. As before, (7) yields

|Ii|E ≤ ki + 1 +
ki∑

i=1
|P (si,j , Fi,j)↓|E ≤ ki + 1 + (2|Q|+ |F |) ·

ki∑
j=1
|Ai,j |

and therefore

|P (t, F )↓|E ≤
`−1∑
i=1

(ki + 1) + (2|Q|+ |F |)
`−1∑
i=1

ki∑
j=1
|Ai,j |

≤ `+
`−1∑
i=1

ki + (2|Q|+ |F |)
`−1∑
i=1

ki∑
j=1
|Ai,j |

≤ 2|Q|+ |F | + (2|Q|+ |F |) · (|A| − 1)
≤ |A| · (2|Q|+ |F |).

This concludes our first step. Note that since t has height ≤ h, every vertex in F has at
most h ancestors, so that |A| ≤ h · |F |. This means, our first step implies that in the case of
a single tree t, we have |P (t, F )↓|E ≤ h|F | · (2|Q|+ |F |).

Let us now consider P (s, F )↓ where s = t1 · · · tm is a compatible sequence. Of the trees
t1, . . . , tm, let t′1, . . . , t′` be those which contain a fixed vertex. The other trees in the sequence
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t1, . . . , tm are pumpable and we define Y to be the set of letters occurring in those pumpable
trees. Note that ` ≤ |F |.

According to our first step, we have |P (t′i, F )↓|E ≤ h|F | · (2|Q|+ |F |) for each i ∈ [1, `].
Moreover, we have

P (s, F )↓ = Y ∗P (t′1, F )↓Y ∗ · · ·P (t′`, F )↓Y ∗,

which means P (s, F )↓ is an ideal and we may estimate

|P (s, F )↓|E ≤ (`+ 1) +
∑̀
i=1
|P (t′i, F )↓|E ≤ `+ 1 + ` · h|F | · (2|Q|+ |F |)

≤ h · |F | · (2|Q|+ |F |)2,

which proves the lemma. J

C Counter automata

We prove the statements of Section 5 in the order they are made. We begin with Theorem 5.1.

Proof of Theorem 5.1. We have seen that L(B3)↓ = L(A)↓. To estimate the size of B3,
notice that

|[−B,B]k| = (2B + 1)k ≤ (2(n+ n · (3n)(k+1)2
) + 1)k

= (2n · (3n)(k+1)2
+ 2n+ 1)k ≤ (3n)((k+1)2+1)k ≤ (3n)5k3

.

Furthermore, our stack alphabet satisfies |Γ| = n · (2n+ 1)k, so that

|Γ≤n| ≤ |Γ|n+1 = nn+1 · (2n+ 1)(n+1)k ≤ (3n)4nk.

Finally, we can estimate |I([−n, n]k)| ≤
((2n+1)k

k

)
≤ (2n+1)k2 ≤ (3n)k2 . This means in total

|Q3| ≤ n · (3n)4nk+5k3+2k2 ≤ (3n)5nk+7k3 . This completes the proof of Theorem 5.1. J

Next, we show that L(B1) and L(A) have the same downward closure.

I Proposition C.1. L(A) ⊆ L(B1) ⊆ L(A)↓.

We prove Proposition C.1 in the following two lemmas.

I Lemma C.2. L(A) ⊆ L(B1).

Proof. Let w ∈ ∆∗ be an accepting walk of A. We can write w = u0v1u1 · · · v`u` such that
|u0 · · ·u`| ≤ n and every vi is a prime cycle. For each vi, Lemma 4.1 yields an insertion
tree ti of height at most n. In B1, we simulate u0 · · ·u` by transitions of type (1). When
we arrive at a prime cycle vi, we traverse the tree ti: When at the current state a subtree
is attached in ti, we use a transition of type (2). When we arrive at the state where our
current cycle has started, we use either (4) or (5) to use the cycle as a precise cycle or as an
obligation cycle, respectively. During a cycle, we use transitions (3).

It remains to be shown that there exists a choice of cycles as ‘precise’ or ‘obligation’ to
obtain an accepting run of B1, i.e. the capacity in the factor [−B,B]k is not exceeded and
the sets S and T in the factors P([−n, n]k) form a cancellable (S, T ). To this end, we apply
Theorem 5.2. Let e1, . . . , em ∈ Zk be the different effects (in any order) of the (simple)
cycles in all the insertion trees ti, i ∈ [1, `]. Being effects of simple cycles, they are even
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contained in [−n, n]k. For each i ∈ [1,m], let xi be the number of times ei occurs as an
effect of a cycle. Let e be the effect of the walk u0 · · ·u`. Then we have e ∈ [−n, n]k. Since
the walk w = u0v1u1 · · · v`u` is accepting in A, we have e+

∑m
i=1 xiei = 0.

Consider the matrixA ∈ Zk×m with columns e1, . . . , em. Then the vector x = (x1, . . . , xm)
satisfies Ax = −e. Since the ei are pairwise distinct and members of [−n, n]k, we have
m ≤ (2n + 1)k. This yields ‖(A|e)‖1,∞ ≤ (m + 1)n. Moreover, A has rank at most k. By
Theorem 5.2, there exists a y ∈ Nm with Ay = −e, y ≤ x, and

‖y‖1 ≤ (1 + (m+ 1)n)k+1 = (mn+ n+ 1)k+1 ≤ ((2n+ 1)k+1)k+1 ≤ (3n)(k+1)2
.

We can therefore choose for each i ∈ [1,m], yi of the xi cycles with effect ei and use them as
precise cycles. Then, in the end, we arrive at a state (q, ε, v, S, T ) with v = 0. Since we used
at most ‖y‖1 precise cycles and at most n transitions in the walk u1 · · ·u`, the counter values
encountered during the computation are bounded in absolute value by n+n·(3n)(k+1)2 = B.

Observe that we have T = {e1, . . . , em}. Consider z ∈ Nm with z = x− y. By our choice
of precise cycles, S = {ei | zi > 0}. Therefore, since Az = 0, the pair (S, T ) is cancellable.
Hence, we have reached a final state of B1 and read the same word as w. J

I Lemma C.3. L(B1) ⊆ L(A)↓.

Proof. Consider a walk w in B1 from (p, ε, 0, S, T ) to (q, ε, v, S′, T ′). Let S′\S = {e1, . . . , em}
and (S′ \ S) ∪ (T ′ \ T ) = {e1, . . . , em+`}. Let A ∈ Z(m+`)×k be the matrix with columns
e1, . . . , em+`. Moreover, for each i ∈ [1,m], let xi ∈ N \ {0} be the number of times a cycle
with effect ei was used as an obligation cycle. Let x ∈ Nm+` be the vector x = (x1, . . . , xm+`)
where xm+i = 0 for i ∈ [1, `].

It is easy to show by induction on the maximal stack height in w that for every y ∈ Nm+`

with y ≥ x, there exists a walk w′ in A from (p, 0) to (q, v + Ay) such that w′ reads a
superword of the input of w: We execute all the obligation cycles as normal cycles in A,
which means adding the effect Ax. Then, for each effect ei, we execute some cycle with
effect ei an additional yi − xi times. In total, we add v +Ay to the counter in A.

Now suppose w is an accepting walk. Then S = T = ∅, the pair (S′, T ′) is cancellable,
and v = 0. Since (S′, T ′) is cancellable, there is a z ∈ Nm+` with zi ≥ 1 for i ∈ [1,m] such
that Az = 0. Since xm+i = 0 for i ∈ [1, `], we can find a number M ∈ N \ {0} such that
Mz ≥ x. We set y = Mz and since then y ≥ x, we may apply our observation above to this
y. This yields a walk w′ in A from (p, 0) to (q, v + Ay) = (q, 0 + MAz) = (q, 0) such that
w′ reads a superword of the word read by w. This means, w′ is accepting, so that the word
read by w is contained in L(A)↓. J

Proof of Lemma 5.3. We may clearly assume that |S2 \ S1| = 1. Hence, let (S1, T ) be
cancellable, S1 = {u1, . . . , us}, and S2 = {u1, . . . , us+1}. Since span(S1) = span(S2), there
are z1, . . . , zs+1 ∈ Q with zs+1 6= 0 and

∑s+1
i=1 ziui = 0. By multiplying with a common

denominator and, if necessary, switching the sign of the z1, . . . , zs+1, we may assume that
z1, . . . , zs ∈ Z and zs+1 ∈ N \ {0}.

Let T = {v1, . . . , vt}. Since (S1, T ) is cancellable, there are are x1, . . . , xs ∈ N \ {0} and
y1, . . . , yt ∈ N with

x1u1 + · · ·+ xsus + y1v1 + · · ·+ ytvt = 0.

Since xi ≥ 1 for i ∈ [1, s], we can find M ∈ N \ {0} with M · xi > −zi for every i ∈ [1, s].
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Then, since
∑s+1

i=1 ziui = 0, we have

0 = M

(
s∑

i=1
xiui +

t∑
i=1

yivi

)
+

s+1∑
i=1

ziui =
s∑

i=1
(Mxi + zi)ui + zs+1us+1 +

t∑
i=1

(Myi)vi

Since Mxi + zi ∈ N \ {0} for i ∈ [1, s] and zs+1 ∈ N \ {0}, this proves that (S2, T ) is
cancellable. J

Proof of Lemma 5.4. Let S = {u1, . . . , us} and choose T ′ ⊆ T minimal with the property
that (S, T ′) is cancellable. Let T ′ = {v1, . . . , vt}. Then there are x1, . . . , xs ∈ N \ {0} and
y1, . . . , yt ∈ N with

∑s
i=1 xiui +

∑t
i=1 yivi = 0. By minimality of T ′, we have yi > 0 for

every i ∈ [1, t]. Suppose T ′ is linearly dependent. Then there are z1, . . . , zt ∈ Z, not all zero,
such that

∑t
i=1 zivi = 0. We may assume that at least one zi is positive, because otherwise

they are all at most zero and we can negate them.
Choose j ∈ [1, t] such that zj/yj is maximal, meaning zj/yj ≥ zi/yi for every i ∈ [1, t].

Note that then zj > 0 because otherwise, zi ≤ 0 for every i ∈ [1, t]. Then we have zjyi ≥ yjzi

for every i ∈ [1, t] and hence

0 = zj

(
s∑

i=1
xiui +

t∑
i=1

yivi

)
− yj

(
t∑

i=1
zivi

)
=

s∑
i=1

(zjxi)ui +
t∑

i=1
(zjyi − yjzi)︸ ︷︷ ︸

≥0

vi.

Since zjxi > 0 for i ∈ [1, s] and we have the coefficient zjyj − yjzj = 0 in front of vj , the
last equation tells us that (S, T ′ \ {vj}) is cancellable. This contradicts the choice of T ′.
Therefore T ′ is linearly independent. J

Proof of Torollary 5.5. Suppose we are given an ideal I = Y ∗0 {x1, ε}Y ∗1 · · · {x`, ε}Y ∗` and a
blind k-counter automaton A with n states. By Theorem 5.1, we have an exponential bound
upper bound m on |L(A)|I. According to Proposition 3.2, we have I ⊆ L(A)↓ if and only if
w := wm

Y0
x1w

m
Y1
· · ·x`w

m
Y`
∈ L↓. Now the word w may be exponentially long, but since m is

at most exponential, we can compute m in binary representation.
Given the polynomial-size ideal and the binary representation of m, we can construct a

polynomial-size straight-line program G for w: A straight-line program (SLP) is a context-free
grammar that generates exactly one word (see [27] for details and a survey). G is obtained
from an SLP for the polynomial-length word z0x1z1 · · ·x`z` and SLPs for the words wm

Yi
,

which in turn result from an SLP for {am}. The latter is easily constructed from the binary
representation of m.

Therefore, it remains to be shown that the compressed membership problem for blind
counter automata is decidable in NP. The latter asks, given an SLP G and a blind counter
automaton A, whether the word generated by G is accepted by A. This can be decided by
constructing an automaton that has access to a pushdown and blind (or reversal-bounded)
counters that accepts L(G) ∩ L(A). For such automata, the emptiness problem is in NP, as
shown by Hague and Lin [16]. J

Proof of Theorem 5.6. We show that for every u ∈ L(A), there exists an ideal I of length
at most (5n)7(k+1)2 with u ∈ I ⊆ L↓.

So let w ∈ ∆∗ be an accepting walk of A. We can write w = u0v1u1 · · · v`u` such that
u0, . . . , u` ∈ ∆, |u0 · · ·u`| ≤ n, and every vi is a cycle. We factorize each vi = vi,1 · · · vi,ki

into prime cycles vi,1, . . . , vi,ki and let Lemma 4.1 provide an insertion tree ti,j of vi,j of
height at most n.
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Let e1, . . . , em ∈ Zk be the effects of cycles occurring in any of these trees. Note that
‖ei‖∞ ≤ n for i ∈ [1,m], so that m ≤ (3n)k. For i ∈ [1,m], let x = (x1, . . . , xm) ∈ Nm be
the vector such that xi is the number of times a cycle with effect ei occurs. Moreover, let
e ∈ Zk be the effect of u0 · · ·u`. Then we have ‖e‖∞ ≤ n. Let A ∈ Zk×m be the matrix
with columns e1, . . . , em. Since w is accepting, we have Ax = −e. Note that

‖(A|e)‖1,∞ ≤ ‖e‖∞ +
m∑

i=1
‖ei‖∞ ≤ (m+ 1)n ≤ ((3n)k + 1)n ≤ (4n)k+1

and that the rank of (A|e) is at most k. According to Theorem 5.2, there is a y ∈ Nm, y ≤ x,
such that Ay = −e and ‖y‖1 ≤ (1 + (4n)k+1)k+1 ≤ (5n)(k+1)2 .

From our insertion trees, we now select for each i ∈ [1,m], yi-many vertices whose cycles
have effect ei. This is possible since y ≤ x. Let F be the set of these vertices. Then we have
|F | ≤ ‖y‖1 ≤ (5n)(k+1)2 . For each i ∈ [0, `], let ai ∈ X ∪ {ε} be the input read by ui. We
claim that the language

K = a0P (t1,1 · · · t1,ki
, F )a1 · · ·P (t`,1 · · · t`,k`

, F )a`

is contained in L(A)↓. Let z = (z1, . . . , zm) ∈ Nm be the vector with z = x − y. Then
Az = 0 and every pumpable vertex has an effect ei where zi ≥ 1.

Now suppose we obtain a walk w′ of A by performing some pumping to obtain a word
u′ ∈ K, either by duplicating a single vertex or by duplicating a whole pumpable subtree.
Note that it might happen that w′ does not leave the counters at zero in the end. But we
will show that we can pump even more to get such a walk. For each i ∈ [1,m], let z′i ∈ N be
the number of times we add an occurrence of a cycle with effect ei. Let z′ = (z′1, . . . , z′m).
Since z′i ≥ 1 implies zi ≥ 1, we can find an N ∈ N with N · z ≥ z′. Now for every
i ∈ [1,m] with z′i ≥ 1, we can find a pumpable vertex vi whose cycle has effect ei. We
can pump vi an additional Nzi − z′i times. This results in a walk w′′ of A with effect
e+Ax+ANz = e+Ax = 0, meaning that it is accepting. Moreover, if u′′ is the input word
read by w′′, then we have u′ � u′′ ∈ L(A). This proves K ⊆ L(A)↓, which was our claim.

This means that the language

I = K↓ = {a0, ε}P (t1,1 · · · t1,k1 , F )↓{a1, ε} · · ·P (t`,1 · · · t`,k`
, F )↓{a`, ε}

is contained in L(A)↓. By Lemma 4.2, it is an ideal and satisfies

|I|E ≤ `+ 1 +
∑̀
i=1
|P (ti,1 · · · ti,ki

, F )↓|E ≤ n+ n2 · |F | · (2n+ |F |)2

≤
(

2n2 · (5n)(k+1)2
)
·
(

2n+ (5n)(k+1)2
)2

≤
(

(5n)3(k+1)2
)
· (5n)4(k+1)2

≤ (5n)7(k+1)2
,

which completes our proof. J

D Context-Free Grammars

The following lemma remains to be shown.

I Lemma D.1. We have aω
1 · · · aω

n ∈ L(Gω) if and only if a∗1 · · · a∗n ⊆ L(G)↓.
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Proof. Suppose a∗1 · · · a∗n ⊆ L(G)↓ = L(G′). Then there are derivation trees t1, t2, . . . of G′
with |yield(tj)|ai

≥ j for every i ∈ [1, n] and j ≥ 1.
On the vertices of tj , we define partial orders �i as follows. We have u �i v if v is a

descendant of u and |yield(u)|ai
> |yield(v)|ai

. By induction on `, it is easy to check that
if all �i-chains in tj have length ≤ `, then |yield(tj)|ai

≤ 2`. Hence, if m > 2|N |, then
|yield(tm)|ai

> 2|N |, so that tm must have a �i-chain of length > |N |. On this chain, some
Ai ∈ N has to repeat, meaning Ai ∈ Li ∪ Ri. We can therefore expand tm by applying for
each i ∈ [1, n] the production Ai → aω

i Ai or Ai → Aia
ω
i . Then, we replace every ai-leaf

by ε. By construction, the resulting tree t is a derivation tree of Gω and every aω
i appears

exactly once. Hence, yield(t) is a permutation of aω
1 · · · aω

n . It remains to be shown that
yield(t) = aω

1 · · · aω
n .

Consider the morphism α : {aω
1 , . . . , a

ω
n}∗ → {a1, . . . , an}∗ such that for every i ∈ [1, n],

we have α(aω
i ) = ai. Recall that for every production A→ aω

i A or A→ Aaω
i in Gω, we have

A ⇒∗G′ aiA or A ⇒∗G′ Aai, respectively. This tells us that α(L(Gω)) ⊆ L(G′) ⊆ a∗1 · · · a∗n.
Therefore, α(yield(t)) = a1 · · · an and hence yield(t) = aω

1 · · · aω
n . J

E Hardness

Proof of Theorem 8.1. We actually prove a stronger statement, namely that the following
problem is hard for coNTIME(t):

Given: A description in M of the language X≤m and a description in N of a language
L ⊆ X≤m, where X is an alphabet and m ∈ N.

Question: Does X≤m↓ ⊆ L↓ hold?

This is clearly an instance of both M ⊆↓ N and of M =↓ N . If we show that already
this special case is hard, then so is the case of binary alphabets: Suppose X = {a1, . . . , ak}
and let γ : X∗ → {a, b} be the morphism with γ(ai) = aibk−i for i ∈ [1, k]. Then clearly
γ(X≤m)↓ ⊆ γ(L)↓ if and only if X≤m↓ ⊆ L↓. Hence, we only show hardness for the problem
above.

Let K ⊆ Y ∗ belong to coNTIME(t). Then there is a t(nc)-time-bounded (c ≥ 1) Turing
machine M with one tape, tape alphabet Z ⊇ Y (which includes the blank symbol), and
state set Q that accepts the complement of K.

Our goal is to construct the language L ⊆ X≤m in such a way that the words in L of
length m are precisely those words that do not encode an accepting computation of M .
Here, m will be chosen so that if M has an accepting computation, it is encoded by a word
of length m. Then, we will have X≤m↓ ⊆ L↓ if and only if M does not accept the given
input word. Our first task is to find a suitable m.

Observe that a monotone function h : N → N is amplifying if and only if h(n) ≥ n for
n ≥ 0 and there is a d ≥ 1 such that h(nd) ≥ h(n)2 for large enough n. Let g : N → N be
defined as g(n) = t(nc). Since t is amplifying, g is as well: for some constant d, we have
g(nd) = t(ncd) ≥ t(nc)2 = g(n)2 for large enough n ∈ N. Since g is amplifying, there is a
constant e ≥ 1 such that g(ne) ≥ g(n) · (g(n) + 2) for all n ≥ n0. We define f(n) = g(ne).

With these choices, we have: M is time bounded by g, the modelsM and N are ∆(g)
and ∆(f), and f(n) ≥ g(n) · (g(n) + 2) for n ≥ n0.

Now fix w ∈ Y ∗ and let n = |w|. For the reduction, it means no loss of generality to
assume n ≥ n0. We choose m = f(n) + g(n) + 3. We encode a configuration of M by a
word uqv, where u, v ∈ Z∗, q ∈ Q, and |uv| = g(n) (recall that M is g-time-bounded and
hence g-space-bounded). It means that M is in state q and its head is at the first position
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of v. A computation is then encoded as a word #u1# · · ·uk#uk+1, where u1, . . . , uk encode
the configurations of the computation (in this order) and uk+1 is any suffix in Z∗. Since
m = f(n) + g(n) + 3 ≥ g(n) · (g(n) + 3) and M is g-time-bounded, all computations have
encodings where |#u1 · · ·#uk+1| = m.

Since M and N are ∆(g) and ∆(f), we can construct for each model finite languages
whose longest word has length g(n) or f(n), respectively. By applying a homomorphism
and taking the downward closure, we can thus construct descriptions of {ag(n)}↓ and of
{af(n)}↓ in each of the models, in polynomial time. Let X = Z ∪Q ∪ {#}. Using rational
transductions and simple substitutions, we get X≤m = Xf(n)+g(n)+3↓ inM and

L1 = {ai#ag(n)+1#af(n)−i | i ∈ [0, f(n)]}↓

in N . Note that L1 ⊆ {a,#}≤m.
In the rest of the proof, we construct a (polynomial-size) rational transduction T such

that TL1 ⊆ X≤m and (TL1) ∩ Xm contains precisely those words that do not encode a
computation of M that accepts w. Then, we have clearly shown that the problem described
at the beginning of the proof is hard for coNTIME(t).

A word u ∈ X∗ of length m can fail to be an accepting computation for w for the
following reasons. We decompose u = u0#u1# · · ·#uk+1.

1. It does not begin with #, i.e. u0 6= ε.
2. Two #’s are less than g(n) + 1 positions apart.
3. Two #’s are more than g(n) + 1 positions apart (without a # in between).
4. Some ui is not contained in Z∗QZ∗.
5. The first configuration u1 is not an initial configuration with input w.
6. The last configuration, i.e. uk, is not accepting.
7. For some i ∈ [1, k − 1], the configuration ui cannot reach ui+1 in one step.

For each of the cases 1 to 7, we shall explain how to obtain a transduction that generates
those words from L1. If we then have rational transductions T1, . . . , T7, we take the rational
transduction T = T1 ∪ · · · ∪ T7, which is clearly as desired above.

Note that the cases 1 and 4 to 6 are trivial, so we consider cases 2, 3 and 7. For 2, notice
that with a constant-size rational transduction R<, one can obtain

P< = {ai#a`#ag(n)+1−`af(n)−i | i ∈ [0, f(n)], ` ∈ [0, g(n) + 1]}↓.

as R<L1. Indeed, R< reads a word from L1 and outputs every letter as read, up to the first
#. Then, before it sees the second # in the input, it nondeterministically chooses a time to
output # early. Then, it reads the rest of the input and outputs a for each input letter, be
it a or #. Using a similar strategy, one can obtain

P> = {ai#ag(n)+1+`#af(n)−i−` | i ∈ [0, f(n)], ` ∈ [0, f(n)− i]}↓

using a constant-size rational transduction R>. Now from P< and P>, it is easy to obtain
all words of case 2 and 3, respectively.

The case 7 is also not hard to realize with L1 as input. We only have to make sure
that either the immediate surrounding of the head is not updated properly or the rest of
the tape is not copied correctly. For words of length m (and those are the only ones where
we must produce an incorrect encoding), the input language L1 gives us, with the two #’s,
two pointers that are precisely g(n) + 1 positions apart. We can therefore guarantee that at
least one of these errors is present. The details are very straightforward. J
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Proof of Torollary 8.2. According to Theorem 8.1, it suffices to show that each M ∈
{CFG,RBC} is ∆(2n).

For CFG, we can take the well-known grammar with nonterminals A0, . . . , An, start
symbol An, and productions Ai → Ai−1Ai−1 for i ∈ [1, n], and A0 → a. It clearly generates
{a2n}.

For RBC, we use a blind (n + 1)-counter automaton. We increment the first counter
once and then, for each i = 1, . . . , n, we count down counter i and simultaneously count up
counter i+ 1 at twice the speed. After these n phases, counter n+ 1 contains the value 2n.
Then, we count down counter n+ 1 and each time read an a. Hence, we accept {a2n}. J

Proof of Proposition 8.5. The generalized subset sum problem is the following:

Given: Two vectors u, v ∈ Nn and t ∈ N, encoded in binary.
Question: Is it true that for every x ∈ {0, 1}n, there exists a y ∈ {0, 1}n that satisfies
〈u, x〉+ 〈v, y〉 = t?

Here, 〈w, z〉 denotes the scalar product of w, z ∈ Zn. This problem is known to be ΠP
2 -

complete [6].
We identify vectors over {0, 1} of length n with words over {0, 1} of length n. Let

u, v ∈ Nn and t ∈ N be an instance of the generalized subset sum problem and suppose each
entry of u and v is encoded with k bits. Like in Torollary 8.2, we can easily construct an
RBCA A with 3k counters that accepts {x ∈ {0, 1}n | ∃y ∈ {0, 1}n : 〈u, x〉 + 〈v, y〉 = t}:
As it reads x, it uses counters 1, . . . , k to build up 〈u, x〉 in counter k. Then, it guesses y
bit-by-bit while using counters k+ 1, . . . , 2k to build up 〈v, y〉 in counter 2k. Afterwards, it
accumulates t in counter 3k using counters 2k + 1, . . . , 3k. Finally, it counts down counter
3k one-by-one and in each step, decrements counter k or 2k. In the end, all counters are
zero if and only if 〈u, x〉+ 〈v, y〉 = t.

Let B be the obvious (n + 1)-state NFA that accepts {0, 1}n. Then we clearly have
L(B)↓ ⊆ L(A)↓ if and only if our instance of the generalized subset sum problem is positive.

J
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