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Abstract. This work studies which storage mechanisms in automata
permit decidability of the reachability problem. The question is for-
malized using valence automata, an abstract model that generalizes au-
tomata with storage. For each of a variety of storage mechanisms, one
can choose a (typically infinite) monoid M such that valence automata
over M are equivalent to (one-way) automata with this type of storage.
In fact, many interesting storage mechanisms can be realized by monoids
defined by finite graphs, called graph monoids. Hence, we study for which
graph monoids the emptiness problem for valence automata is decidable.
A particular model realized by graph monoids is that of Petri nets with a
pushdown stack. For these, decidability is a long-standing open question
and we do not answer it here.

However, if one excludes subgraphs corresponding to this model, a char-
acterization can be achieved. This characterization yields a new exten-
sion of Petri nets with a decidable reachability problem. Moreover, we
provide a description of those storage mechanisms for which decidabil-
ity remains open. This leads to a natural model that generalizes both
pushdown Petri nets and priority multicounter machines.

1 Introduction

For each storage mechanism in one-way automata, it is an important question
whether the reachability problem is decidable. It therefore seems prudent to aim
for general insights into which properties of storage mechanisms are responsible
for decidability or undecidability.

Our approach to obtain such insights is the model of valence automata. These
consist of a finite-state control and a (typically infinite) monoid that represents
a storage mechanisms. The edge inscriptions consist of an input word and an ele-
ment of the monoid. Then, a computation is accepting if it arrives in a final state
and composing the encountered monoid elements yields the neutral element. This
way, by choosing a suitable monoid, one can realize a variety of storage mech-
anisms as valence automata. Hence, our question becomes: For which monoids
M is the emptiness problem for valence automata over M decidable?

We address this question for a class of monoids that was introduced in [12]
and accommodates a number of storage mechanisms that have been studied in



automata theory. Examples include pushdown stacks, partially blind counters
(which behave like Petri net places), and blind counters (which may attain neg-
ative values; these are in most situations interchangeable with reversal-bounded
counters), and combinations thereof. These monoids are defined by graphs and
thus called graph monoidsﬂ

A particular type of storage mechanism that can be realized by graph monoids
are partially blind counters that can be used simultaneously with a pushdown
stack. Automata with such a storage are equivalent to pushdown Petri nets
(PPN), i.e. Petri nets where the transitions can also operate on a pushdown
stack. This means, a complete characterization of graph monoids with a de-
cidable emptiness problem would entail an answer to the long-standing open
question of whether reachability is decidable for this Petri net extension [8].

Contribution. While this work does not answer this open question con-
cerning PPN, it does provide a characterization among all graph monoids that
avoid this elusive storage type. More precisely, we identify a set of graphs, ‘PPN-
graphs’, each of which corresponds precisely to PPN. Then, among all graphs I”
avoiding PPN-graphs as induced subgraphs, we characterize those for which the
graph monoid M results in a decidable emptiness problem. Furthermore, we
provide a simple, more mechanical (as opposed to algebraic) description of (i)
the storage mechanism emerging as the most general decidable case and (ii) a
mechanism subsuming the cases we leave open. The model|(i)|is a new extension
of partially blind counter automata (i.e. Petri nets). While the decidability proof
employs a reduction to Reinhardt’s priority multicounter machines [8], the model
seems to be expressively incomparable to Reinhardt’s model. The model
is a class of mechanisms whose simplest instance are the pushdown Petri nets
and which also subsumes priority multicounter machines.

Hence, although the results here essentially combine previous work, the per-
spective of valence automata allows us to identify two natural storage mecha-
nisms that (i) push the frontier of decidable reachability and (ii) let us interpret
PPN and priority multicounter machines as special cases of a more powerful
model that might enjoy decidability, respectively.

2 Preliminaries

A monoid is a set M together with a binary associative operation such that
M contains a neutral element. Unless the monoid at hand warrants a different
notation, we will denote the neutral element by 1 and the product of z,y € M
by zy. If X is a set of symbols, X* denoted the set of words over X. An alphabet
is a finite set of symbols. The empty word is denoted by € € X*.

Valence automata As a framework for studying which storage mechanisms per-
mit decidability of the reachability problem, we employ valence automata. They

! They are not to be confused with the closely related, but different concept of trace
monoids |2], i.e. monoids of Mazurkiewicz traces, which some authors also call graph
monoids.
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Fig.1: Graphs Cy and Pj.

feature a monoid that dictates which computations are valid. Hence, by an ap-
propriate choice of the monoid, valence automata can be instantiated to be
equivalent to a concrete automata model with storage. For the purposes of this
work, equivalent is meant with respect to accepted languages. Therefore, we
regard valence automata as language accepting devices.

Let M be a monoid and X an alphabet. A wvalence automaton over M is a
tuple A = (Q, X, M, E, qo, F), in which (i) @ is a finite set of states, (ii) F is a
finite subset of @ x X* x M x @, called the set of edges, (iii) g0 € Q is the initial
state, and (iv) F C Q is the set of final states. For ¢,¢' € Q, w,w’ € X*, and
m,m’ € M, we write (q,w,m) =4 (¢’,w’,m’) if there is an edge (q,v,n,q') € E
such that w’ = wv and m’ = mn. The language accepted by A is then

L(A) ={we X" | (g0,¢,1) =% (f,w,1) for some f € F}.

The class of languages accepted by valence automata over M is denoted by
VA(M). If M is a class of monoids, we write VA(M) for [ J,,;c 1 VA(M).

Graphs A graph is a pair I' = (V, E) where V is a finite set and F is a subset of
{S CV|1<|S] <2}. The elements of V are called vertices and those of E are
called edges. Vertices v,w € V are adjacent if {v,w} € E. If {v} € E for some
v € V, then v is called a looped vertex, otherwise it is unlooped. A subgraph of I’
is a graph (V/, E') with V' CV and E’ C E. Such a subgraph is called induced
(byV')if ' ={S € E|S CV'}, i.e. E' contains all edges from F incident to
vertices in V'. By I' \ {v}, for v € V, we denote the subgraph of I" induced by
V\ {v}. By C4 (P4), we denote a graph that is a cycle (path) on four vertices;
see Figs. [Ta] and Moreover, a cligue is a loop-free graph in which any two
distinct vertices are adjacent. Finally, '~ denotes the graph obtained from I’
by deleting all loops: We have I'™ = (V, E~), where E~ ={S € E | |S| =2}.

Graph monoids Let A be a (not necessarily finite) set of symbols and R be
a subset of A* x A*. The pair (A4, R) is called a (monoid) presentation. The
smallest congruence of A* containing R is denoted by =g and we will write [w]g
for the congruence class of w € A*. The monoid presented by (A, R) is defined
as A*/=g. Note that since we did not impose a finiteness restriction on A, up to
isomorphism, every monoid has a presentation. Furthermore, for monoids Mj,
Ms we can find presentations (A;, Ry) and (As, Ry) such that Ay N Ay = (). We
define the free product M; % My to be presented by (A1 U A2, R1 U Rs). Note
that M, * Ms is well-defined up to isomorphism. In analogy to the n-fold direct
product, we write M (™ for the n-fold free product of M.



A presentation (A, R) in which A is a finite alphabet is a Thue system. To
each graph I' = (V| E), we associate the Thue system Tr = (X, Rr) over the
alphabet X = {a,,a, | v € V}. R is defined as

Rr = {(ayay,e) | v e VIU{(zy,yx) | x € {ay,av}, ¥y € {aw,aw}, {v,w} € E}.

In particular, we have (a,@,,adya,) € Rp whenever {v} € E. To simplify no-
tation, the congruence =g, is then also denoted by =p. We are now ready to
define graph monoids. To each graph I', we associate the monoid

MI' = Xj/=r.

The monoids of the form M are called graph monoids.

Let us briefly discuss how to realize storage mechanisms by graph monoids.
First, suppose Iy and I3 are disjoint graphs. If I" is the union of Iy and I7,
then MII" = M « MI by definition. Moreover, if I' is obtained from Iy and
Iy by drawing an edge between each vertex of Iy and each vertex of I, then
MI = MFO X MFl

If I' consists of one vertex v and has no edges, the only rule in the Thue
system is (@@, ). In this case, MI" is also denoted as B and we will refer to it
as the bicyclic monoid. The generators a, and a, are then also written a and a,
respectively. It is not hard to see that B corresponds to a partially blind counter,
i.e. one that attains only non-negative values and has to be zero at the end
of the computation. Moreover, if I" consists of one looped vertex, then MI" is
isomorphic to Z and thus realizes a blind counter, which can go below zero and
also zero-tested in the end.

If one storage mechanism is realized by a monoid M, then the monoid B * M
corresponds to the mechanism that builds stacks: A configuration of this new
mechanism consists of a sequence cpacs ---ac,, where cg,...,c, are configu-
rations of the mechanism realized by M. We interpret this as a stack with the
entries co, . . ., ¢,. One can open a new stack entry on top (by multiplying a € B),
remove the topmost entry if empty (by multiplying a € B) and operate on the
topmost entry using the old mechanism (by multiplying elements from M). In
particular, B x« B describes a pushdown stack with two stack symbols. See [12]
for details and more examples.

As a final example, note that if I" is one edge short of being a clique, then
MI" = B® x B" 2, where n is the number of vertices in I". Then, by the
observations above, valence automata over MlI" are equivalent to Petri nets with
n unbounded places and access to a pushdown stack. Hence, for our purposes, a
pushdown Petri net is a valence automaton over B x B™ for some n € N.

3 Results

As a first step, we exhibit graphs I" for which VA(MI") includes the recursively
enumerable languages. Unfortunately, the space restrictions do not permit an
inclusion of a proof for the following theorem.



Theorem 1. Let I be a graph such that I'~ contains Cy or Py as an induced
subgraph. Then VA(MI) is the class of recursively enumerable languages. In
particular, the emptiness problem is undecidable for valence automata over MI.

This unifies and slightly strengthens a few undecidability results concerning
valence automata over graph monoids. The case that all vertices are looped
was shown by Lohrey and Steinberg 7] (see also the discussion of Theorem .
Another case appeared in [12].

It is not clear whether Theorem [l| describes all I" for which VA(MI") ex-
hausts the recursively enumerable languages. For example, as mentioned above,
if I' is one edge short of being a clique, then valence automata over MI are
pushdown Petri nets. In particular, the emptiness problem for valence automata
is equivalent to the reachability problem of this model, for which decidability is
a long-standing open question [8]. In fact, it is already open whether reachability
is decidable in the case of B(®) x B, although Leroux, Sutre, and Totzke have
recently made progress on this case [5]. Therefore, characterizing those I" with
a decidable emptiness problem for valence automata over MI" would very likely
settle these open question

However, we will show that if we steer clear of pushdown Petri nets, we can
achieve a characterization. More precisely, we will present a set of graphs that
entail the behavior of pushdown Petri nets. Then, we show that among those
graphs that do not contain these as induced subgraphs, the absence of P; and
Cy already characterizes decidability.

PPN-graphs A graph I is said to be a PPN-graph if it is isomorphic to one of
the following three graphs:

We say that the graph I" is PPN-free if it has no PPN-graph as an induced
subgraph. Observe that a graph I" is PPN-free if and only if in the neighborhood
of each unlooped vertex, any two vertices are adjacent.

Of course, the abbreviation ‘PPN’ refers to ‘pushdown Petri nets’. This is
justified by the following fact.

Proposition 2. If I" is a PPN-graph, then VA(MI') = VA(B®) x B).

Transitive forests In order to exploit the absence of P, and C4 as induced sub-
graphs, we will employ a characterization of such graphs as transitive forests.
The comparability graph of a tree t is a simple graph with the same vertices as
t, but has an edge between two vertices whenever one is a descendent of the
other in ¢. A simple graph is a transitive forest if it is the disjoint union of
comparability graphs of trees. For an example of a transitive forest, see Fig.
Let DEC denote the smallest isomorphism-closed class of monoids such that

2 Technically, it is conceivable that there is a decision procedure for each B® x B",
but no uniform one that works for all n. However, this seems unlikely.



Fig. 2: Example of a transitive forest. The solid edges are part of the trees whose
comparability graphs make up the graph.

1. for each n > 0, we have B™ € DEC and
2. for M, N € DEC, we also have M « N € DEC and M x Z € DEC.

Our main result characterizes those PPN-free I" for which valence automata
over MI" have a decidable emptiness problem.

Theorem 3. Let I' be PPN-free. Then the following conditions are equivalent:

1. Emptiness is decidable for valence automata over MI.
2. I'™ contains neither Cy nor Py as an induced subgraph.
8. I'" is a transitive forest.

4. MI" € DEC.

Note that this generalizes the fact that emptiness is decidable for pushdown
automata (i.e. graphs with no edges) and partially blind multicounter automata
(i.e. cliques), or equivalently, reachability in Petri nets.

Note that if I" has a loop on every vertex, then MI" is a group. Groups
that arise in this way are called graph groups. In general, if a monoid M is a
group, then emptiness for valence automata over M is decidable if and only if the
rational subset membership problem is decidable for M [4]. The latter problem
asks, given a rational set R over M and an element m € M, whether m € R;
see [6] for more information. Therefore, Theorem (3| extends the following result
of Lohrey and Steinberg [7], which characterizes those graph groups for which
the rational subset membership problem is decidable.

Theorem 4 (Lohrey and Steinberg [7]). Let I' be a graph in which every
vertex is looped. Then the rational subset membership problem for the group MI
is decidable if and only if I'~ is a transitive forest.

Lohrey and Steinberg show decidability by essentially proving that VA(MI) is
semilinear in their case. Here, we extend this argument by showing that in the
equivalent cases of Theorem |3] the Parikh images of VA(MI") are those of lan-
guages accepted by priority multicounter machines. The latter were introduced
and shown to have a decidable reachability problem by Reinhardt [§].



Intuition for decidable cases In order to provide an intuition for those storage
mechanisms (not containing a pushdown Petri net) with a decidable emptiness
problem, we present an equally expressive class of monoids for which the cor-
responding storage mechanisms are easier to grasp. Let SC* be the smallest
isomorphism-closed class of monoids with

1. for each n € N, we have B" € SC*,
2. for each M € SC*, we also have B x M € SC* and M x Z € SC*.

Thus, SC* realizes those storage mechanisms that can be constructed from a
finite set of partially blind counters (B™) by building stacks (M +— B+ M) and
adding blind counters (M +— M X Z). Then, in fact, the monoids in SC* produce
the same languages as those in DEC.

Proposition 5. VA(DEC) = VA(SC®).

While our decidability proof for SC* is a reduction to priority multicounter
machines, it should be stressed that the mechanisms realized by SC* are quite
different from priority counters and very likely not subsumed by them in terms of
accepted languages. For example, SC* contains pushdown stacks (B« B)—if the
priority multicounter machines could accept all context-free languages (or even
just the semi-Dyck language over two pairs of parentheses), this would easily
imply decidability for pushdown Petri nets. Indeed, SC* can even realize stacks
where each entry consists of n partially blind counters (since B * (B") € SC¥).
On the other hand, priority multicounter machines do not seem to be subsumed
by SCF either: After building stacks once, SC* only allows adding blind counters
(and building stacks again). It therefore seems unlikely that a mechanism in SC*
can accept the languages even of a priority 2-counter machine.

Intuition for open cases We also want to provide an intuition for the remaining
storage mechanisms, i.e. those defined by monoids MII" about which Theorems
and [3] make no statement. To this end, we describe a class of monoids that are
expressively equivalent to these remaining cases. The remaining cases are given
by those graphs I" where I'~ does not contain C4 or Py, but I' contains a PPN-
graph. Let REM denote the class of monoids M1, where I" is such a graph. Let
SC™T be the smallest isomorphism-closed class of monoids with

1. B® x B € SC* and
2. for each M € SC*, we also have B* M € SCt and M x B € SC*.

This means, SCT realizes those storage mechanisms that are obtained from a
pushdown stack, together with one partially blind counter (IBE(Q) x B) by the trans-
formations of building stacks (M +— B x M) and adding partially blind counters
(M — M x B).

Proposition 6. VA(REM) = VA(SC™).

Of course, SCT generalizes pushdown Petri nets, which correspond to monoids
B xB" for n € N. Moreover, SC* also subsumes priority multicounter machines



(see p. : Every time we build stacks, we can use the new pop operation to
realize a zero test on all the counters we have added so far. Let My = 1 and
M1 = Bx (Mg x B). Then, priority k-counter machines correspond to valence
automata over M} where the stack heights never exceed 1.

4 Proof of the characterization

First, we mention existing results that are ingredients to our proofs. A class
of languages is a collection of languages that contains at least one non-empty
language. If C is a language class such that for languages L C X* in C, homomor-
phisms h: X* — Y* ¢: Z* — X* and regular sets R C X*, we have h(L) € C,
g Y (L)eC,and LN R € C, we call C a full trio.

Let C be a class of languages. A C-grammar is a quadruple G = (N, T, P, S)
where N and T are disjoint alphabets and S € N. P is a finite set of pairs (4, M)
with A € Nand M C (NUT)*, M € C. We write x =¢ y if + = uAv and
y = uwv for some u,v,w € (NUT)* and (A, M) € P with w € M. The language
generated by G is L(G) = {w € T* | S =¢ w}. The class of all languages that
are generated by C-grammars is denoted Alg(C).

The well-known theorem of Chomsky and Schiitzenberger |1, expressed in
terms of valence automata, states that VA(Z % Z) is the class of context-free
languages. This formulation, along with a new proof, is due to Kambites [3]. Let
Reg and CF denote the class of regular and context-free languages, respectively.
Then we have Reg = VA(1) and CF = Alg(Reg). Here, 1 denotes the trivial
monoid {1}. Since furthermore valence automata over B * B are equivalent to
pushdown automata, we have in summary:

CF = VA(B * B) = Alg(VA(1)) = Alg(CF) = VA(Z 7).

In order to work with general free products, we use the following result, which
expresses the languages in VA(M * M7) in terms of VA(Mp) and VA(My).

Proposition 7 ([12]). Let My and My be monoids. Then VA(My * M) is
included in Alg(VA(My) U VA(My)).

As a partial converse to Proposition [7] we have the following. For a monoid
M, we define R1(M) ={x € M |3y € M: zy = 1}. Observe that the set R; (M)
can be thought of as the storage contents that can be reset.

Proposition 8 ([11]). For every monoid M, VA(B B « M) = Alg(VA(M)).
Moreover, if Ri(M) # {1}, then VA(B = M) = Alg(VA(M)).

Since valence automata over B x B are essentially pushdown automata and since
Alg(VA(1)) = Alg(Reg), the equality VA(B « B x M) = Alg(VA(M)) generalizes
the equivalence between pushdown automata and context-free grammars.

We will also use the fact that if VA(M;) C VA(N;) for ¢ € {0,1}, then
VA(My x M) € VA(Ny x Np). This can be deduced from a characterization of
VA(My x M) in terms of VA(My) and VA(M;) by Kambites [3].



Proof (Proposition [4). By definition, we have MI" = B x (Mg * M;), where
M; 2 B or M; = Z for i € {0,1}. We show that VA(My * M;) = VA(B x B)
in any case. This suffices, since it clearly implies VA(MI') = VA(B® x B). If
My = M; = B, the equality VA(My * M;) = VA(B  B) is trivial, so we may
assume My = 7Z.

If My =2 Z, then My * My = Z + Z, meaning that VA(My * M) is the class of
context-free languages and thus VA(My * M) = VA(B « B).

If My = B, then VA(Z x B) = Alg(VA(Z)) by Proposition |8 Since VA(Z) is
included in the context-free languages, we have Alg(VA(Z)) = VA(B * B). O

We shall now prove Theorem [3] Note that the implication 1] = [2]" immedi-
ately follows from Theorem[I} The implication ‘2]=-[3]" is an old graph-theoretic
result of Wolk.

Theorem 9 (Wolk [10]). A simple graph I' is a transitive forest if and only
if I' does not contain Cy or Py as an induced subgraph.

The implication ‘@B]=-[]’ is a simple combinatorial observation. An analogous
fact is part of Lohrey and Steinberg’s proof of Theorem []

Lemma 10. If I" is PPN-free and I'~ is a transitive forest, then MI" € DEC.

Proof. Let I' = (V, E'). We proceed by induction on |V|. Observe that by Theo-
rem [J] every induced subgraph of a transitive forest is again a transitive forest.
Since furthermore every induced proper subgraph A of I" is again PPN-free, our
induction hypothesis implies MA € DEC for such graphs. If I" is empty, then
MI" = 1 = B° € DEC. Hence, we assume that I" is non-empty. If I" is not con-
nected, then I is the disjoint union of graphs I'1, I's, for which M}, MI% € DEC
by induction. Hence, MI" = MI « MI5 € DEC.

Suppose I is connected. Since I'~ is a transitive forest, there is a vertex
v € V that is adjacent to every vertex in V' \ {v}. We distinguish two cases.

e If v is a looped vertex, then MI" = Z x M(I" \ v), and M(I"\ v) € DEC by
induction.

e If v is an unlooped vertex, then I" being PPN-free means that in I" \ v, any
two distinct vertices are adjacent. Hence, MII" = B™ x Z™, where m and n are

the number of unlooped and looped vertices in I', respectively. Therefore,
MI" € DEC. a

In light of Theorems [I] and [9] and Lemma it remains to be shown that
emptiness is decidable for valence automata over monoids in DEC. This will
involve two facts (Theorem [11] and Proposition about the languages arising
from monoids in DEC.

The following generalization of Parikh’s theorem by van Leeuwen will allow
us to exploit our description of free products by algebraic extensions. If X is
an alphabet, X® denotes the set of maps a: X — N. The elements of X® are
called multisets. The Parikh map is the map ¥: X* — X% where ¥ (w)(x) is the
number of occurrences of z in w. By P(S), we denote the power set of the set



S. A substitution is a map o: X — P(Y™*) and given L C X*, we write o(L) for
the set of all words vy - - - v,, where v; € o(z;), 1 <i <mn, for x1---x, € L and
Z1,...,2, € X. If o(x) belongs to C for each z € X, then o is a C-substitution.
The class C is said to be substitution closed if o(L) € C for every member L of
C and every C-substitution o.

Theorem 11 (van Leeuwen [9]). For each substitution closed full trio C, we
have ¥ (Alg(C)) = ¥(C).

For o, € X® let a+ 8 € X® be defined by (a + 8)(z) = a(z) + 8(z).
With this operation, X® is a monoid. For a subset S C X%, we write S for
the smallest submonoid of X® containing S. A subset of the form u + F® for
@ € X% and a finite FF C X9 is called linear. A finite union of linear sets is
called semilinear. By SLI(C) we denote the class of languages h(L N ¥~1(9)),
where h: X* — Y* is a morphism, L belongs to C, and S C X® is semilinear.

Proposition 12 ([11]). For each monoid M, SLI(VA(M)) = [U;>, VA(M x
). N

We will prove decidability for DEC by reducing the problem to the reach-
ability problem of priority multicounter machines, whose decidability has been
established by Reinhardt [8]. Priority multicounter machines are an extension of
Petri nets with one inhibitor arc. Intuitively, a priority multicounter machine is a
partially blind multicounter machine with the additional capability of restricted
zero tests: The counters are numbered from 1 to k and for each £ € {1,... k},
there is a zero test instruction that checks whether counters 1 through ¢ are zero.
Let us define priority multicounter machines formally.

A priority k-counter machine is a tuple A = (Q, X, F, qo, F), where (i) X
is an alphabet, (ii) @ is a finite set of states, (iii) E is a finite subset of
Q x X* x{0,...,k} x ZF x Q, and its elements are called edges or transitions,
(iv) go € @ is the initial state, and (v) F C @ is the set of final states. For triples
(q,u,p) and (¢/,u/, 1) with ¢,¢' € Q and u, i’ € NF, with p = (mq,...,myp),
we write (q,u, ) =4 (¢, v, 1) if for some (¢, z,¢,v,q') € E, we have v’ = uz,
@ =p+v,and m; =0 for 1 < i < {. The language accepted by A is defined as

L(A) ={w € X* | (go,¢,0) =% (f,w,0) for some f € F}.

A priority multicounter machine is a priority k-counter machine for some k € N.
The class of languages accepted by priority multicounter machines is denoted by
Prio. Reinhardt has shown that the reachability problem for priority multicounter
machines is decidable [§], which can be reformulated as follows.

Theorem 13 (Reinhardt [8]). FEmptiness is decidable for priority multi-
counter machines.

The idea of the proof of ‘d] = [I' is, given a valence automaton over some
M € DEC, to construct a Parikh-equivalent priority multicounter machine. This
construction makes use of the following simple fact. A full trio C is said to be
Presburger closed if SLI(C) C C.



Lemma 14. Prio is a Presburger closed full trio and closed under substitutions.

Proof. The fact that Prio is a full trio can be shown by standard automata
constructions. Given a priority multicounter machine A and a semilinear set
S C X%, we add |X| counters to A that ensure that the input is contained in
L(A) N¥~1(9). This proves that Prio is Presburger closed.

Suppose 0: X — P(Y™*) is a Prio-substitution. Furthermore, let A be a pri-
ority k-counter machine and let o(z) be given by a priority ¢-counter machine
for each x € X. We construct a priority (¢ + k)-counter machine B from A by
adding ¢ counters. B simulates A on counters {+1,...,¢+ k. Whenever A reads
x, B uses the first £ counters to simulate the priority ¢-counter machine for o(z).
Using the zero test on the first ¢ counters, it makes sure that the machine for
o(x) indeed ends up in a final configuration. Then clearly L(B) = o(L(A)). O

In order to show that every L € VA(M) for M € DEC has a Parikh equivalent
in Prio, we use Proposition [I2] and Proposition [7] By induction with respect to
the definition of DEC, it suffices to prove that

w(VA(M)),#(VA(N)) C ¥(Prio) implies ¥(VA(M x Z))
@(VA(M = N))

C ¥(Prio) and

C ¥ (Prio).
According to Proposition [I2] and Proposition [7] this boils down to showing that
we have W(SLI(Prio)) C ¥(Prio) and ¥(Alg(Prio)) C ¥(Prio). The former is a
consequence of Lemma [T4] and the latter is an instance of Theorem

Lemma 15. We have the effective inclusion ¥(VA(DEC)) C ¥ (Prio). More pre-
cisely, given M € DEC and L € VA(M), one can construct an L' € Prio with
U(L")y=v(L).

Proof. We proceed by induction with respect to the definition of DEC. In the
case M = B", we have VA(M) C Prio, because priority multicounter machines
generalize partially blind multicounter machines.

Suppose M = N x Z and ¥(VA(N)) C ¥(Prio) and let L € VA(M). By
Proposition we have L = h(K N¥~1(9)) for some semilinear set S, a mor-
phism %, and K € VA(N). Hence, there is a K € Prio with ¥(K) = ¥(K). With
this, we have ¥(L) = ¥(h(K N¥~1(5))) and since Prio is Presburger closed, we
have h(K N¥~1(S)) € Prio and thus ¥(L) € ¥(Prio).

Suppose M = My x M; and ¥(VA(M;)) C ¥(Prio) for i € {0,1}. Let L
be a member of VA(M). According to Proposition [7] this means L belongs to
Alg(VA(My)UVA(My)). Since ¥ (VA(Mo) UVA(M;)) C ¥(Prio), we can construct
a Prio-grammar G with ¥(L(G)) = ¥(L). By Theorem |11] and Lemma this
implies ¥(L) € ¥ (Prio). O

The following lemma is a direct consequence of Lemma [15] and Theorem
Given a valence automaton over M with M € DEC, we construct a priority
multicounter machine accepting a Parikh-equivalent language. The latter can
then be checked for emptiness.



Lemma 16. For each M € DEC, the emptiness problem for valence automata
over M 1is decidable.

This completes the proof of Theorem [3| Let us now prove the expressive
equivalences, Propositions [5] and [6]

Proof (Proposition @ Since SC* C DEC, the inclusion “D” is immediate. We
show by induction with respect to the definition of DEC that for each M € DEC,
there is an M’ € SC* with VA(M) C VA(M’). This is trivial if M = B",
so suppose VA(M) C VA(M’') and VA(N) C VA(N') for M,N € DEC and
M’,N’ € SCE. Observe that by induction on the definition of SC*, one can show
that there is a common P € SC* with VA(M') C VA(P) and VA(N') C VA(P).
Of course, we may assume that Ry(P) # {1}. Then we have

VA(M * N) C Alg(VA(M) UVA(N)) C Alg(VA(M') UVA(N"))
C Alg(VA(P)) = VA(B  P),

in which the first inclusion is due to Proposition [7] and the equality in the end
is provided by Proposition [§] Since B x P € SC*, this completes the proof for
M % N. Moreover, VA(M) C VA(M') implies VA(M x Z) C VA(M' x Z) and we
have M’ x Z € SC*, O

Proof (Proposition @ By induction, it is easy to see that each M € SCT is
isomorphic to some MI" where I" contains a PPN-graph and I~ is a transitive
forest. By Theorem @ this means I'~ contains neither C4 nor Pj. This proves
the inclusion “2”.

Because of Theorem EI, for the inclusion “C”, it suffices to show that if I~
is a transitive forest, then there is some M € SC* with VA(MI") C VA(M). We
prove this by induction on the number of vertices in I' = (V, E). As in the proof
of Lemma [I0] we may assume that for every induced proper subgraph A of I,
we find an M € SCt with VA(MI") C VA(M). If I is empty, then MI" 2 1 and
VA(MI') C VA(B® x B). Hence, we may assume that I" is non-empty.

If I" is not connected, then I" = I'} W I, with graphs I, I's such that there
are My, My € SCt with VA(MI;) C VA(M;) for i € {1,2}. By induction with
respect to the definition of SC*, one can show that there is a common N € SC*
with VA(M;) C VA(N) for ¢ € {1,2}. Since then R;(N) # {1}, we have

C Alg(VA(M;) UVA(M,)) C Alg(VA(N)) = VA(B  N)

and B x N € SCT as in the proof of Proposition

Suppose I is connected. Since I'~ is a transitive forest, there is a vertex
v € V that is adjacent to every vertex in V \ {v}. By induction, there is an
M € SC* with VA(M(I"\ v)) C VA(M). Depending on whether v is looped or
not, we have MII" = M(I"\v) xZ or MI" = M(I"\v) xB. Since VA(Z) C VA(BxB)
(one blind counter can easily be simulated by two partially blind counters), this
yields VA(MI") € VAM(I"\ v) x B x B) C VA(M x B x B) and the fact that
M x B x B € SCT completes the proof. O



Conclusion Of course, an intriguing open question is whether the storage mech-
anisms corresponding to SCT have a decidable reachability problem. First, since
their simplest instance are pushdown Petri nets, this extends the open question
concerning the latter’s reachability. Second, they subsume the priority multi-
counter machines of Reinhardt. This makes them a candidate for being a quite
powerful model for which reachability might be decidable.

Observe that if these storage mechanisms turn out to exhibit decidability, this
would mean that Lohrey and Steinberg’s characterization (Theorem [4)) remains
true for all graph monoids. This can be interpreted as evidence for decidability.
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