An approach to computing downward closures

Georg Zetzsche

Technische Universität Kaiserslautern

Theorietag 2015
System Observer

Observer sees precisely: $u \subseteq v$

System is a subsequence of v.

Georg Zetzsche (TU KL)
Computing Downward Closures
Theorietag 2015 2 / 16
System Observer
LOSSY CHANNEL

Downward Closures
\[u \subseteq v : u \text{ is a subsequence of } v \]

Observer sees precisely
\[L \subseteq u \]

Georg Zetzsche (TU KL)
Computing Downward Closures
Theorietag 2015
Downward Closures

\[u \subseteq v : u \text{ is a subsequence of } v \]

Observer sees precisely

Observer sees.
Downward Closures

- \(u \preceq v \): \(u \) is a subsequence of \(v \)
- \(L\downarrow = \{ u \in X^* \mid \exists v \in L: u \preceq v \} \)
- Observer sees precisely \(L\downarrow \)
Downward Closures

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L\downarrow$ *is regular.*

Applications

- Given an automaton for $L\downarrow$, many things are decidable:
 - Inclusion of behavior under lossy observation ($K \Downarrow L\downarrow$)
 - Ordinary inclusion almost always undecidable!
 - Which actions occur arbitrarily often? ($a\Downarrow L\downarrow$)
 - Is b ever executed after a? ($ab \in L\downarrow$)
 - Can the system run arbitrarily long? ($L\downarrow$ infinite)

Problem

Finite automaton for $L\downarrow$ exists for every L. How can we compute it?
Downward Closures

Theorem (Higman/Haines)
For every language \(L \subseteq X^* \), \(L \downarrow \) is regular.

Applications
Given an automaton for \(L \downarrow \), many things are decidable:
Downward Closures

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L\downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation ($K\downarrow \subseteq L\downarrow$)

 Ordinary inclusion almost always undecidable!
Downward Closures

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L \downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation \((K \downarrow \subseteq L \downarrow)\)
 - Ordinary inclusion almost always undecidable!

- Which actions occur arbitrarily often? \((a^* \subseteq L \downarrow)\)
Downward Closures

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L\downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation ($K\downarrow \subseteq L\downarrow$)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? ($a^* \subseteq L\downarrow$)
- Is b ever executed after a? ($ab \in L\downarrow$)
Downward Closures

Theorem (Higman/Haines)

For every language \(L \subseteq X^* \), \(L^\downarrow \) is regular.

Applications
Given an automaton for \(L^\downarrow \), many things are decidable:

- Inclusion of behavior under lossy observation (\(K^\downarrow \subseteq L^\downarrow \))
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? (\(a^* \subseteq L^\downarrow \))
- Is \(b \) ever executed after \(a \)? (\(ab \in L^\downarrow \))
- Can the system run arbitrarily long? (\(L^\downarrow \) infinite)
Downward Closures

Theorem (Higman/Haines)

For every language \(L \subseteq X^* \), \(L\downarrow \) is regular.

Applications

Given an automaton for \(L\downarrow \), many things are decidable:
- Inclusion of behavior under lossy observation (\(K\downarrow \subseteq L\downarrow \))
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? (\(a^* \subseteq L\downarrow \))
- Is \(b \) ever executed after \(a \)? (\(ab \in L\downarrow \))
- Can the system run arbitrarily long? (\(L\downarrow \) infinite)

Problem

- Finite automaton for \(L\downarrow \) exists for every \(L \).
- How can we compute it?
Negative results

Theorem (Gruber, Holzer, Kutrib 2007)

Downward closures are not computable when infinity or emptiness are undecidable.

Theorem (Mayr 2003)

The reachability set of lossy channel systems is not computable.
Positive results

Theorem (van Leeuwen 1978/Courcelle 1991): Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani, ICALP 2001): Downward closures are computable for 0L-systems.

Theorem (Habermehl, Meyer, Wimmel, ICALP 2010): Downward closures are computable for Petri net languages.

Theorem (Z., STACS 2015): Downward closures are computable for stacked counter automata.
Positive results

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.
Positive results

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani, ICALP 2001)

Downward closures are computable for 0L-systems.
Positive results

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani, ICALP 2001)

Downward closures are computable for 0L-systems.

Theorem (Habermehl, Meyer, Wimmel, ICALP 2010)

Downward closures are computable for Petri net languages.
Positive results

<table>
<thead>
<tr>
<th>Theorem (van Leeuwen 1978/Courcelle 1991)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downward closures are computable for context-free languages.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Abdulla, Boasson, Bouajjani, ICALP 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downward closures are computable for 0L-systems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Habermehl, Meyer, Wimmel, ICALP 2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downward closures are computable for Petri net languages.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Z., STACS 2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downward closures are computable for stacked counter automata.</td>
</tr>
</tbody>
</table>
Positive results

<table>
<thead>
<tr>
<th>Theorem (van Leeuwen 1978/Courcelle 1991)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downward closures are computable for context-free languages.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Abdulla, Boasson, Bouajjani, ICALP 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downward closures are computable for 0L-systems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Habermehl, Meyer, Wimmel, ICALP 2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downward closures are computable for Petri net languages.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Z., STACS 2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downward closures are computable for stacked counter automata.</td>
</tr>
</tbody>
</table>

- Weak form of stack nesting
- Adding Counters
A general approach

Example (Transducer)

Definition
Rational transduction: set of pairs given by a finite state transducer.

For rational transduction $T \subseteq X^* \times Y^*$ and language $L \subseteq Y^*$, let $T L = \{ (x, y) \mid (x, y) \in T \cap L \times L \}$.
A general approach

Example (Transducer)

\[T(A) = \{(x, u\#v\#w) \mid u, v, w, x \in \{a, b\}^*, \ v \preceq x\} \]
A general approach

Example (Transducer)

\[
T(A) = \{(x, u\#v\#w) \mid u, v, w, x \in \{a, b\}^*, \ v \preceq x\}
\]

Definition

- **Rational transduction**: set of pairs given by a finite state transducer.
- For rational transduction \(T \subseteq X^* \times Y^*\) and language \(L \subseteq Y^*\), let

\[
TL = \{y \in X^* \mid \exists x \in L : (x, y) \in T\} \]
Definition

C is a full trio if \(LR \in C \) for each \(L \in C \) and rational transduction \(R \).
Definition

C is a **full trio** if \(LR \in C \) for each \(L \in C \) and rational transduction \(R \).

Theorem

If \(C \) *is a full trio, then downward closures are computable for* \(C \) *if and only if the simultaneous unboundedness problem is decidable:*

Given A language \(L \subseteq a_1^* \cdots a_n^* \) in \(C \)

Question Is \(a_1^* \cdots a_n^* \) included in \(L \downarrow \)?
Definition

C is a \textit{full trio} if $LR \in C$ for each $L \in C$ and rational transduction R.

Theorem

If C is a full trio, then downward closures are computable for C if and only if the \textit{simultaneous unboundedness problem} is decidable:

\textbf{Given} A language $L \subseteq a_1^* \cdots a_n^*$ in C

\textbf{Question} Is $a_1^* \cdots a_n^*$ included in $L\downarrow$?

Equivalently, we check whether it is true that:

for each $k \geq 0$, there are $x_1, \ldots, x_n \geq k$ with $a_1^{x_1} \cdots a_n^{x_n} \in L$
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language \(L \downarrow \) can be written as a finite union of sets of the form

\[
Y_0^* \{ x_1, \varepsilon \} Y_1^* \cdots \{ x_n, \varepsilon \} Y_n^*,
\]

where \(x_1, \ldots, x_n \) are letters and \(Y_0, \ldots, Y_n \) are alphabets.

“Simple Regular Languages”
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language \(L \) can be written as a finite union of sets of the form

\[
Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,
\]

where \(x_1, \ldots, x_n \) are letters and \(Y_0, \ldots, Y_n \) are alphabets.

“Simple Regular Languages” ← Ideal decomposition!
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L can be written as a finite union of sets of the form

$$Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

“Simple Regular Languages” ← Ideal decomposition!

Algorithm

Suppose $L \subseteq X^*$ is given.
Enumerate simple regular languages R.
Decide whether $L \downarrow = R$:
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L can be written as a finite union of sets of the form

$$Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

“Simple Regular Languages” \leftrightarrow Ideal decomposition!

Algorithm

Suppose $L \subseteq X^*$ is given.
Enumerate simple regular languages R.
Decide whether $L \downarrow = R$:

- $L \downarrow \subseteq R$ iff $L \downarrow \cap (X^* \setminus R) = \emptyset \leadsto$ emptiness.
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L can be written as a finite union of sets of the form

$$Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

“Simple Regular Languages” ← Ideal decomposition!

Algorithm

Suppose $L \subseteq X^*$ is given.

Enumerate simple regular languages R.

Decide whether $L \downarrow = R$:

- $L \downarrow \subseteq R$ iff $L \downarrow \cap (X^* \setminus R) = \emptyset$ \leadsto emptiness.

Observation

$L \downarrow$ is in C:

- (x, ε)
- (x, x)
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L can be written as a finite union of sets of the form

$$Y_0^* \{ x_1, \varepsilon \} Y_1^* \cdots \{ x_n, \varepsilon \} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

“Simple Regular Languages” ← Ideal decomposition!

Algorithm

Suppose $L \subseteq X^*$ is given.

Enumerate simple regular languages R.

Decide whether $L \downarrow = R$:

- $L \downarrow \subseteq R$ iff $L \downarrow \cap (X^* \setminus R) = \emptyset$ ← emptiness.
- $R \subseteq L \downarrow$ \Rightarrow $Y_0^* \{ x_1, \varepsilon \} Y_1^* \cdots \{ x_n, \varepsilon \} Y_n^* \subseteq L \downarrow$

Observation

$L \downarrow$ is in C:

$$\begin{align*}
(x, \varepsilon) \\
(\varepsilon, x)
\end{align*}$$
Observation

- It suffices to check whether $Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L\downarrow$.
Observation

- It suffices to check whether $Y_0^* \{x_1, \varepsilon \} Y_1^* \cdots \{x_n, \varepsilon \} Y_n^* \subseteq L\downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.
Observation

- It suffices to check whether \(Y_0^* \{ x_1, \varepsilon \} Y_1^* \cdots \{ x_n, \varepsilon \} Y_n^* \subseteq L \downarrow \).
- \(L \downarrow \) includes \(\{ a, b, c \}^* \) if and only if it contains \((abc)^* \).

\[
abc abc abc abc abc abc
\]
Observation

- It suffices to check whether $Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L\downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.

$$abc \ abc \ abc \ abc \ abc$$

$$bacca$$
Observation

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L\downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.

\[abc \; abc \; abc \; abc \; abc \; abc\]

\[bacca\]
Observation

- It suffices to check whether $Y_0^\ast \{x_1, \varepsilon\} Y_1^\ast \cdots \{x_n, \varepsilon\} Y_n^\ast \subseteq L\downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^\ast$ if and only if it contains $(abc)^\ast$.

\[
abc abc abc abc abc
\]
\[
\text{bacca}
\]

Transduction T

\[
y_0 | a_0 \\
q_0 \xrightarrow{x_1 | \varepsilon} q_1 \xrightarrow{x_2 | \varepsilon} \cdots \xrightarrow{x_n | \varepsilon} q_n
\]

y_i: word containing each letter of Y_i once.
Observation

- It suffices to check whether $Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L\downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.

\[
abc \quad abc \quad abc \quad abc \quad abc
\]

bacca

Transduction T

\[
y_0 | a_0 \quad y_1 | a_1 \quad \cdots \quad y_n | a_n
\]

y_i: word containing each letter of Y_i once. Then:

\[
T(L\downarrow)\downarrow = a_0^* \cdots a_n^* \quad \text{iff} \quad Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L\downarrow
\]
New algorithm for every known positive case

Corollary

If C is a full trio and has effectively semilinear Parikh images, then downward closures are computable for C.
New algorithm for every known positive case

Corollary

If C is a full trio and has effectively semilinear Parikh images, then downward closures are computable for C.

\sim (multiple) context-free grammars/LCFRS, stacked counter automata
New algorithm for every known positive case

Corollary

If C is a full trio and has effectively semilinear Parikh images, then downward closures are computable for C.

\leadsto (multiple) context-free grammars/LCFRS, stacked counter automata

Petri net languages \leadsto boundedness with one inhibitor arc (Czerwiński, Martens 2014), decidable by (Bonnet et. al. 2012)
New algorithm for every known positive case

Corollary

If C *is a full trio and has effectively semilinear Parikh images, then downward closures are computable for* C.

⇝ (multiple) context-free grammars/LCFRS, stacked counter automata

Petri net languages ⇝ boundedness with one inhibitor arc (Czerwiński, Martens 2014), decidable by (Bonnet et. al. 2012)

Theorem

Downward closures are computable for matrix languages.

Natural generalization of context-free and Petri net languages.
New algorithm for every known positive case

Corollary

If C is a full trio and has effectively semilinear Parikh images, then downward closures are computable for C.

⇝ (multiple) context-free grammars/LCFRS, stacked counter automata

Petri net languages ⇝ boundedness with one inhibitor arc (Czerwiński, Martens 2014), decidable by (Bonnet et. al. 2012)

Theorem

Downward closures are computable for matrix languages.

Natural generalization of context-free and Petri net languages.

Theorem

Downward closures are computable for indexed languages.

(Generalize 0L-systems)
Indexed Grammars

Idea: Each nonterminal carries a stack.
Indexed Grammars

Indexed Grammars

Idea: Each nonterminal carries a stack.

Tuple $G = (N, T, I, P, S)$, where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol
Indexed Grammars

<table>
<thead>
<tr>
<th>Idea: Each nonterminal carries a stack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuple $G = (N, T, I, P, S)$, where</td>
</tr>
<tr>
<td>N, T, I are nonterminal, terminal, index alphabet,</td>
</tr>
<tr>
<td>$S \in N$ start symbol</td>
</tr>
<tr>
<td>Productions P of the form</td>
</tr>
<tr>
<td>$A \rightarrow Bf$, push index ($f \in I$)</td>
</tr>
<tr>
<td>$Af \rightarrow B$, pop index ($f \in I$)</td>
</tr>
<tr>
<td>$A \rightarrow uBv$, generate terminals ($u, v \in T^*$)</td>
</tr>
<tr>
<td>$A \rightarrow BC$, split and duplicate index word</td>
</tr>
<tr>
<td>$A \rightarrow w$, generate only terminals ($w \in T^*$)</td>
</tr>
</tbody>
</table>
Indexed Grammars

Idea: Each nonterminal carries a stack.
Tuple $G = (N, T, I, P, S)$, where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol
- Productions P of the form
 - $A \rightarrow Bf$, push index ($f \in I$)
 - $Af \rightarrow B$, pop index ($f \in I$)
 - $A \rightarrow uBv$, generate terminals ($u, v \in T^*$)
 - $A \rightarrow BC$, split and duplicate index word
 - $A \rightarrow w$, generate only terminals ($w \in T^*$)

$S \rightarrow Sf, \quad S \rightarrow Sg, \quad S \rightarrow UU, \quad U \rightarrow \varepsilon,$
$Uf \rightarrow A, \quad Ug \rightarrow B, \quad A \rightarrow Ua, \quad B \rightarrow Ub.$

$N = \{S, T, A, B\}, I = \{f, g\}, T = \{a, b\}.$
Indexed Grammars

Idea: Each nonterminal carries a stack.
Tuple \(G = (N, T, I, P, S) \), where

- \(N, T, I \) are nonterminal, terminal, index alphabet,
- \(S \in N \) start symbol
- Productions \(P \) of the form
 - \(A \rightarrow B f \), push index \((f \in I) \)
 - \(A f \rightarrow B \), pop index \((f \in I) \)
 - \(A \rightarrow u B v \), generate terminals \((u, v \in T^*) \)
 - \(A \rightarrow BC \), split and duplicate index word
 - \(A \rightarrow w \), generate only terminals \((w \in T^*) \)

\[
\begin{align*}
S & \rightarrow S f, \quad S \rightarrow S g, \quad S \rightarrow U U, \quad U \rightarrow \varepsilon, \\
U f & \rightarrow A, \quad U g \rightarrow B, \quad A \rightarrow U a, \quad B \rightarrow U b.
\end{align*}
\]

\(N = \{S, T, A, B\} \), \(I = \{f, g\} \), \(T = \{a, b\} \).
Application to Indexed Languages

No exact representation

Undecidable: Does $L \subseteq a^* b^*$ intersect with $\{a^n b^n \mid n \geq 0\}$?
Application to Indexed Languages

No exact representation

Undecidable: Does \(L \subseteq a^* b^* \) intersect with \(\{a^n b^n \mid n \geq 0\} \)?

Given: indexed grammar \(G \) with \(L = L(G) \subseteq a_1^* \cdots a_n^* \), wlog \(L = L\downarrow \).
Application to Indexed Languages

No exact representation

Undecidable: Does $L \subseteq a^* b^*$ intersect with $\{a^n b^n \mid n \geq 0\}$?

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L\downarrow$.

Observation

- Consider the derivations for $a_1^k \cdots a_n^k$, $k \geq 0$.

Georg Zetzsche (TU KL) Computing Downward Closures Theorietag 2015
Application to Indexed Languages

No exact representation

Undecidable: Does \(L \subseteq a^* b^* \) intersect with \(\{a^n b^n \mid n \geq 0\} \)?

Given: indexed grammar \(G \) with \(L = L(G) \subseteq a_1^* \cdots a_n^* \), wlog \(L = L\downarrow \).

Observation

- Consider the derivations for \(a_1^k \cdots a_n^k \), \(k \geq 0 \).
- For each \(a_i \), at least one of the following holds:
Application to Indexed Languages

No exact representation

Undecidable: Does \(L \subseteq a^* b^* \) intersect with \(\{a^n b^n \mid n \geq 0\}? \)

Given: indexed grammar \(G \) with \(L = L(G) \subseteq a_1^* \cdots a_n^* \), wlog \(L = L\downarrow \).

Observation

- Consider the derivations for \(a_1^k \cdots a_n^k \), \(k \geq 0 \).
- For each \(a_i \), at least one of the following holds:
 - there is an unbounded number subtrees with yield in \(a_i^* \)
Application to Indexed Languages

No exact representation

Undecidable: Does \(L \subseteq a^* b^* \) intersect with \(\{a^n b^n \mid n \geq 0\} \)?

Given: indexed grammar \(G \) with \(L = L(G) \subseteq a_1^* \cdots a_n^* \), wlog \(L = L\downarrow \).

Observation

- Consider the derivations for \(a_1^k \cdots a_n^k \), \(k \geq 0 \).
- For each \(a_i \), at least one of the following holds:
 - there is an unbounded number subtrees with yield in \(a_i^* \)
 - the yields of such subtrees are unbounded in length
Application to Indexed Languages

No exact representation

Undecidable: Does $L \subseteq a^* b^*$ intersect with \(\{ a^n b^n \mid n \geq 0 \} \)?

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L\downarrow$.

Observation

- Consider the derivations for $a_1^k \cdots a_n^k$, $k \geq 0$.
- For each a_i, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset $D \subseteq \{a_1, \ldots, a_n\}$, construct G_D
Application to Indexed Languages

No exact representation

Undecidable: Does $L \subseteq a^* b^*$ intersect with $\{a^n b^n \mid n \geq 0\}$?

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L\downarrow$.

Observation

- Consider the derivations for $a_1^k \cdots a_n^k$, $k \geq 0$.
- For each a_i, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset $D \subseteq \{a_1, \ldots, a_n\}$, construct G_D:

- for $a_i \in D$, instead of deriving whole a_i-subtree, generate one a_i
- for $a_i \notin D$, derive only one of the a_i-subtrees
Application to Indexed Languages

No exact representation

Undecidable: Does \(L \subseteq a^* b^* \) intersect with \(\{a^n b^n \mid n \geq 0\} \)?

Given: indexed grammar \(G \) with \(L = L(G) \subseteq a_1^* \cdots a_n^* \), wlog \(L = L\downarrow \).

Observation

- Consider the derivations for \(a_1^k \cdots a_n^k \), \(k \geq 0 \).
- For each \(a_i \), at least one of the following holds:
 - there is an unbounded number subtrees with yield in \(a_i^* \)
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset \(D \subseteq \{a_1, \ldots, a_n\} \), construct \(G_D \):

- for \(a_i \in D \), instead of deriving whole \(a_i \)-subtree, generate one \(a_i \)
- for \(a_i \notin D \), derive only one of the \(a_i \)-subtrees \(\leftarrow \) “indirect”
Application to Indexed Languages

No exact representation

Undecidable: Does $L \subseteq a^*b^*$ intersect with $\{a^n b^n \mid n \geq 0\}$?

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L\downarrow$.

Observation

- Consider the derivations for $a_1^k \cdots a_n^k$, $k \geq 0$.
- For each a_i, at least one of the following holds:
 - there is an unbounded number of subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset $D \subseteq \{a_1, \ldots, a_n\}$, construct G_D:

- for $a_i \in D$, instead of deriving whole a_i-subtree, generate one a_i
- for $a_i \notin D$, derive only one of the a_i-subtrees \leftarrow “indirect”

Then, $a_1^* \cdots a_n^* \subseteq L(G)\downarrow$ iff $a_1^* \cdots a_n^* \subseteq L(G_D)\downarrow$ for some D.
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for indirect a_i
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for indirect a_i

- Consider the interval $a_i^* \cdots a_j^*$ for each occurring nonterminal
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for indirect a_i

- Consider the interval $a_i^* \cdots a_j^*$ for each occurring nonterminal

Suppose: no unfolding of a_i-subtrees, indirect a_i

Then the nonterminals have pairwise distinct intervals

Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

Indirect symbols: $\{a_3, a_4, a_9\}$
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for indirect a_i
- Consider the interval $a_i^* \cdots a_j^*$ for each occurring nonterminal
- Suppose: no unfolding of a_i-subtrees, indirect a_i

$a_1S_{(1,2)}a_2a_2T_{(3)}U_{(4)}a_5V_{(5,8)}a_7a_8a_8W_{(9)}$

Indirect symbols: \{a_3, a_4, a_9\}
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for indirect a_i

- Consider the interval $a_i^* \cdots a_j^*$ for each occurring nonterminal
- Suppose: no unfolding of a_i-subtrees, indirect a_i
- Then the nonterminals have pairwise distinct intervals

\[
a_1 S_{(1,2)} a_2 a_2 T_{(3)} U_{(4)} a_5 V_{(5,8)} a_7 a_8 a_8 W_{(9)}
\]

Indirect symbols: \{a_3, a_4, a_9\}
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for indirect a_i

- Consider the interval $a_i^* \cdots a_j^*$ for each occurring nonterminal
- Suppose: no unfolding of a_i-subtrees, indirect a_i
- Then the nonterminals have pairwise distinct intervals

\Rightarrow Bounded number of occurrences

\[
a_1 S_{(1,2)} a_2 a_2 T_{(3)} U_{(4)} a_5 V_{(5,8)} a_7 a_8 a_8 W_{(9)}
\]

Indirect symbols: \{a_3, a_4, a_9\}
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for indirect a_i
- Consider the interval $a_i^* \cdots a_j^*$ for each occurring nonterminal
- Suppose: no unfolding of a_i-subtrees, indirect a_i
- Then the nonterminals have pairwise distinct intervals

\Rightarrow Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

$$a_1 S_{(1,2)} a_2 a_2 T_{(3)} U_{(4)} a_5 V_{(5,8)} a_7 a_8 a_8 W_{(9)}$$

Indirect symbols: $\{a_3, a_4, a_9\}$
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for indirect a_i

- Consider the interval $a_i^* \cdots a_j^*$ for each occurring nonterminal
- Suppose: no unfolding of a_i-subtrees, indirect a_i
- Then the nonterminals have pairwise distinct intervals

\Rightarrow Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

\[a_1 S_{(1,2)} a_2 a_2 T_{(3)} U_{(4)} a_5 V_{(5,8)} a_7 a_8 a_8 W_{(9)} \]

Indirect symbols: \{a_3, a_4, a_9\}

Idea

Instead of unfolding a_i-subtree with root Au, $u \in I^*$, apply transducer to u
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for indirect a_i
- Consider the interval $a_i^* \cdots a_j^*$ for each occurring nonterminal
- Suppose: no unfolding of a_i-subtrees, indirect a_i
- Then the nonterminals have pairwise distinct intervals
 \[\Rightarrow\] Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

\[a_1 S_{(1,2)} a_2 a_2 T_{(3)} U_{(4)} a_5 V_{(5,8)} a_7 a_8 a_8 W_{(9)}\]

Indirect symbols: \{a_3, a_4, a_9\}

Idea

Instead of unfolding a_i-subtree with root Au, $u \in I^*$, apply transducer to u
However: Precise simulation not possible
Preserving $a_1^* \cdots a_n^* \subseteq L(G)\downarrow$

For transduction $T \subseteq Nl^* \times a_i^*$, let $f_T, f_G : Nl^* \to \mathbb{N} \cup \{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (Au, v) \in T\}$$

$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, \ Au \Rightarrow^*_G v\}$$
Preserving $a_1^* \cdots a_n^* \subseteq L(G)_\downarrow$

For transduction $T \subseteq N^* \times a_i^*$, let $f_T, f_G : N^* \to \mathbb{N} \cup \{\infty\}$ be

$$f_T(Au) = \sup \{|v| \mid (Au, v) \in T\}$$
$$f_G(Au) = \sup \{|v| \mid v \in a_i^*, \; Au \Rightarrow_G^* v\}$$

Proposition

For each indexed grammar G, one can construct a rational transduction T with $f_T \approx f_G$.

$f \approx g$: f is unbounded on the same subsets as g

(→ regular cost functions)
Preserving \(a_1^* \cdots a_n^* \subseteq L(G) \downarrow \)

For transduction \(T \subseteq Nl^* \times a_i^* \), let \(f_T, f_G : Nl^* \rightarrow \mathbb{N} \cup \{\infty\} \) be

\[
f_T(Au) = \sup\{|v| \mid (Au, v) \in T\}
\]
\[
f_G(Au) = \sup\{|v| \mid v \in a_i^*, Au \Rightarrow_G^* v\}
\]

Proposition

For each indexed grammar \(G \), one can construct a rational transduction \(T \) with \(f_T \approx f_G \).

\(f \approx g \): \(f \) is unbounded on the same subsets as \(g \)

(\(\rightarrow \) regular cost functions)

Step 2: Apply transducer

- Only one nonterminal occurrence for transducer
Preserving $a_1^* \cdots a_n^* \subseteq L(G) \downarrow$

For transduction $T \subseteq \mathbb{N}I^* \times a_i^*$, let $f_T, f_G : \mathbb{N}I^* \rightarrow \mathbb{N} \cup \{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (Au, v) \in T\}$$

$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, Au \Rightarrow_G^* v\}$$

Proposition

For each indexed grammar G, one can construct a rational transduction T with $f_T \approx f_G$.)

$f \approx g$: f is unbounded on the same subsets as g

(→ regular cost functions)

Step 2: Apply transducer

- Only one nonterminal occurrence for transducer

\Rightarrow Bound on nonterminal occurrences, “breadth-bounded”
Remaining problem

- Given: Breadth-bounded indexed grammar G, $L(G) \subseteq a_1^* \cdots a_n^*$
- Is $a_1^* \cdots a_n^*$ included in $L(G)\downarrow$?
Remaining problem

- Given: Breadth-bounded indexed grammar G, $L(G) \subseteq a_1^* \cdots a_n^*$
- Is $a_1^* \cdots a_n^*$ included in $L(G)\downarrow$?

Step 3:

Proposition

Breadth-bounded indexed grammars have effectively semilinear Parikh images.
Thank you for your attention!