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Downward Closures
@ u < v: uis a subsequence of v
o Ll ={ueX*|3vel:uxv}

@ Observer sees precisely L]

Georg Zetzsche (LSV Cachan) Downward Closures Shonan HOMC 2/16



Downward Closures
Theorem (Higman/Haines)

For every language L < X*, L| is regular.
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Downward Closures

Theorem (Higman/Haines)

For every language L = X*, L| is regular.

Applications
Given an automaton for L], many things are decidable:

@ Inclusion of behavior under lossy observation (K| < L])
Ordinary inclusion almost always undecidable!

@ Which actions occur arbitrarily often? (a* < L|)
@ Can the system run arbitrarily long? (L] infinite)

o Safety verification of parametrized asynchronous shared-memory
systems (La Torre, Muscholl, Walukiewicz, FSTTCS 2015)

Problem
@ Finite automaton for L| exists for every L.

@ How can we compute it?

v
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A general approach

Example (Transducer)
ela, e|lb ala, b|b gla, €|b
e|# el#
o
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Example (Transducer)

gla, e|b ala, blb ela, |b
e|# e|l#
O e
ale, ble

T(A) = {(x, uttviw) | u,v,w,x € {a,b}*, v < x}
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A general approach

Example (Transducer)

gla, e|b ala, blb ela, |b
e|# e|l#
O e
ale, ble

T(A) = {(x, uttviw) | u,v,w,x € {a,b}*, v < x}

Definition
@ Rational transduction: set of pairs given by a finite state transducer.

@ For rational transduction T € X* x Y* and language L < Y*, let

TL={yeY*|3Ixel:(x,y)e T}

v
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Definition

Cis a full trioif LR € C for each L € C and rational transduction R.
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Definition
Cis a full trio if LR € C for each L € C and rational transduction R.

Theorem (Z., ICALP 2015)

If C is a full trio, then downward closures are computable for C if and only
if the simultaneous unboundedness problem is decidable:

Given A language L < aj---aj; inC

Question Is aj - - - &} included in L] ?
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Definition
Cis a full trio if LR € C for each L € C and rational transduction R.

Theorem (Z., ICALP 2015)

If C is a full trio, then downward closures are computable for C if and only
if the simultaneous unboundedness problem is decidable:

Given A language L < af---a inC

Question Is aj - - - &} included in L] ?

Equivalently, we check whether it is true that:

for each k > 0, there are xq,...,x, = k with a3 -- . 3% e L
9 ) 1 n
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Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L| can be written as a finite union of ideals:
YO*{XDE} Yl* T {Xmg} Yr;k7

where xq,...,x, are letters and Yy, ..., Y, are alphabets.
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where x1,...,x, are letters and Yy, ..., Y, are alphabets.
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Algorithm

Suppose L € X* is given.
Enumerate simple regular languages R.
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Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L| can be written as a finite union of ideals:
YO*{lea} Yl* T {Xn? 6}Y:7

where x1,...,x, are letters and Yy, ..., Y, are alphabets.

Ideal decompositions: currently also studied by Lazi¢, Leroux, Schmitz

Observation

Algorithm Ll isin C:
Suppose L € X* is given.
Enumerate simple regular languages R. (x,¢€)
Decide whether L| = R:
e L] C RIiff L| n (X*\R) = & ~» emptiness.
/ (x,x)
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Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L| can be written as a finite union of ideals:

YO*{lea} Yl* T {Xn?g}y:v

where x1,...,x, are letters and Yy, ..., Y, are alphabets.

Ideal decompositions: currently also studied by Lazi¢, Leroux, Schmitz

Observation

Algorithm Ll isin C:
Suppose L € X* is given.
Enumerate simple regular languages R. (x,¢€)
Decide whether L| = R:

e L] C RIiff L| n (X*\R) = & ~» emptiness.

@ RS Ll ~ Y§{x,e}Y] - {xn,e}lYFcL| (x.x)
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Observation

o It suffices to check whether Y5 {x1,e} Y- {xn, e} Y < L|.
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Observation
o It suffices to check whether Y5 {x1,e} Y- {xn, e} Y < L|.
@ L] includes {a, b, c}* if and only if it contains (abc)*.
abc abc abc abc abc

bacca

Transduction T

¥olao yila1 Ynlan

X1|6 /Q X2|€ X|€

y;i: word containing each letter of Y; once.
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Observation
o It suffices to check whether Y5 {x1,e} Y- {xn, e} Y < L|.
@ L] includes {a, b, c}* if and only if it contains (abc)*.
abc abc abc abc abc

bacca

Transduction T

¥olao yila1 Ynlan

X1|6 /Q X2|€ X|€

y;i: word containing each letter of Y; once. Then:

T(LL)| =af---a; iff Yy{x,e}Yy - {xne}YiclL]
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o New algorithm for every known computable case
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o New algorithm for every known computable case

o Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.
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o New algorithm for every known computable case

o Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.

Theorem (Hague, Kochems, Ong, POPL 2016)

Downward closures are computable for higher-order pushdown automata.
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o New algorithm for every known computable case

o Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.

Theorem (Hague, Kochems, Ong, POPL 2016)

Downward closures are computable for higher-order pushdown automata.

@ lIgor's talk: higher-order recursion schemes
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Higher-Order Pushdown Automata

Let [ be a stack alphabet.
SI is the set of order-n stacks:

S =T ST = {lsi sl | s
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Higher-Order Pushdown Automata

Let [ be a stack alphabet.
SI is the set of order-n stacks:

ngr 5,[+1={[$1‘~-Sm]k+1|51,...,Sm65£}.
Operations on order-n stacks

popy([s1 -+ Sml) = [s2 " smlk
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Higher-Order Pushdown Automata

Let [ be a stack alphabet.
SI is the set of order-n stacks:

ngr 5;[+1={[51"'5m]k+1|517--~75mesl[}'

Operations on order-n stacks

pop([s1 - - - Sm]k) = [%2-smlk
popy([s1 -+ sm]n) = [Popy(s1)s2 -+ Sm]« n> k
push,([s1 -+ sm]k) = [s151 " Sm]k
y
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Let [ be a stack alphabet.
SI is the set of order-n stacks:

ngr 5;[+1={[51"'5m]k+1|517--~75mesl[}'

Operations on order-n stacks

popk([s1 - Sm]k) = 2 smlk
popk([s1- -+ Sm]n) = [popk(51)52 Smlk n>k
pushy ([s1 -+ sm]k) [s151 -« Sm]«
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Higher-Order Pushdown Automata

Let [ be a stack alphabet.
SI is the set of order-n stacks:

ngr 5£+1={[51"'5m]k+1|517--~75mesl[}'

Operations on order-n stacks

popk([s1 -+ - smlk) = [52- - sm]k
popy([s1 -+ sm]n) = [popk(51)52 Sm]k n>k
push,([s1 - sm]k) [s151° -~ sm]k
push,([s1- - Sm]n) [pushk(51)52 “Sm]k n>k
rew~ ([y1- - Ym]1) = [vy2 - Yml1
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Higher-Order Pushdown Automata

Let [ be a stack alphabet.
SI is the set of order-n stacks:

So =T Sker = Alst- smlkst | st

Operations on order-n stacks

pop([s1 -+ Sm]«) = [s2--smlk
popk([s1 - Sm]n) = [popk(51)52
push,([s1 -+ sm]k) [s151 " Sm]k
push,([s1- - Sm]n) [pushk(51)52
rew. ([y1 - Ym]1) [¥y2 - - Yml1
rew([S1- - Sm|n) = [rew7(51)52

sme SH}.
]k n> k
Sm]k n> k
“Sm|n n>1
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Higher-Order Pushdown Automata
Let I = {J_,Ao,

., Ak} L: Initial stack symbol.
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Higher-Order Pushdown Automata
Let I = {L, Ao,...,Ax}. L: Initial stack symbol.
Order-1 Pushdown Automaton

AOa a, pPop;
J—a €, pUShl rewa, /Q J—a €, POpy

—O @ O—

Aj, e, rewp, ; pushg
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Order-1 Pushdown Automaton

AOa a, pPop;
J—a €, pUShl rewa, /Q J—a €, POpy

_,G @J O—» Accepts {a%'}.

Aj, e, rewp, ; pushg
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Higher-Order Pushdown Automata
Let ' = {1, Ao,...,Ax}. L: Initial stack symbol.
Order-1 Pushdown Automaton

AOa a, pop;

Aj, e, rewp, ; pushg

Order-2 Pushdown Automaton

J—v a, POp;
C J—a €, pUShl rewa, /Q J—a €, popy O_)
AO: g, Pop; pUSh2 Afa E,rewgy;_, pUShl
v
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Higher-Order Pushdown Automata
Let ' = {1, Ao,...,Ax}. L: Initial stack symbol.
Order-1 Pushdown Automaton

AOa a, pop;

Aj, e, rewp, ; pushg

Order-2 Pushdown Automaton

J—v a, popp

L, e, pushy rewy, /@\ L,e,pop, 22
C EOS ©_> Accepts {a* }.

AO: g, Pop; pUSh2 Afa E,rewgy;_, pUShl
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Complexity

Descriptional complexity

@ What is the size of an automaton for L|?
@ How expensive the construction?
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Complexity

Descriptional complexity
@ What is the size of an automaton for L|?

@ How expensive the construction?

Inclusion problem

For models M and N the downward closure inclusion problem M < N is
the following:

Given: Language K, L described in M and N/, respectively.
Question: Does K| < L|?
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Complexity

Descriptional complexity
@ What is the size of an automaton for L|?

@ How expensive the construction?

Inclusion problem
For models M and N the downward closure inclusion problem M < N is
the following:

Given: Language K, L described in M and N/, respectively.

Question: Does K| < L|?

Equality problem
For models M and N the downward closure inclusion problem M =| N is
the following:

Given: Language K, L described in M and N/, respectively.

Question: Does K| = L|?

v
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Witnesses

Suppose we have an NFA for the downward closure.
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Witnesses
Suppose we have an NFA for the downward closure. “Short witness”:
Proposition (Bachmeier, Luttenberger, Schlund 2015)

If A is an NFA and K| & L(A)|, then there exists a w € K|\L(A)| with
lw| < |A] + 1.
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Proposition (Bachmeier, Luttenberger, Schlund 2015)

If A is an NFA and K| & L(A)|, then there exists a w € K|\L(A)| with
lw| < |A] + 1.

@ Suppose A has parallel e-edges

@ For an input word w = xq - - - x,,, consider the sets Q; of words
reachable by x; ---x;. Then Q2 Q1 2 -+
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Witnesses
Suppose we have an NFA for the downward closure. “Short witness”:
Proposition (Bachmeier, Luttenberger, Schlund 2015)

If A is an NFA and K| & L(A)|, then there exists a w € K|\L(A)| with
lw| < |A] + 1.

@ Suppose A has parallel e-edges

@ For an input word w = xq - - - x,,, consider the sets Q; of words
reachable by x; ---x;. Then Q2 Q1 2 -+

@ Hence, if n > | A| + 1, then we can remove some symbol from w

Georg Zetzsche (LSV Cachan) Downward Closures Shonan HOMC 12/16



Witnesses
Suppose we have an NFA for the downward closure. “Short witness”:
Proposition (Bachmeier, Luttenberger, Schlund 2015)

If A is an NFA and K| & L(A)|, then there exists a w € K|\L(A)| with
lw| < |A] + 1.

@ Suppose A has parallel e-edges

@ For an input word w = xq - - - x,,, consider the sets Q; of words
reachable by x; ---x;. Then Q2 Q1 2 ---

@ Hence, if n > | A| + 1, then we can remove some symbol from w

Suppose we have no good upper bound on an NFA.
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Witnesses
Suppose we have an NFA for the downward closure. “Short witness”:
Proposition (Bachmeier, Luttenberger, Schlund 2015)

If A is an NFA and K| & L(A)|, then there exists a w € K|\L(A)| with
lw| < |A] + 1.

@ Suppose A has parallel e-edges

@ For an input word w = xq - - - x,,, consider the sets Q; of words
reachable by x; ---x;. Then Q2 Q1 2 ---

@ Hence, if n > | A| + 1, then we can remove some symbol from w

Suppose we have no good upper bound on an NFA.
Ideal length

For I = Y5 {x1,e}Y{" - {xn, e} Y, the length |I| of | is the smallest n
such that it can be written in this form.

v
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Witnesses
Suppose we have an NFA for the downward closure. “Short witness”:
Proposition (Bachmeier, Luttenberger, Schlund 2015)

If A is an NFA and K| & L(A)|, then there exists a w € K|\L(A)| with
lw| < |A] + 1.

@ Suppose A has parallel e-edges

@ For an input word w = xq - - - x,,, consider the sets Q; of words
reachable by x; ---x;. Then Q2 Q1 2 ---

@ Hence, if n > | A| + 1, then we can remove some symbol from w

Suppose we have no good upper bound on an NFA.
Ideal length
For I = Y5 {x1,e}Y{" - {xn, e} Y, the length |I| of | is the smallest n

such that it can be written in this form. Measure for languages:

|L| = min {max|lj| Ll =hu--- Ul for ideals I1,...,Ik}
J

v
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Pumping

Putting a bound on |L| amounts to proving a pumping lemma:

|L| < m if and only if for every w € L, there is an ideal / such that |/| < m
and wel c L|.
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Pumping
Putting a bound on |L| amounts to proving a pumping lemma:

|L| < m if and only if for every w € L, there is an ideal / such that |/| < m
and wel c L|.

Proposition (ldeal witness)

Let | = Y5 {x1,e} Y] - - {xn, e} YF. Then the following are equivalent:
Q/clL].
Q@ wyxiwy - xawy! € L| for every m > |L| + 1.

m m m
Q wixawy - x,wy € L] for some m > |L| + 1.
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Pumping

Putting a bound on |L| amounts to proving a pumping lemma:

|L| < m if and only if for every w € L, there is an ideal / such that |/| < m
and wel c L|.

Proposition (ldeal witness)

Let | = Y5 {x1,e} Y] - - {xn, e} YF. Then the following are equivalent:
Q/clL].
Q wyxiwy - x,wy! € L| for every m > |L| + 1.

Q wixawy - x,wy € L] for some m > |L| + 1.

Strategy for K| < L|
@ Suppose |K| is polynomial and |L| exponential.
@ Guess an ideal / of length < |K| and verify | € K, | & L.

@ Represent witness above succinctly.
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Sometimes, we have a small bound on |L| but only a large bound on |K].
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Sometimes, we have a small bound on |L| but only a large bound on |K].

Proposition (Small alphabet witness)

Let K,L < X*. If K| & L|, then there exists a w € K|\L| with
wl < X] - (L] + DXL,

@ This yields existence of small witnesses for fixed alphabets.
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Sometimes, we have a small bound on |L| but only a large bound on |K].

Proposition (Small alphabet witness)

Let K,L < X*. If K| & L|, then there exists a w € K|\L| with
wl < X] - (L] + DXL,

@ This yields existence of small witnesses for fixed alphabets.

@ Turn every ideal into an ordered DFA: no cycles except self-loops
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Sometimes, we have a small bound on |L| but only a large bound on |K].

Proposition (Small alphabet witness)

Let K,L < X*. If K| & L|, then there exists a w € K|\L| with
wl < X] - (L] + DXL,

@ This yields existence of small witnesses for fixed alphabets.
@ Turn every ideal into an ordered DFA: no cycles except self-loops
@ Then prove the following:

Lemma

If we X* with |w| > |X|- (n—1)X|, then w has a position at which every
ordered n-state DFA cycles.

@ Induction yields length bound for subwords with less than | X| symbols
@ Decompose w into at least n factors each of which sees all of X

@ Each DFA has to repeat a state, hence cycle on the last letter of w
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Lower bounds

Theorem

There are order-n pushdown automata whose downward closure NFAs are
at least n-fold exponential.
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Theorem

Under mild conditions on the models M and N : Suppose for each n we

have a description of {a*("} in M and N of polynomial size. Then
M < N is hard for coNTIME(t).
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There are order-n pushdown automata whose downward closure NFAs are
at least n-fold exponential.

@ An NFA for {w}| requires |w| + 1 states.

k
e Examples for {a2k} and {a?" } extend easily to order n.

Theorem

Under mild conditions on the models M and N : Suppose for each n we

have a description of {a*("} in M and N of polynomial size. Then
M < N is hard for coNTIME(t).

Corollary
The problem HOPA, < | HOPA,, is co-n-NEXP-hard.

V.
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Ideal NFA OCA RBCy, CFG RBC
Ideal | el NL NL NL P NP
NFA | NL coNP  coNP coNP  coNP ng
OCA | NL coNP  coNP coNP  coNP ns
RBCy,, | NL coNP coNP coNP coNP I'Ig
CFG P coNP  coNP  coNPT  coNEXP coNEXP
RBC coNP  coNP  coNP coNPT  coNEXP coNEXP
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o Often better complexity than constructing an NFA:

» NFA < CFG: NFA for the CFG would be exponential,
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