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System Observer

Downward Closures

u ď v : u is a subsequence of v

LÓ “ tu P X ˚ | Dv P L : u ď vu

Observer sees precisely LÓ
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Downward Closures

Theorem (Higman/Haines)

For every language L Ď X ˚, LÓ is regular.

Applications

Given an automaton for LÓ, many things are decidable:

Inclusion of behavior under lossy observation (KÓ Ď LÓ)
Ordinary inclusion almost always undecidable!

Which actions occur arbitrarily often? (a˚ Ď LÓ)

Can the system run arbitrarily long? (LÓ infinite)

Safety verification of parametrized asynchronous shared-memory
systems (La Torre, Muscholl, Walukiewicz, FSTTCS 2015)

Problem

Finite automaton for LÓ exists for every L.

How can we compute it?
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A general approach

Example (Transducer)

q0 q1 q2
ε|# ε|#

ε|a, ε|b a|a, b|b

a|ε, b|ε

ε|a, ε|b

T pAq “ tpx , u#v#wq | u, v ,w , x P ta, bu˚, v ď xu

Definition

Rational transduction: set of pairs given by a finite state transducer.

For rational transduction T Ď X ˚ ˆ Y ˚ and language L Ď Y ˚, let

TL “ ty P Y ˚ | Dx P L : px , yq P T u
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Definition

C is a full trio if LR P C for each L P C and rational transduction R.

Theorem (Z., ICALP 2015)

If C is a full trio, then downward closures are computable for C if and only
if the simultaneous unboundedness problem is decidable:

Given A language L Ď a˚1 ¨ ¨ ¨ a
˚
n in C

Question Is a˚1 ¨ ¨ ¨ a
˚
n included in LÓ?

Equivalently, we check whether it is true that:

for each k ě 0, there are x1, . . . , xn ě k with ax1
1 ¨ ¨ ¨ a

xn
n P L
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Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language LÓ can be written as a finite union of ideals:

Y ˚0 tx1, εuY
˚
1 ¨ ¨ ¨ txn, εuY

˚
n ,

where x1, . . . , xn are letters and Y0, . . . ,Yn are alphabets.

Ideal decompositions: currently also studied by Lazić, Leroux, Schmitz

Algorithm

Suppose L Ď X ˚ is given.
Enumerate simple regular languages R.
Decide whether LÓ “ R:

LÓ Ď R iff LÓ X pX ˚zRq “ H  emptiness.

R Ď LÓ  Y ˚0 tx1, εuY
˚
1 ¨ ¨ ¨ txn, εuY

˚
n Ď LÓ

Observation

LÓ is in C:

px , εq

px , xq
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Observation

It suffices to check whether Y ˚0 tx1, εuY
˚
1 ¨ ¨ ¨ txn, εuY

˚
n Ď LÓ.

LÓ includes ta, b, cu˚ if and only if it contains pabcq˚.

abc abc abc abc abc

bacca

Transduction T

q0 q1 ¨ ¨ ¨ qn
x1|ε x2|ε xn|ε

y0|a0 y1|a1 yn|an

yi : word containing each letter of Yi once.

Then:

T pLÓqÓ “ a˚0 ¨ ¨ ¨ a
˚
n iff Y ˚0 tx1, εuY

˚
1 ¨ ¨ ¨ txn, εuY

˚
n Ď LÓ
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New algorithm for every known computable case

Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.

Theorem (Hague, Kochems, Ong, POPL 2016)

Downward closures are computable for higher-order pushdown automata.

Igor’s talk: higher-order recursion schemes

Georg Zetzsche (LSV Cachan) Downward Closures Shonan HOMC 8 / 16



New algorithm for every known computable case

Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.

Theorem (Hague, Kochems, Ong, POPL 2016)

Downward closures are computable for higher-order pushdown automata.

Igor’s talk: higher-order recursion schemes

Georg Zetzsche (LSV Cachan) Downward Closures Shonan HOMC 8 / 16



New algorithm for every known computable case

Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.

Theorem (Hague, Kochems, Ong, POPL 2016)

Downward closures are computable for higher-order pushdown automata.

Igor’s talk: higher-order recursion schemes

Georg Zetzsche (LSV Cachan) Downward Closures Shonan HOMC 8 / 16



New algorithm for every known computable case

Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.

Theorem (Hague, Kochems, Ong, POPL 2016)

Downward closures are computable for higher-order pushdown automata.

Igor’s talk: higher-order recursion schemes

Georg Zetzsche (LSV Cachan) Downward Closures Shonan HOMC 8 / 16



New algorithm for every known computable case

Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.

Theorem (Hague, Kochems, Ong, POPL 2016)

Downward closures are computable for higher-order pushdown automata.

Igor’s talk: higher-order recursion schemes

Georg Zetzsche (LSV Cachan) Downward Closures Shonan HOMC 8 / 16



Higher-Order Pushdown Automata

Let Γ be a stack alphabet.
SΓ
n is the set of order-n stacks:

SΓ
0 “ Γ SΓ

k`1 “ trs1 ¨ ¨ ¨ smsk`1 | s1, . . . , sm P S
Γ
k u.

Operations on order-n stacks

popkprs1 ¨ ¨ ¨ smskq “ rs2 ¨ ¨ ¨ smsk

popkprs1 ¨ ¨ ¨ smsnq “ rpopkps1qs2 ¨ ¨ ¨ smsk n ą k

pushkprs1 ¨ ¨ ¨ smskq “ rs1s1 ¨ ¨ ¨ smsk

pushkprs1 ¨ ¨ ¨ smsnq “ rpushkps1qs2 ¨ ¨ ¨ smsk n ą k

rewγprγ1 ¨ ¨ ¨ γms1q “ rγγ2 ¨ ¨ ¨ γms1

rewγprs1 ¨ ¨ ¨ smsnq “ rrewγps1qs2 ¨ ¨ ¨ smsn n ą 1
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Higher-Order Pushdown Automata

Let Γ “ tK,A0, . . . ,Aku. K: Initial stack symbol.

Order-1 Pushdown Automaton

K, ε, push1 rewAk

A0, a, pop1

Ai , ε, rewAi´1
push1

K, ε, pop1
Accepts ta2k u.

Order-2 Pushdown Automaton

K, ε, push1 rewAk

K, a, pop2

Ai , ε, rewAi´1
push1A0, ε, pop1 push2

K, ε, pop2

Accepts ta22k

u.
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Complexity

Descriptional complexity

What is the size of an automaton for LÓ?

How expensive the construction?

Inclusion problem

For models M and N the downward closure inclusion problem M ĎÓ N is
the following:

Given: Language K , L described in M and N , respectively.

Question: Does KÓ Ď LÓ?

Equality problem

For models M and N the downward closure inclusion problem M “Ó N is
the following:

Given: Language K , L described in M and N , respectively.

Question: Does KÓ “ LÓ?
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Witnesses
Suppose we have an NFA for the downward closure.

“Short witness”:

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If A is an NFA and KÓ Ę LpAqÓ, then there exists a w P KÓzLpAqÓ with
|w | ď |A| ` 1.

Suppose A has parallel ε-edges
For an input word w “ x1 ¨ ¨ ¨ xn, consider the sets Qi of words
reachable by x1 ¨ ¨ ¨ xi . Then Q0 Ě Q1 Ě ¨ ¨ ¨

Hence, if n ą |A| ` 1, then we can remove some symbol from w

Suppose we have no good upper bound on an NFA.

Ideal length

For I “ Y ˚0 tx1, εuY
˚
1 ¨ ¨ ¨ txn, εuY

˚
n , the length |I | of I is the smallest n

such that it can be written in this form.

Measure for languages:

|L| “ min

"

max
j
|Ij | : LÓ “ I1 Y ¨ ¨ ¨ Y Ik for ideals I1, . . . , Ik

*
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Pumping

Putting a bound on |L| amounts to proving a pumping lemma:
|L| ď m if and only if for every w P L, there is an ideal I such that |I | ď m
and w P I Ď LÓ.

Proposition (Ideal witness)

Let I “ Y ˚0 tx1, εuY
˚
1 ¨ ¨ ¨ txn, εuY

˚
n . Then the following are equivalent:

1 I Ď LÓ.

2 wm
Y0
x1w

m
Y1
¨ ¨ ¨ xnw

m
Yn
P LÓ for every m ě |L| ` 1.

3 wm
Y0
x1w

m
Y1
¨ ¨ ¨ xnw

m
Yn
P LÓ for some m ě |L| ` 1.

Strategy for KÓ Ď LÓ

Suppose |K | is polynomial and |L| exponential.

Guess an ideal I of length ď |K | and verify I Ď K , I Ę L.

Represent witness above succinctly.
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Sometimes, we have a small bound on |L| but only a large bound on |K |.

Proposition (Small alphabet witness)

Let K , L Ď X ˚. If KÓ Ę LÓ, then there exists a w P KÓzLÓ with
|w | ď |X | ¨ p|L| ` 1q|X |.

This yields existence of small witnesses for fixed alphabets.

Turn every ideal into an ordered DFA: no cycles except self-loops

Then prove the following:

Lemma

If w P X ˚ with |w | ą |X | ¨ pn´ 1q|X |, then w has a position at which every
ordered n-state DFA cycles.

Induction yields length bound for subwords with less than |X | symbols

Decompose w into at least n factors each of which sees all of X

Each DFA has to repeat a state, hence cycle on the last letter of w
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Then prove the following:

Lemma

If w P X ˚ with |w | ą |X | ¨ pn´ 1q|X |, then w has a position at which every
ordered n-state DFA cycles.

Induction yields length bound for subwords with less than |X | symbols

Decompose w into at least n factors each of which sees all of X

Each DFA has to repeat a state, hence cycle on the last letter of w
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Lower bounds

Theorem

There are order-n pushdown automata whose downward closure NFAs are
at least n-fold exponential.

An NFA for twuÓ requires |w | ` 1 states.

Examples for ta2k u and ta22k

u extend easily to order n.

Theorem

Under mild conditions on the models M and N : Suppose for each n we
have a description of tatpnqu in M and N of polynomial size. Then
M ĎÓ N is hard for coNTIMEptq.

Corollary

The problem HOPAn ĎÓ HOPAn is co-n-NEXP-hard.
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Ideal NFA OCA RBCk,r CFG RBC

Ideal P L NL NL NL P NP
NFA NL coNP coNP coNP coNP ΠP

2

OCA NL coNP coNP coNP coNP ΠP
2

RBCk,r NL coNP coNP coNP coNP ΠP
2

CFG P coNP coNP coNP: coNEXP coNEXP

RBC coNP coNP coNP coNP: coNEXP coNEXP

Often better complexity than constructing an NFA:

§ NFA ĎÓ CFG: NFA for the CFG would be exponential, but problem is
coNP-complete.

§ HOPA2 ĎÓ NFA is EXPTIME-complete: Using “short witness”.
Hardness inherited from emptiness.

Pumping lemmas may give us bounds on ideal lengths

The problem HOPAn ĎÓ HOPAn is co-n-NEXP-hard.

Georg Zetzsche (LSV Cachan) Downward Closures Shonan HOMC 16 / 16



Ideal NFA OCA RBCk,r CFG RBC

Ideal P L NL NL NL P NP
NFA NL coNP coNP coNP coNP ΠP

2

OCA NL coNP coNP coNP coNP ΠP
2

RBCk,r NL coNP coNP coNP coNP ΠP
2

CFG P coNP coNP coNP: coNEXP coNEXP

RBC coNP coNP coNP coNP: coNEXP coNEXP

Often better complexity than constructing an NFA:
§ NFA ĎÓ CFG: NFA for the CFG would be exponential, but problem is

coNP-complete.

§ HOPA2 ĎÓ NFA is EXPTIME-complete: Using “short witness”.
Hardness inherited from emptiness.

Pumping lemmas may give us bounds on ideal lengths

The problem HOPAn ĎÓ HOPAn is co-n-NEXP-hard.

Georg Zetzsche (LSV Cachan) Downward Closures Shonan HOMC 16 / 16



Ideal NFA OCA RBCk,r CFG RBC

Ideal P L NL NL NL P NP
NFA NL coNP coNP coNP coNP ΠP

2

OCA NL coNP coNP coNP coNP ΠP
2

RBCk,r NL coNP coNP coNP coNP ΠP
2

CFG P coNP coNP coNP: coNEXP coNEXP

RBC coNP coNP coNP coNP: coNEXP coNEXP

Often better complexity than constructing an NFA:
§ NFA ĎÓ CFG: NFA for the CFG would be exponential, but problem is

coNP-complete.
§ HOPA2 ĎÓ NFA is EXPTIME-complete: Using “short witness”.

Hardness inherited from emptiness.

Pumping lemmas may give us bounds on ideal lengths

The problem HOPAn ĎÓ HOPAn is co-n-NEXP-hard.

Georg Zetzsche (LSV Cachan) Downward Closures Shonan HOMC 16 / 16



Ideal NFA OCA RBCk,r CFG RBC

Ideal P L NL NL NL P NP
NFA NL coNP coNP coNP coNP ΠP

2

OCA NL coNP coNP coNP coNP ΠP
2

RBCk,r NL coNP coNP coNP coNP ΠP
2

CFG P coNP coNP coNP: coNEXP coNEXP

RBC coNP coNP coNP coNP: coNEXP coNEXP

Often better complexity than constructing an NFA:
§ NFA ĎÓ CFG: NFA for the CFG would be exponential, but problem is

coNP-complete.
§ HOPA2 ĎÓ NFA is EXPTIME-complete: Using “short witness”.

Hardness inherited from emptiness.

Pumping lemmas may give us bounds on ideal lengths

The problem HOPAn ĎÓ HOPAn is co-n-NEXP-hard.

Georg Zetzsche (LSV Cachan) Downward Closures Shonan HOMC 16 / 16



Ideal NFA OCA RBCk,r CFG RBC

Ideal P L NL NL NL P NP
NFA NL coNP coNP coNP coNP ΠP

2

OCA NL coNP coNP coNP coNP ΠP
2

RBCk,r NL coNP coNP coNP coNP ΠP
2

CFG P coNP coNP coNP: coNEXP coNEXP

RBC coNP coNP coNP coNP: coNEXP coNEXP

Often better complexity than constructing an NFA:
§ NFA ĎÓ CFG: NFA for the CFG would be exponential, but problem is

coNP-complete.
§ HOPA2 ĎÓ NFA is EXPTIME-complete: Using “short witness”.

Hardness inherited from emptiness.

Pumping lemmas may give us bounds on ideal lengths

The problem HOPAn ĎÓ HOPAn is co-n-NEXP-hard.

Georg Zetzsche (LSV Cachan) Downward Closures Shonan HOMC 16 / 16


