Downward closures and complexity

Georg Zetzsche¹

LSV, CNRS & ENS Cachan Université Paris-Saclay

Higher-Order Model Checking Shonan Meeting, March 14-17, 2016

Georg Zetzsche (LSV Cachan)

¹Supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD).

<ロト < 四ト < 三ト < 三ト

<ロト < 四ト < 三ト < 三ト

<u>aabcbbacbbaaab</u>

(日)

<u>aabcbbacbbaaab</u>

Downward Closures

- $u \leq v$: *u* is a subsequence of *v*
- $L \downarrow = \{ u \in X^* \mid \exists v \in L \colon u \leq v \}$
- Observer sees precisely $L\downarrow$

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

A (10) < A (10) < A (10) </p>

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!

.

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$

.

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$
- Can the system run arbitrarily long? ($L\downarrow$ infinite)

.

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$
- Can the system run arbitrarily long? ($L\downarrow$ infinite)
- Safety verification of parametrized asynchronous shared-memory systems (La Torre, Muscholl, Walukiewicz, FSTTCS 2015)

A D F A B F A B F A B

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$
- Can the system run arbitrarily long? ($L\downarrow$ infinite)
- Safety verification of parametrized asynchronous shared-memory systems (La Torre, Muscholl, Walukiewicz, FSTTCS 2015)

Problem

- Finite automaton for $L\downarrow$ exists for every L.
- How can we compute it?

A general approach

Example (Transducer)

• • • • • • • • • •

A general approach

Example (Transducer)

$$T(A) = \{(x, u \# v \# w) \mid u, v, w, x \in \{a, b\}^*, v \leq x\}$$

• • • • • • • • • • •

A general approach

Example (Transducer)

$$T(A) = \{(x, u \# v \# w) \mid u, v, w, x \in \{a, b\}^*, v \leq x\}$$

Definition

- Rational transduction: set of pairs given by a finite state transducer.
- For rational transduction $T \subseteq X^* \times Y^*$ and language $L \subseteq Y^*$, let

$$TL = \{ y \in Y^* \mid \exists x \in L : (x, y) \in T \}$$

Georg Zetzsche (LSV Cachan)

Definition

C is a *full trio* if $LR \in C$ for each $L \in C$ and rational transduction R.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

C is a *full trio* if $LR \in C$ for each $L \in C$ and rational transduction R.

Theorem (Z., ICALP 2015)

If C is a full trio, then downward closures are computable for C if and only if the simultaneous unboundedness problem is decidable:

Given A language $L \subseteq a_1^* \cdots a_n^*$ in C Question Is $a_1^* \cdots a_n^*$ included in $L \downarrow$?

→ < Ξ → </p>

Definition

C is a *full trio* if $LR \in C$ for each $L \in C$ and rational transduction R.

Theorem (Z., ICALP 2015)

If C is a full trio, then downward closures are computable for C if and only if the simultaneous unboundedness problem is decidable:

Given A language $L \subseteq a_1^* \cdots a_n^*$ in C Question Is $a_1^* \cdots a_n^*$ included in $L \downarrow$?

Equivalently, we check whether it is true that:

for each $k \ge 0$, there are $x_1, \ldots, x_n \ge k$ with $a_1^{x_1} \cdots a_n^{x_n} \in L$

A (10) < A (10) < A (10) </p>

Theorem (Jullien 1969, Abdulla et. al. 2004) Every language $L\downarrow$ can be written as a finite union of ideals:

 $Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

* (四) * * (日) * * (日)

Theorem (Jullien 1969, Abdulla et. al. 2004) Every language L↓ can be written as a finite union of ideals:

 $Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

Ideal decompositions: currently also studied by Lazić, Leroux, Schmitz

Every language $L\downarrow$ can be written as a finite union of ideals:

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

Ideal decompositions: currently also studied by Lazić, Leroux, Schmitz

Algorithm Suppose $L \subseteq X^*$ is given. Enumerate simple regular languages R. Decide whether $L \downarrow = R$:

▲ □ ▶ ▲ □ ▶ ▲ □

Every language $L\downarrow$ can be written as a finite union of ideals:

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

Ideal decompositions: currently also studied by Lazić, Leroux, Schmitz

Algorithm Suppose $L \subseteq X^*$ is given. Enumerate simple regular languages R. Decide whether $L \downarrow = R$: • $L \downarrow \subseteq R$ iff $L \downarrow \cap (X^* \backslash R) = \emptyset \rightsquigarrow$ emptiness.

* (四) * * (日) * (日) *

Every language $L\downarrow$ can be written as a finite union of ideals:

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

Ideal decompositions: currently also studied by Lazić, Leroux, Schmitz

Algorithm

Suppose $L \subseteq X^*$ is given. Enumerate simple regular languages R. Decide whether $L \downarrow = R$:

•
$$L \downarrow \subseteq R$$
 iff $L \downarrow \cap (X^* \backslash R) = \emptyset \rightsquigarrow$ emptiness.

Observation $L\downarrow$ is in C: (x, ε) $\downarrow \bigcirc$ (x, x)

• • • • • • • • • • • •

Every language $L\downarrow$ can be written as a finite union of ideals:

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

Ideal decompositions: currently also studied by Lazić, Leroux, Schmitz

Algorithm

Suppose $L \subseteq X^*$ is given. Enumerate simple regular languages R. Decide whether $L \downarrow = R$:

•
$$L \downarrow \subseteq R$$
 iff $L \downarrow \cap (X^* \backslash R) = \emptyset \rightsquigarrow$ emptiness.

•
$$R \subseteq L \downarrow \rightsquigarrow Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$$

Observation $L\downarrow$ is in C: (x, ε) $\xrightarrow{(x, \varepsilon)}$ $\xrightarrow{(x, x)}$

• • • • • • • • • • • •

• It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.

A D N A B N A B N A B N

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- L↓ includes {a, b, c}* if and only if it contains (abc)*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- L↓ includes {a, b, c}* if and only if it contains (abc)*.

abc abc abc abc abc

• • • • • • • • • • • •

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.

abc abc abc abc abc

bacca

< □ > < 同 > < 回 > < 回 > < 回 >

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.

abc abc abc abc abc

bacca

< □ > < 同 > < 回 > < 回 > < 回 >

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.

abc abc abc abc abc

bacca

A D N A B N A B N A B N

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.

abc abc abc abc abc

bacca

 y_i : word containing each letter of Y_i once. Then:

$$T(L{\downarrow}){\downarrow} = a_0^* \cdots a_n^* \quad \text{iff} \quad Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L{\downarrow}$$

A D N A B N A B N A B N

• New algorithm for every known computable case

(日)

- New algorithm for every known computable case
- Additional language classes:

- New algorithm for every known computable case
- Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.

- **→** ∃ →

- New algorithm for every known computable case
- Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.

Theorem (Hague, Kochems, Ong, POPL 2016)

Downward closures are computable for higher-order pushdown automata.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- New algorithm for every known computable case
- Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.

Theorem (Hague, Kochems, Ong, POPL 2016)

Downward closures are computable for higher-order pushdown automata.

• Igor's talk: higher-order recursion schemes
Let Γ be a stack alphabet. S_n^{Γ} is the set of order-*n* stacks:

$$S_0^{\Gamma} = \Gamma \qquad \qquad S_{k+1}^{\Gamma} = \{ [s_1 \cdots s_m]_{k+1} \mid s_1, \dots, s_m \in S_k^{\Gamma} \}.$$

→ < Ξ →</p>

Let Γ be a stack alphabet. S_n^{Γ} is the set of order-*n* stacks:

$$S_0^{\Gamma} = \Gamma \qquad \qquad S_{k+1}^{\Gamma} = \{ [s_1 \cdots s_m]_{k+1} \mid s_1, \dots, s_m \in S_k^{\Gamma} \}.$$

Operations on order-n stacks

$$\operatorname{pop}_k([s_1\cdots s_m]_k) = [s_2\cdots s_m]_k$$

A (1) > A (2) > A

Let Γ be a stack alphabet. S_n^{Γ} is the set of order-*n* stacks:

$$S_0^{\Gamma} = \Gamma \qquad \qquad S_{k+1}^{\Gamma} = \{ [s_1 \cdots s_m]_{k+1} \mid s_1, \dots, s_m \in S_k^{\Gamma} \}.$$

Operations on order-n stacks

$$pop_k([s_1 \cdots s_m]_k) = [s_2 \cdots s_m]_k$$
$$pop_k([s_1 \cdots s_m]_n) = [pop_k(s_1)s_2 \cdots s_m]_k \qquad n > k$$

A D F A B F A B F A B

Let Γ be a stack alphabet. S_n^{Γ} is the set of order-*n* stacks:

$$S_0^{\Gamma} = \Gamma \qquad \qquad S_{k+1}^{\Gamma} = \{ [s_1 \cdots s_m]_{k+1} \mid s_1, \dots, s_m \in S_k^{\Gamma} \}.$$

Operations on order-n stacks

$$pop_{k}([s_{1}\cdots s_{m}]_{k}) = [s_{2}\cdots s_{m}]_{k}$$

$$pop_{k}([s_{1}\cdots s_{m}]_{n}) = [pop_{k}(s_{1})s_{2}\cdots s_{m}]_{k} \quad n > k$$

$$push_{k}([s_{1}\cdots s_{m}]_{k}) = [s_{1}s_{1}\cdots s_{m}]_{k}$$

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let Γ be a stack alphabet. S_n^{Γ} is the set of order-*n* stacks:

$$S_0^{\Gamma} = \Gamma \qquad \qquad S_{k+1}^{\Gamma} = \{ [s_1 \cdots s_m]_{k+1} \mid s_1, \dots, s_m \in S_k^{\Gamma} \}.$$

Operations on order-n stacks

$$pop_{k}([s_{1}\cdots s_{m}]_{k}) = [s_{2}\cdots s_{m}]_{k}$$

$$pop_{k}([s_{1}\cdots s_{m}]_{n}) = [pop_{k}(s_{1})s_{2}\cdots s_{m}]_{k} \quad n > k$$

$$push_{k}([s_{1}\cdots s_{m}]_{k}) = [s_{1}s_{1}\cdots s_{m}]_{k}$$

$$push_{k}([s_{1}\cdots s_{m}]_{n}) = [push_{k}(s_{1})s_{2}\cdots s_{m}]_{k} \quad n > k$$

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let Γ be a stack alphabet. S_n^{Γ} is the set of order-*n* stacks:

$$S_0^{\Gamma} = \Gamma \qquad \qquad S_{k+1}^{\Gamma} = \{ [s_1 \cdots s_m]_{k+1} \mid s_1, \dots, s_m \in S_k^{\Gamma} \}.$$

Operations on order-n stacks

$$pop_{k}([s_{1}\cdots s_{m}]_{k}) = [s_{2}\cdots s_{m}]_{k}$$

$$pop_{k}([s_{1}\cdots s_{m}]_{n}) = [pop_{k}(s_{1})s_{2}\cdots s_{m}]_{k} \quad n > k$$

$$push_{k}([s_{1}\cdots s_{m}]_{k}) = [s_{1}s_{1}\cdots s_{m}]_{k}$$

$$push_{k}([s_{1}\cdots s_{m}]_{n}) = [push_{k}(s_{1})s_{2}\cdots s_{m}]_{k} \quad n > k$$

$$rew_{\gamma}([\gamma_{1}\cdots \gamma_{m}]_{1}) = [\gamma\gamma_{2}\cdots\gamma_{m}]_{1}$$

A (1) > A (2) > A

Let Γ be a stack alphabet. S_n^{Γ} is the set of order-*n* stacks:

$$S_0^{\Gamma} = \Gamma \qquad \qquad S_{k+1}^{\Gamma} = \{ [s_1 \cdots s_m]_{k+1} \mid s_1, \dots, s_m \in S_k^{\Gamma} \}.$$

Operations on order-n stacks

Georg Zetzsche (LSV Cachan)

A (1) > A (2) > A

Let $\Gamma = \{\bot, A_0, \ldots, A_k\}$. \bot : Initial stack symbol.

A D N A B N A B N A B N

Let $\Gamma = \{\perp, A_0, \dots, A_k\}$. \perp : Initial stack symbol.

Order-1 Pushdown Automaton

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Let $\Gamma = \{\perp, A_0, \ldots, A_k\}$. \perp : Initial stack symbol.

Order-1 Pushdown Automaton

$$\xrightarrow{A_0, a, \operatorname{pop}_1} \\ \xrightarrow{\perp, \varepsilon, \operatorname{push}_1 \operatorname{rew}_{A_k}} \xrightarrow{\bigcirc} \\ \xrightarrow{\downarrow} \\ \xrightarrow{\downarrow} \\ A_i, \varepsilon, \operatorname{rew}_{A_{i-1}} \operatorname{push}_1$$

3

A D N A B N A B N A B N

Let $\Gamma = \{\bot, A_0, \ldots, A_k\}$. \bot : Initial stack symbol.

Let $\Gamma = \{\perp, A_0, \ldots, A_k\}$. \perp : Initial stack symbol.

Order-1 Pushdown Automaton

$$\begin{array}{c} A_0, a, \operatorname{pop}_1 \\ & \longrightarrow & \bot, \varepsilon, \operatorname{push}_1 \operatorname{rew}_{A_k} & \bigoplus & \bot, \varepsilon, \operatorname{pop}_1 \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$$

Order-2 Pushdown Automaton

Georg Zetzsche (LSV Cachan)

э

A D N A B N A B N A B N

Let $\Gamma = \{\perp, A_0, \ldots, A_k\}$. \perp : Initial stack symbol.

Order-1 Pushdown Automaton

$$\xrightarrow{A_0, a, \operatorname{pop}_1} \underbrace{\downarrow, \varepsilon, \operatorname{push}_1 \operatorname{rew}_{A_k}}_{\bigcup} \xrightarrow{\mathbb{Q}} \underbrace{\downarrow, \varepsilon, \operatorname{pop}_1}_{\bigcup} \xrightarrow{} \operatorname{Accepts} \{a^{2^k}\}.$$

$$A_i, \varepsilon, \operatorname{rew}_{A_{i-1}} \operatorname{push}_1$$

Order-2 Pushdown Automaton

Georg Zetzsche (LSV Cachan)

Complexity

Descriptional complexity

- What is the size of an automaton for $L\downarrow$?
- How expensive the construction?

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Complexity

Descriptional complexity

- What is the size of an automaton for $L\downarrow$?
- How expensive the construction?

Inclusion problem

For models \mathcal{M} and \mathcal{N} the *downward closure inclusion problem* $\mathcal{M} \subseteq_{\downarrow} \mathcal{N}$ is the following:

Given: Language K, L described in \mathcal{M} and \mathcal{N} , respectively.

Question: Does $K \downarrow \subseteq L \downarrow$?

• • = • • =

Complexity

Descriptional complexity

- What is the size of an automaton for $L\downarrow$?
- How expensive the construction?

Inclusion problem

For models \mathcal{M} and \mathcal{N} the *downward closure inclusion problem* $\mathcal{M} \subseteq_{\downarrow} \mathcal{N}$ is the following:

Given: Language K, L described in \mathcal{M} and \mathcal{N} , respectively.

Question: Does $K \downarrow \subseteq L \downarrow$?

Equality problem

For models \mathcal{M} and \mathcal{N} the *downward closure inclusion problem* $\mathcal{M} =_{\downarrow} \mathcal{N}$ is the following:

Given: Language K, L described in \mathcal{M} and \mathcal{N} , respectively.

Question: Does $K \downarrow = L \downarrow$?

Suppose we have an NFA for the downward closure.

э

A D N A B N A B N A B N

Suppose we have an NFA for the downward closure. "Short witness" :

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If \mathcal{A} is an NFA and $K \downarrow \subseteq L(\mathcal{A}) \downarrow$, then there exists a $w \in K \downarrow \backslash L(\mathcal{A}) \downarrow$ with $|w| \leq |\mathcal{A}| + 1$.

A (10) < A (10) < A (10) </p>

Suppose we have an NFA for the downward closure. "Short witness" :

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If \mathcal{A} is an NFA and $K \downarrow \subseteq L(\mathcal{A}) \downarrow$, then there exists a $w \in K \downarrow \backslash L(\mathcal{A}) \downarrow$ with $|w| \leq |\mathcal{A}| + 1$.

• Suppose \mathcal{A} has parallel ε -edges

Suppose we have an NFA for the downward closure. "Short witness" :

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If \mathcal{A} is an NFA and $K \downarrow \subseteq L(\mathcal{A}) \downarrow$, then there exists a $w \in K \downarrow \backslash L(\mathcal{A}) \downarrow$ with $|w| \leq |\mathcal{A}| + 1$.

- Suppose A has parallel ε -edges
- For an input word w = x₁ ··· x_n, consider the sets Q_i of words reachable by x₁ ··· x_i. Then Q₀ ⊇ Q₁ ⊇ ···

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Suppose we have an NFA for the downward closure. "Short witness" :

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If \mathcal{A} is an NFA and $K \downarrow \subseteq L(\mathcal{A}) \downarrow$, then there exists a $w \in K \downarrow \backslash L(\mathcal{A}) \downarrow$ with $|w| \leq |\mathcal{A}| + 1$.

- Suppose A has parallel ε -edges
- For an input word w = x₁ ··· x_n, consider the sets Q_i of words reachable by x₁ ··· x_i. Then Q₀ ⊇ Q₁ ⊇ ···
- Hence, if $n > |\mathcal{A}| + 1$, then we can remove some symbol from w

・ 回 ト ・ ヨ ト ・ ヨ ト

Suppose we have an NFA for the downward closure. "Short witness":

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If \mathcal{A} is an NFA and $K \downarrow \subseteq L(\mathcal{A}) \downarrow$, then there exists a $w \in K \downarrow \backslash L(\mathcal{A}) \downarrow$ with $|w| \leq |\mathcal{A}| + 1.$

- Suppose \mathcal{A} has parallel ε -edges
- For an input word $w = x_1 \cdots x_n$, consider the sets Q_i of words reachable by $x_1 \cdots x_i$. Then $Q_0 \supseteq Q_1 \supseteq \cdots$
- Hence, if $n > |\mathcal{A}| + 1$, then we can remove some symbol from w

Suppose we have no good upper bound on an NFA.

Suppose we have an NFA for the downward closure. "Short witness" :

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If \mathcal{A} is an NFA and $K \downarrow \subseteq L(\mathcal{A}) \downarrow$, then there exists a $w \in K \downarrow \backslash L(\mathcal{A}) \downarrow$ with $|w| \leq |\mathcal{A}| + 1$.

- Suppose \mathcal{A} has parallel ε -edges
- For an input word w = x₁ ··· x_n, consider the sets Q_i of words reachable by x₁ ··· x_i. Then Q₀ ⊇ Q₁ ⊇ ···
- Hence, if $n > |\mathcal{A}| + 1$, then we can remove some symbol from w

Suppose we have no good upper bound on an NFA.

Ideal length

For $I = Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*$, the *length* |I| of I is the smallest n such that it can be written in this form.

Suppose we have an NFA for the downward closure. "Short witness" :

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If \mathcal{A} is an NFA and $K \downarrow \subseteq L(\mathcal{A}) \downarrow$, then there exists a $w \in K \downarrow \backslash L(\mathcal{A}) \downarrow$ with $|w| \leq |\mathcal{A}| + 1$.

- Suppose \mathcal{A} has parallel ε -edges
- For an input word w = x₁ ··· x_n, consider the sets Q_i of words reachable by x₁ ··· x_i. Then Q₀ ⊇ Q₁ ⊇ ···
- Hence, if $n > |\mathcal{A}| + 1$, then we can remove some symbol from w

Suppose we have no good upper bound on an NFA.

Ideal length

For $I = Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*$, the *length* |I| of I is the smallest n such that it can be written in this form. Measure for languages:

$$|L| = \min \left\{ \max_{j} |I_j| : L \downarrow = I_1 \cup \cdots \cup I_k \text{ for ideals } I_1, \ldots, I_k \right\}$$

Pumping

Putting a bound on |L| amounts to proving a pumping lemma: $|L| \leq m$ if and only if for every $w \in L$, there is an ideal I such that $|I| \leq m$ and $w \in I \subseteq L \downarrow$.

▲ □ ▶ ▲ □ ▶ ▲ □

Pumping

Putting a bound on |L| amounts to proving a pumping lemma: $|L| \leq m$ if and only if for every $w \in L$, there is an ideal I such that $|I| \leq m$ and $w \in I \subseteq L \downarrow$.

Proposition (Ideal witness)

Let $I = Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*$. Then the following are equivalent:

$$1 \subseteq L \downarrow.$$

$$w_{Y_0}^m x_1 w_{Y_1}^m \cdots x_n w_{Y_n}^m \in L \downarrow \text{ for every } m \ge |L| + 1.$$

$$w_{Y_0}^m x_1 w_{Y_1}^m \cdots x_n w_{Y_n}^m \in L \downarrow \text{ for some } m \ge |L| + 1.$$

イロト 不得下 イヨト イヨト

Pumping

Putting a bound on |L| amounts to proving a pumping lemma: $|L| \leq m$ if and only if for every $w \in L$, there is an ideal I such that $|I| \leq m$ and $w \in I \subseteq L \downarrow$.

Proposition (Ideal witness)

Let $I = Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*$. Then the following are equivalent:

$$1 \subseteq L \downarrow.$$

2
$$w_{Y_0}^m x_1 w_{Y_1}^m \cdots x_n w_{Y_n}^m \in L \downarrow$$
 for every $m \ge |L| + 1$.

3
$$w_{Y_0}^m x_1 w_{Y_1}^m \cdots x_n w_{Y_n}^m \in L \downarrow$$
 for some $m \ge |L| + 1$.

Strategy for $K \downarrow \subseteq L \downarrow$

- Suppose |K| is polynomial and |L| exponential.
- Guess an ideal I of length $\leq |K|$ and verify $I \subseteq K$, $I \not\subseteq L$.
- Represent witness above succinctly.

イロト イヨト イヨト イヨト

3

Proposition (Small alphabet witness)

Let $K, L \subseteq X^*$. If $K \downarrow \oplus L \downarrow$, then there exists a $w \in K \downarrow \backslash L \downarrow$ with $|w| \leq |X| \cdot (|L|+1)^{|X|}$.

• This yields existence of small witnesses for fixed alphabets.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proposition (Small alphabet witness)

Let $K, L \subseteq X^*$. If $K \downarrow \oplus L \downarrow$, then there exists a $w \in K \downarrow \backslash L \downarrow$ with $|w| \leq |X| \cdot (|L|+1)^{|X|}$.

- This yields existence of small witnesses for fixed alphabets.
- Turn every ideal into an ordered DFA: no cycles except self-loops

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Proposition (Small alphabet witness) Let $K, L \subseteq X^*$. If $K \downarrow \not \subseteq L \downarrow$, then there exists a $w \in K \downarrow \backslash L \downarrow$ with $|w| \leq |X| \cdot (|L|+1)^{|X|}$.

- This yields existence of small witnesses for fixed alphabets.
- Turn every ideal into an ordered DFA: no cycles except self-loops
- Then prove the following:

Lemma

If $w \in X^*$ with $|w| > |X| \cdot (n-1)^{|X|}$, then w has a position at which every ordered n-state DFA cycles.

イロト 不得下 イヨト イヨト

Proposition (Small alphabet witness) Let $K, L \subseteq X^*$. If $K \downarrow \not \subseteq L \downarrow$, then there exists a $w \in K \downarrow \backslash L \downarrow$ with $|w| \leq |X| \cdot (|L|+1)^{|X|}$.

- This yields existence of small witnesses for fixed alphabets.
- Turn every ideal into an ordered DFA: no cycles except self-loops
- Then prove the following:

Lemma

If $w \in X^*$ with $|w| > |X| \cdot (n-1)^{|X|}$, then w has a position at which every ordered n-state DFA cycles.

• Induction yields length bound for subwords with less than |X| symbols

イロト 不得下 イヨト イヨト 二日

Proposition (Small alphabet witness) Let $K, L \subseteq X^*$. If $K \downarrow \not \subseteq L \downarrow$, then there exists a $w \in K \downarrow \backslash L \downarrow$ with $|w| \leq |X| \cdot (|L|+1)^{|X|}$.

- This yields existence of small witnesses for fixed alphabets.
- Turn every ideal into an ordered DFA: no cycles except self-loops
- Then prove the following:

Lemma

If $w \in X^*$ with $|w| > |X| \cdot (n-1)^{|X|}$, then w has a position at which every ordered n-state DFA cycles.

- Induction yields length bound for subwords with less than |X| symbols
- Decompose w into at least n factors each of which sees all of X

イロト 不得下 イヨト イヨト 二日

Proposition (Small alphabet witness) Let $K, L \subseteq X^*$. If $K \downarrow \not \subseteq L \downarrow$, then there exists a $w \in K \downarrow \backslash L \downarrow$ with $|w| \leq |X| \cdot (|L|+1)^{|X|}$.

- This yields existence of small witnesses for fixed alphabets.
- Turn every ideal into an ordered DFA: no cycles except self-loops
- Then prove the following:

Lemma

If $w \in X^*$ with $|w| > |X| \cdot (n-1)^{|X|}$, then w has a position at which every ordered n-state DFA cycles.

- Induction yields length bound for subwords with less than |X| symbols
- Decompose w into at least n factors each of which sees all of X
- Each DFA has to repeat a state, hence cycle on the last letter of w

Lower bounds

Theorem

There are order-n pushdown automata whose downward closure NFAs are at least n-fold exponential.

э

▲ □ ▶ ▲ □ ▶ ▲ □

Lower bounds

Theorem

There are order-n pushdown automata whose downward closure NFAs are at least n-fold exponential.

• An NFA for $\{w\}\downarrow$ requires |w| + 1 states.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
Lower bounds

Theorem

There are order-n pushdown automata whose downward closure NFAs are at least n-fold exponential.

- An NFA for $\{w\}\downarrow$ requires |w| + 1 states.
- Examples for $\{a^{2^k}\}$ and $\{a^{2^{2^k}}\}$ extend easily to order *n*.

Lower bounds

Theorem

There are order-n pushdown automata whose downward closure NFAs are at least n-fold exponential.

- An NFA for $\{w\}\downarrow$ requires |w| + 1 states.
- Examples for $\{a^{2^k}\}$ and $\{a^{2^{2^k}}\}$ extend easily to order *n*.

Theorem

Under mild conditions on the models \mathcal{M} and \mathcal{N} : Suppose for each n we have a description of $\{a^{t(n)}\}\$ in \mathcal{M} and \mathcal{N} of polynomial size. Then $\mathcal{M} \subseteq \mathcal{N}$ is hard for coNTIME(*t*).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lower bounds

Theorem

There are order-n pushdown automata whose downward closure NFAs are at least n-fold exponential.

- An NFA for $\{w\}\downarrow$ requires |w| + 1 states.
- Examples for $\{a^{2^k}\}$ and $\{a^{2^{2^k}}\}$ extend easily to order *n*.

Theorem

Under mild conditions on the models \mathcal{M} and \mathcal{N} : Suppose for each n we have a description of $\{a^{t(n)}\}$ in \mathcal{M} and \mathcal{N} of polynomial size. Then $\mathcal{M} \subseteq_{\downarrow} \mathcal{N}$ is hard for coNTIME(t).

Corollary

The problem HOPA_n \subseteq_{\downarrow} HOPA_n is co-n-NEXP-hard.

Georg Zetzsche (LSV Cachan)

э

イロト 不得 トイヨト イヨト

	Ideal	NFA	OCA	RBC _{k,r}	CFG	RBC
Ideal	∈L	NL	NL	NL	Р	NP
NFA	NL	coNP	coNP	coNP	coNP	Π_2^P
OCA	NL	coNP	coNP	coNP	coNP	Π_2^{P}
RBC _{k,r}	NL	coNP	coNP	coNP	coNP	Π_2^{P}
CFG	Р	coNP	coNP	$coNP^\dagger$	coNEXP	coNEXP
RBC	coNP	coNP	coNP	$coNP^\dagger$	coNEXP	coNEXP

◆□ > ◆圖 > ◆臣 > ◆臣 > □ 臣

	Ideal	NFA	OCA	RBC _{k,r}	CFG	RBC
Ideal	∈L	NL	NL	NL	Р	NP
NFA	NL	coNP	coNP	coNP	coNP	Π_2^P
OCA	NL	coNP	coNP	coNP	coNP	Π_2^{P}
RBC _{k,r}	NL	coNP	coNP	coNP	coNP	Π_2^{P}
CFG	P	coNP	coNP	$coNP^\dagger$	coNEXP	coNEXP
RBC	coNP	coNP	coNP	$coNP^\dagger$	coNEXP	coNEXP

- Often better complexity than constructing an NFA:
 - ▶ NFA \subseteq_{\downarrow} CFG: NFA for the CFG would be exponential, but problem is coNP-complete.

• • = • • =

	Ideal	NFA	OCA	RBC _{k,r}	CFG	RBC
Ideal	∈L	NL	NL	NL	Р	NP
NFA	NL	coNP	coNP	coNP	coNP	Π_2^P
OCA	NL	coNP	coNP	coNP	coNP	Π_2^{P}
RBC _{k,r}	NL	coNP	coNP	coNP	coNP	Π_2^{P}
CFG	P	coNP	coNP	$coNP^\dagger$	coNEXP	coNEXP
RBC	coNP	coNP	coNP	$coNP^\dagger$	coNEXP	coNEXP

- Often better complexity than constructing an NFA:
 - ▶ NFA \subseteq_{\downarrow} CFG: NFA for the CFG would be exponential, but problem is coNP-complete.
 - HOPA₂ ⊆↓ NFA is EXPTIME-complete: Using "short witness". Hardness inherited from emptiness.

• • = • • =

	Ideal	NFA	OCA	RBC _{k,r}	CFG	RBC
Ideal	∈L	NL	NL	NL	Р	NP
NFA	NL	coNP	coNP	coNP	coNP	Π_2^P
OCA	NL	coNP	coNP	coNP	coNP	Π_2^{P}
RBC _{k,r}	NL	coNP	coNP	coNP	coNP	Π_2^{P}
CFG	P	coNP	coNP	$coNP^\dagger$	coNEXP	coNEXP
RBC	coNP	coNP	coNP	$coNP^\dagger$	coNEXP	coNEXP

- Often better complexity than constructing an NFA:
 - NFA ⊆↓ CFG: NFA for the CFG would be exponential, but problem is coNP-complete.
 - HOPA₂ ⊆↓ NFA is EXPTIME-complete: Using "short witness". Hardness inherited from emptiness.
- Pumping lemmas may give us bounds on ideal lengths

• • = • • = •

	Ideal	NFA	OCA	RBC _{k,r}	CFG	RBC
Ideal	∈L	NL	NL	NL	Р	NP
NFA	NL	coNP	coNP	coNP	coNP	Π_2^P
OCA	NL	coNP	coNP	coNP	coNP	Π_2^{P}
RBC _{k,r}	NL	coNP	coNP	coNP	coNP	Π_2^{P}
CFG	P	coNP	coNP	$coNP^\dagger$	coNEXP	coNEXP
RBC	coNP	coNP	coNP	$coNP^\dagger$	coNEXP	coNEXP

- Often better complexity than constructing an NFA:
 - ▶ NFA \subseteq_{\downarrow} CFG: NFA for the CFG would be exponential, but problem is coNP-complete.
 - HOPA₂ ⊆↓ NFA is EXPTIME-complete: Using "short witness". Hardness inherited from emptiness.
- Pumping lemmas may give us bounds on ideal lengths
- The problem HOPA_n \subseteq_{\downarrow} HOPA_n is co-*n*-NEXP-hard.