Downward closures and complexity

Georg Zetzsche1

LSV, CNRS & ENS Cachan
Université Paris-Saclay

Higher-Order Model Checking
Shonan Meeting, March 14-17, 2016

1Supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD).
System Observer

Downward Closures

\[u \vdash v : u \text{ is a subsequence of } v \]

Observer sees precisely

Georg Zetzsche (LSV Cachan)
System Observer
LOSSY CHANNEL

Downward Closures

\(u \) is a subsequence of \(v \):

Observer sees precisely

Georg Zetzsche (LSV Cachan)
System Observer
LOSSY
CHANNEL

Downward Closures

$u \ddot{\epsilon} v$: u is a subsequence of v

Observer sees precisely $L = u$

Georg Zetzsche (LSV Cachan)

Shonan HOMC 2 / 16
Downward Closures

- $u \preceq v$: u is a subsequence of v
- $L\downarrow = \{ u \in X^* \mid \exists v \in L : u \preceq v \}$
- Observer sees precisely $L\downarrow$
Downward Closures

Theorem (Higman/Haines)

For every language \(L \subseteq X^* \), \(L \downarrow \) is regular.

Applications

Given an automaton for \(L \downarrow \), many things are decidable:

- Inclusion of behavior under lossy observation (\(K \subseteq \bar{X} \))

 Ordinary inclusion almost always undecidable!

- Which actions occur arbitrarily often? (\(a \subseteq \bar{X} \))

- Can the system run arbitrarily long? (\(L \) infinite)

Safety verification of parametrized asynchronous shared-memory systems (La Torre, Muscholl, Walukiewicz, FSTTCS 2015)
Downward Closures

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L\downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:
Downward Closures

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L\downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation ($K\downarrow \subseteq L\downarrow$)
 Ordinary inclusion almost always undecidable!
Downward Closures

Theorem (Higman/Haines)

For every language \(L \subseteq X^ \), \(L \downarrow \) is regular.*

Applications

Given an automaton for \(L \downarrow \), many things are decidable:

- Inclusion of behavior under lossy observation \((K \downarrow \subseteq L \downarrow) \)

 Ordinary inclusion almost always undecidable!

- Which actions occur arbitrarily often? \((a^* \subseteq L \downarrow) \)
Downward Closures

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L\downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation ($K\downarrow \subseteq L\downarrow$)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? ($a^* \subseteq L\downarrow$)
- Can the system run arbitrarily long? ($L\downarrow$ infinite)
Downward Closures

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L\downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation ($K\downarrow \subseteq L\downarrow$)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? ($a^* \subseteq L\downarrow$)
- Can the system run arbitrarily long? ($L\downarrow$ infinite)
- Safety verification of parametrized asynchronous shared-memory systems (La Torre, Muscholl, Walukiewicz, FSTTCS 2015)
Downward Closures

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L\downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation ($K\downarrow \subseteq L\downarrow$)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? ($a^* \subseteq L\downarrow$)
- Can the system run arbitrarily long? ($L\downarrow$ infinite)
- Safety verification of parametrized asynchronous shared-memory systems (La Torre, Muscholl, Walukiewicz, FSTTCS 2015)

Problem

- Finite automaton for $L\downarrow$ exists for every L.
- How can we compute it?
A general approach

Example (Transducer)

\[\begin{align*}
\varepsilon & | a, \varepsilon | b \\
q_0 & \quad \rightarrow \quad \varepsilon | \# \\
q_1 & \quad \rightarrow \quad \varepsilon | \# \\
q_2 & \quad \rightarrow \quad \varepsilon | a, \varepsilon | b \\
\varepsilon & | a, \varepsilon | b \\
a & | a, b | b \\
\varepsilon & | \varepsilon, b | \varepsilon \\
a & | \varepsilon, b | \varepsilon \\
\varepsilon & | \varepsilon, b | \varepsilon \\
a & | \varepsilon, b | \varepsilon \\
\end{align*} \]

Definition

Rational transduction: set of pairs given by a finite state transducer. For rational transduction \(\mathcal{T} \in \mathcal{X} \rightarrow \mathcal{Y} \) and language \(\mathcal{L} \in \mathcal{Y} \rightarrow \mathcal{L} \), let \(T \mathcal{L} = \{ (p, x, y, q) : p \in \mathcal{T} \} \).
A general approach

Example (Transducer)

\[T(A) = \{(x, u\#v\#w) \mid u, v, w, x \in \{a, b\}^*, \ v \leq x\} \]
A general approach

Example (Transducer)

\[
\begin{align*}
\varepsilon &\mid a, \varepsilon \mid b \\
\varepsilon &\mid \# \\
q_0 &\rightarrow q_1 \\
a &\mid \varepsilon, b &\mid \varepsilon \\
q_1 &\rightarrow q_2 \\
\varepsilon &\mid \# \\
a &\mid \varepsilon, b &\mid \varepsilon
\end{align*}
\]

\[T(A) = \{(x, u\#v\#w) \mid u, v, w, x \in \{a, b\}^*, \ v \leq x\}\]

Definition

- **Rational transduction**: set of pairs given by a finite state transducer.
- For rational transduction \(T \subseteq X^* \times Y^* \) and language \(L \subseteq Y^* \), let

\[
TL = \{ y \in Y^* \mid \exists x \in L : (x, y) \in T \}
\]
Definition

C is a full trio if $LR \in C$ for each $L \in C$ and rational transduction R.

Theorem (Z., ICALP 2015)

If C is a full trio, then downward closures are computable for C if and only if the simultaneous unboundedness problem is decidable:

Given a language $L \in \mathcal{C}$, question is:

Is $a_{1} \cdot \ldots \cdot a_{n}$ included in L?

Equivalently, we check whether it is true that:

for each $k \geq 0$, there are $x_{1}, \ldots, x_{n} \geq k$ with $a_{x_{1}} \cdot \ldots \cdot a_{x_{n}} \in L$.

Georg Zetzsche (LSV Cachan)
Definition

C is a **full trio** if $LR \in C$ for each $L \in C$ and rational transduction R.

Theorem (Z., ICALP 2015)

If C is a full trio, then downward closures are computable for C if and only if the **simultaneous unboundedness problem** is decidable:

Given A language $L \subseteq a_1^* \cdots a_n^*$ in C

Question Is $a_1^* \cdots a_n^*$ included in $L\downarrow$?
Definition

C is a **full trio** if $LR \in C$ for each $L \in C$ and rational transduction R.

Theorem (Z., ICALP 2015)

*If C is a full trio, then downward closures are computable for C if and only if the *simultaneous unboundedness problem* is decidable:*

Given A language $L \subseteq a_1^* \cdots a_n^*$ in C

Question Is $a_1^* \cdots a_n^*$ included in $L\downarrow$?

Equivalently, we check whether it is true that:

for each $k \geq 0$, there are $x_1, \ldots, x_n \geq k$ with $a_1^{x_1} \cdots a_n^{x_n} \in L$
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L can be written as a finite union of ideals:

$$Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L can be written as a finite union of ideals:

$$Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

Ideal decompositions: currently also studied by Lazić, Leroux, Schmitz
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L can be written as a finite union of ideals:

$$Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

Ideal decompositions: currently also studied by Lazić, Leroux, Schmitz

Algorithm

Suppose $L \subseteq X^*$ is given.
Enumerate simple regular languages R.
Decide whether $L \downarrow = R$:
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language $L\downarrow$ can be written as a finite union of ideals:

$$Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

Ideal decompositions: currently also studied by Lazić, Leroux, Schmitz

Algorithm

Suppose $L \subseteq X^*$ is given.
Enumerate simple regular languages R.
Decide whether $L\downarrow = R$:

- $L\downarrow \subseteq R$ iff $L\downarrow \cap (X^* \setminus R) = \emptyset \iff$ emptiness.
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L can be written as a finite union of ideals:

$$Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

Ideal decompositions: currently also studied by Lazić, Leroux, Schmitz

Algorithm

Suppose $L \subseteq X^*$ is given.
Enumerate simple regular languages R.
Decide whether $L = R$:

- $L \subseteq R$ iff $L \cap (X^* \setminus R) = \emptyset \iff$ emptiness.

Observation

$L \downarrow$ is in C:

$$(x, \varepsilon)$$

$$(x, x)$$
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L can be written as a finite union of ideals:

$$Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

Ideal decompositions: currently also studied by Lazić, Leroux, Schmitz

Algorithm

Suppose $L \subseteq X^*$ is given.

Enumerate simple regular languages R.

Decide whether $L \downarrow = R$:

- $L \downarrow \subseteq R$ iff $L \downarrow \cap (X^* \setminus R) = \emptyset \rightsquigarrow$ emptiness.
- $R \subseteq L \downarrow \rightsquigarrow Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$

Observation

$L \downarrow$ is in C:

- (x, ε)
- (x, x)
Observation

- It suffices to check whether \(Y_0^* \{ x_1, \varepsilon \} Y_1^* \cdots \{ x_n, \varepsilon \} Y_n^* \subseteq L\downarrow. \)
Observation

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L\downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.
Observation

- It suffices to check whether \(Y_0^* \{ x_1, \varepsilon \} Y_1^* \cdots \{ x_n, \varepsilon \} Y_n^* \subseteq L\downarrow \).
- \(L\downarrow \) includes \(\{ a, b, c \}^* \) if and only if it contains \((abc)^* \).

\[abc \quad abc \quad abc \quad abc \quad abc \quad abc \]
Observation

- It suffices to check whether $Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L\downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.

```
abc abc abc abc abc abc
bacca
```
Observation

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L\downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.

```
abc abc abc abc abc
bacca
```
Observation

- It suffices to check whether $Y_0^* \{ x_1, \varepsilon \} Y_1^* \cdots \{ x_n, \varepsilon \} Y_n^* \subseteq L\downarrow$.
- $L\downarrow$ includes $\{ a, b, c \}^*$ if and only if it contains $(abc)^*$.

\[abc \; abc \; abc \; abc \; abc \; abc \]
\[bacca \]

Transduction T

\[\begin{array}{c}
q_0 \xrightarrow{y_0|a_0} \quad x_1 \xrightarrow{y_1|a_1} \quad x_2 \xrightarrow{y_2|a_2} \cdots \quad x_n \xrightarrow{y_n|a_n} \quad q_n
\end{array} \]

y_i: word containing each letter of Y_i once.
Observation

- It suffices to check whether \(Y_0^* \{ x_1, \varepsilon \} Y_1^* \cdots \{ x_n, \varepsilon \} Y_n^* \subseteq L\downarrow. \)
- \(L\downarrow \) includes \(\{a, b, c\}^* \) if and only if it contains \((abc)^*\).

\[
abc \ abc \ abc \ abc \ abc \ abc
\]

\[
bacca
\]

Transduction \(T \)

\[
y_0 | a_0 \quad \xrightarrow{x_1 | \varepsilon} \quad y_1 | a_1 \quad \xrightarrow{x_2 | \varepsilon} \cdots \quad y_n | a_n \quad \xrightarrow{x_n | \varepsilon} \quad q_n
\]

\(y_i \): word containing each letter of \(Y_i \) once. Then:

\[
T(L\downarrow)\downarrow = a_0^* \cdots a_n^* \iff Y_0^* \{ x_1, \varepsilon \} Y_1^* \cdots \{ x_n, \varepsilon \} Y_n^* \subseteq L\downarrow
\]
- New algorithm for every known computable case
- New algorithm for every known computable case
- Additional language classes:
- New algorithm for every known computable case
- Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.
New algorithm for every known computable case

Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.

Theorem (Hague, Kochems, Ong, POPL 2016)

Downward closures are computable for higher-order pushdown automata.
New algorithm for every known computable case
Additional language classes:

Corollary (Z., ICALP 2015)

Downward closures are computable for order-2 pushdown automata.

Theorem (Hague, Kochems, Ong, POPL 2016)

Downward closures are computable for higher-order pushdown automata.

Igor’s talk: higher-order recursion schemes
Higher-Order Pushdown Automata

Let Γ be a stack alphabet.
S_Γ^n is the set of order-n stacks:

$$S_\Gamma^0 = \Gamma \quad S_\Gamma^{k+1} = \{ [s_1 \cdots s_m]_{k+1} \mid s_1, \ldots, s_m \in S_\Gamma^k \}.$$
Higher-Order Pushdown Automata

Let Γ be a stack alphabet. S_Γ^n is the set of order-n stacks:

$$S_0^\Gamma = \Gamma \quad S_{k+1}^\Gamma = \{[s_1 \cdots s_m]_{k+1} \mid s_1, \ldots, s_m \in S_k^\Gamma\}.$$

Operations on order-n stacks

$$\text{pop}_k([s_1 \cdots s_m]_k) = [s_2 \cdots s_m]_k$$
Higher-Order Pushdown Automata

Let Γ be a stack alphabet. S_n^Γ is the set of order-n stacks:

$$S_0^\Gamma = \Gamma \quad \quad S_{k+1}^\Gamma = \{[s_1 \cdots s_m]_{k+1} \mid s_1, \ldots, s_m \in S_k^\Gamma\}.$$

Operations on order-n stacks

$$\text{pop}_k([s_1 \cdots s_m]_k) = [s_2 \cdots s_m]_k$$
$$\text{pop}_k([s_1 \cdots s_m]_n) = [\text{pop}_k(s_1)s_2 \cdots s_m]_k \quad n > k$$
Higher-Order Pushdown Automata

Let Γ be a stack alphabet. S_Γ^n is the set of order-n stacks:

$$S_\Gamma^0 = \Gamma$$
$$S_\Gamma^{k+1} = \{[s_1 \cdots s_m]_{k+1} \mid s_1, \ldots, s_m \in S_\Gamma^k\}.$$

Operations on order-n stacks

$$\text{pop}_k([s_1 \cdots s_m]_k) = [s_2 \cdots s_m]_k$$
$$\text{pop}_k([s_1 \cdots s_m]_n) = [\text{pop}_k(s_1)s_2 \cdots s_m]_k \quad n > k$$
$$\text{push}_k([s_1 \cdots s_m]_k) = [s_1s_1 \cdots s_m]_k$$
Higher-Order Pushdown Automata

Let Γ be a stack alphabet. S_n^Γ is the set of order-n stacks:

$$S_0^\Gamma = \Gamma \quad \quad S_{k+1}^\Gamma = \{[s_1 \cdots s_m]_{k+1} \mid s_1, \ldots, s_m \in S_k\}.$$

Operations on order-n stacks

- $\text{pop}_k([s_1 \cdots s_m]_k) = [s_2 \cdots s_m]_k$
- $\text{pop}_k([s_1 \cdots s_m]_n) = [\text{pop}_k(s_1)s_2 \cdots s_m]_k \quad n > k$
- $\text{push}_k([s_1 \cdots s_m]_k) = [s_1s_1 \cdots s_m]_k$
- $\text{push}_k([s_1 \cdots s_m]_n) = [\text{push}_k(s_1)s_2 \cdots s_m]_k \quad n > k$
Higher-Order Pushdown Automata

Let \(\Gamma \) be a stack alphabet.
\(S^n_\Gamma \) is the set of order-\(n \) stacks:

\[
S^n_\Gamma = \Gamma \quad \text{for } n \leq 1 \quad \text{and} \quad S^n_{k+1} = \{ [s_1 \cdots s_m]_{k+1} \mid s_1, \ldots, s_m \in S^n_k \}.
\]

Operations on order-\(n \) stacks

- \(\text{pop}_k([s_1 \cdots s_m]_k) = [s_2 \cdots s_m]_k \)
- \(\text{pop}_k([s_1 \cdots s_m]_n) = [\text{pop}_k(s_1)s_2 \cdots s_m]_k \quad \text{for } n > k \)
- \(\text{push}_k([s_1 \cdots s_m]_k) = [s_1 s_1 \cdots s_m]_k \)
- \(\text{push}_k([s_1 \cdots s_m]_n) = [\text{push}_k(s_1)s_2 \cdots s_m]_k \quad \text{for } n > k \)
- \(\text{rew}_\gamma([\gamma_1 \cdots \gamma_m]_1) = [\gamma_2 \cdots \gamma_m]_1 \)
Higher-Order Pushdown Automata

Let Γ be a stack alphabet.

S_n^Γ is the set of order-n stacks:

$$S_0^\Gamma = \Gamma, \quad S_{k+1}^\Gamma = \{[s_1 \cdots s_m]_{k+1} \mid s_1, \ldots, s_m \in S_k^\Gamma\}.$$

Operations on order-n stacks

- $\text{pop}_k([s_1 \cdots s_m]_k) = [s_2 \cdots s_m]_k$
- $\text{pop}_k([s_1 \cdots s_m]_n) = [\text{pop}_k(s_1)s_2 \cdots s_m]_k \quad n > k$
- $\text{push}_k([s_1 \cdots s_m]_k) = [s_1s_1 \cdots s_m]_k$
- $\text{push}_k([s_1 \cdots s_m]_n) = [\text{push}_k(s_1)s_2 \cdots s_m]_k \quad n > k$
- $\text{rew}_\gamma([\gamma_1 \cdots \gamma_m]_1) = [\gamma_\gamma2 \cdots \gamma_m]_1$
- $\text{rew}_\gamma([s_1 \cdots s_m]_n) = [\text{rew}_\gamma(s_1)s_2 \cdots s_m]_n \quad n > 1$
Higher-Order Pushdown Automata

Let $\Gamma = \{ \bot, A_0, \ldots, A_k \}$. \bot: Initial stack symbol.
Higher-Order Pushdown Automata

Let $\Gamma = \{\bot, A_0, \ldots, A_k\}$. \bot: Initial stack symbol.

Order-1 Pushdown Automaton
Higher-Order Pushdown Automata

Let $\Gamma = \{ \perp, A_0, \ldots, A_k \}$. \perp: Initial stack symbol.

Order-1 Pushdown Automaton

A_0, a, pop_1

$\perp, \varepsilon, \text{push}_1 \text{rew}_{A_k}$

$\perp, \varepsilon, \text{pop}_1$

$A_i, \varepsilon, \text{rew}_{A_{i-1}} \text{push}_1$

Accepts $t a_2 k u$.

Order-2 Pushdown Automaton

A_0, a, pop_1

$\perp, \varepsilon, \text{push}_1 \text{rew}_{A_k}$

$\perp, \varepsilon, \text{pop}_1$

$A_i, \varepsilon, \text{rew}_{A_{i-1}} \text{push}_1$

Accepts $t a_2 k u$.

Georg Zetzsche (LSV Cachan)
Higher-Order Pushdown Automata

Let $\Gamma = \{\bot, A_0, \ldots, A_k\}$. \bot: Initial stack symbol.

Order-1 Pushdown Automaton

Order-2 Pushdown Automaton

Accepts $\{a^{2^k}\}$.
Higher-Order Pushdown Automata

Let $\Gamma = \{\bot, A_0, \ldots, A_k\}$. \bot: Initial stack symbol.

Order-1 Pushdown Automaton

\[
A_0, a, \text{pop}_1 \\
\bot, \varepsilon, \text{push}_1 \text{ rew}_{A_k} \\
\bot, \varepsilon, \text{pop}_1 \\
A_i, \varepsilon, \text{rew}_{A_{i-1}} \text{ push}_1 \\
\]

Accepts $\{a^{2^k}\}$.

Order-2 Pushdown Automaton

\[
A_0, \varepsilon, \text{pop}_1 \text{ push}_2 \\
\bot, \varepsilon, \text{push}_1 \text{ rew}_{A_k} \\
\bot, \varepsilon, \text{pop}_2 \\
A_0, \varepsilon, \text{pop}_1 \text{ push}_2 \\
A_i, \varepsilon, \text{rew}_{A_{i-1}} \text{ push}_1 \\
\]

Georg Zetzsche (LSV Cachan)
Higher-Order Pushdown Automata

Let $\Gamma = \{\bot, A_0, \ldots, A_k\}$. \bot: Initial stack symbol.

Order-1 Pushdown Automaton

A_0, a, pop_1

$\bot, \varepsilon, \text{push}_1 \text{ rew}_{A_k}$

$\bot, \varepsilon, \text{pop}_1$

Accepts $\{a^{2^k}\}$.

$A_i, \varepsilon, \text{rew}_{A_{i-1}} \text{ push}_1$

Order-2 Pushdown Automaton

\bot, a, pop_2

$\bot, \varepsilon, \text{push}_1 \text{ rew}_{A_k}$

$\bot, \varepsilon, \text{pop}_2$

Accepts $\{a^{2^{2^k}}\}$.

$A_0, \varepsilon, \text{pop}_1 \text{ push}_2$

$A_i, \varepsilon, \text{rew}_{A_{i-1}} \text{ push}_1$
Complexity

Descriptional complexity

- What is the size of an automaton for $L\downarrow$?
- How expensive the construction?

Inclusion problem

For models M and N the downward closure inclusion problem $M \subseteq^* L \subseteq^* N$ is the following:

Given: Language K, L described in M and N, respectively.

Question: Does $K \subseteq^* L$?
Complexity

Descriptive complexity
- What is the size of an automaton for $L\downarrow$?
- How expensive the construction?

Inclusion problem
For models \mathcal{M} and \mathcal{N} the downward closure inclusion problem $\mathcal{M} \subseteq \downarrow \mathcal{N}$ is the following:

Given: Language K, L described in \mathcal{M} and \mathcal{N}, respectively.
Question: Does $K\downarrow \subseteq L\downarrow$?
Complexity

Descriptive complexity
- What is the size of an automaton for $L\downarrow$?
- How expensive the construction?

Inclusion problem
For models \mathcal{M} and \mathcal{N} the downward closure inclusion problem $\mathcal{M} \subseteq \downarrow \mathcal{N}$ is the following:

Given: Language K, L described in \mathcal{M} and \mathcal{N}, respectively.
Question: Does $K\downarrow \subseteq L\downarrow$?

Equality problem
For models \mathcal{M} and \mathcal{N} the downward closure inclusion problem $\mathcal{M} = \downarrow \mathcal{N}$ is the following:

Given: Language K, L described in \mathcal{M} and \mathcal{N}, respectively.
Question: Does $K\downarrow = L\downarrow$?
Witnesses

Suppose we have an NFA for the downward closure.
Witnesses

Suppose we have an NFA for the downward closure. “Short witness”:

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If \(A \) is an NFA and \(K \downarrow \subseteq L(A) \downarrow \), then there exists a \(w \in K \downarrow \setminus L(A) \downarrow \) with \(|w| \leq |A| + 1\).

Georg Zetzsche (LSV Cachan)
Witnesses

Suppose we have an NFA for the downward closure. “Short witness”:

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If \(A \) *is an NFA and* \(K \downarrow \subseteq L(A) \downarrow \), *then there exists a* \(w \in K \downarrow \setminus L(A) \downarrow \) *with* \(|w| \leq |A| + 1 \).

- Suppose \(A \) has parallel \(\varepsilon \)-edges
Witnesses

Suppose we have an NFA for the downward closure. “Short witness”:

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If \(\mathcal{A} \) is an NFA and \(K \downarrow \supseteq L(\mathcal{A}) \downarrow \), then there exists a \(w \in K \downarrow \setminus L(\mathcal{A}) \downarrow \) with \(|w| \leq |\mathcal{A}| + 1 \).

- Suppose \(\mathcal{A} \) has parallel \(\varepsilon \)-edges
- For an input word \(w = x_1 \cdots x_n \), consider the sets \(Q_i \) of words reachable by \(x_1 \cdots x_i \). Then \(Q_0 \supseteq Q_1 \supseteq \cdots \)
Witnesses

Suppose we have an NFA for the downward closure. “Short witness”:

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If A is an NFA and $K \downarrow \subseteq L(A) \downarrow$, then there exists a $w \in K \downarrow \setminus L(A) \downarrow$ with $|w| \leq |A| + 1$.

- Suppose A has parallel ε-edges
- For an input word $w = x_1 \cdots x_n$, consider the sets Q_i of words reachable by $x_1 \cdots x_i$. Then $Q_0 \supseteq Q_1 \supseteq \cdots$
- Hence, if $n > |A| + 1$, then we can remove some symbol from w
Witnesses

Suppose we have an NFA for the downward closure. “Short witness”:

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If \mathcal{A} is an NFA and $K \downarrow \subseteq L(\mathcal{A}) \downarrow$, then there exists a $w \in K \downarrow \backslash L(\mathcal{A}) \downarrow$ with $|w| \leq |\mathcal{A}| + 1$.

- Suppose \mathcal{A} has parallel ε-edges
- For an input word $w = x_1 \cdots x_n$, consider the sets Q_i of words reachable by $x_1 \cdots x_i$. Then $Q_0 \supseteq Q_1 \supseteq \cdots$
- Hence, if $n > |\mathcal{A}| + 1$, then we can remove some symbol from w

Suppose we have no good upper bound on an NFA.

Ideal length

For $I = \varepsilon \cdot 0 \cdot x_1, \varepsilon \cdot u \cdot \varepsilon \cdot 0 \cdot \varepsilon \cdot x_2, \cdots, \varepsilon \cdot u \cdot \varepsilon \cdot 0 \cdot x_n, \varepsilon \cdot u$, the length $|I|$ of I is the smallest n such that it can be written in this form.

Measure for languages:

$|L| = \min \max_{i=1}^{k} |I_i|$, where $L = I_1 \cdot \varepsilon \cdots \cdot I_k$ for ideals I_1, \ldots, I_k.

Georg Zetzsche (LSV Cachan)
Witnesses

Suppose we have an NFA for the downward closure. “Short witness”:

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If \(\mathcal{A} \) is an NFA and \(K \downarrow \subseteq L(\mathcal{A}) \downarrow \), then there exists a \(w \in K \downarrow \setminus L(\mathcal{A}) \downarrow \) with \(|w| \leq |\mathcal{A}| + 1 \).

- Suppose \(\mathcal{A} \) has parallel \(\varepsilon \)-edges
- For an input word \(w = x_1 \cdots x_n \), consider the sets \(Q_i \) of words reachable by \(x_1 \cdots x_i \). Then \(Q_0 \supseteq Q_1 \supseteq \cdots \)
- Hence, if \(n > |\mathcal{A}| + 1 \), then we can remove some symbol from \(w \)

Suppose we have no good upper bound on an NFA.

Ideal length

For \(I = Y_0^* \{ x_1, \varepsilon \} Y_1^* \cdots \{ x_n, \varepsilon \} Y_n^* \), the *length* \(|I| \) of \(I \) is the smallest \(n \) such that it can be written in this form.
Witnesses

Suppose we have an NFA for the downward closure. “Short witness”:

Proposition (Bachmeier, Luttenberger, Schlund 2015)

If \(\mathcal{A} \) is an NFA and \(K \downarrow \subseteq L(\mathcal{A}) \downarrow \), then there exists a \(w \in K \downarrow \setminus L(\mathcal{A}) \downarrow \) with \(|w| \leq |A| + 1 \).

- Suppose \(\mathcal{A} \) has parallel \(\varepsilon \)-edges
- For an input word \(w = x_1 \cdots x_n \), consider the sets \(Q_i \) of words reachable by \(x_1 \cdots x_i \). Then \(Q_0 \supseteq Q_1 \supseteq \cdots \)
- Hence, if \(n > |A| + 1 \), then we can remove some symbol from \(w \)

Suppose we have no good upper bound on an NFA.

Ideal length

For \(I = Y_0^* \{ x_1, \varepsilon \} Y_1^* \cdots \{ x_n, \varepsilon \} Y_n^* \), the length \(|I| \) of \(I \) is the smallest \(n \) such that it can be written in this form. Measure for languages:

\[
|L| = \min \left\{ \max_j |I_j| : \ L \downarrow = I_1 \cup \cdots \cup I_k \text{ for ideals } I_1, \ldots, I_k \right\}
\]
Pumping

Putting a bound on $|L|$ amounts to proving a pumping lemma: $|L| \leq m$ if and only if for every $w \in L$, there is an ideal I such that $|I| \leq m$ and $w \in I \subseteq L\downarrow$.
Pumping

Putting a bound on $|L|$ amounts to proving a pumping lemma:
$|L| \leq m$ if and only if for every $w \in L$, there is an ideal I such that $|I| \leq m$ and $w \in I \subseteq L\downarrow$.

Proposition (Ideal witness)

Let $I = Y_0^*\{x_1, \varepsilon\}Y_1^*\cdots\{x_n, \varepsilon\}Y_n^*$. Then the following are equivalent:

1. $I \subseteq L\downarrow$.
2. $w_{Y_0}^m x_1 w_{Y_1}^m \cdots x_n w_{Y_n}^m \in L\downarrow$ for every $m \geq |L| + 1$.
3. $w_{Y_0}^m x_1 w_{Y_1}^m \cdots x_n w_{Y_n}^m \in L\downarrow$ for some $m \geq |L| + 1$.
Pumping

Putting a bound on \(|L|\) amounts to proving a pumping lemma: \(|L| \leq m\) if and only if for every \(w \in L\), there is an ideal \(I\) such that \(|I| \leq m\) and \(w \in I \subseteq L^\downarrow\).

Proposition (Ideal witness)

Let \(I = Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*\). Then the following are equivalent:

1. \(I \subseteq L^\downarrow\).
2. \(w_{Y_0}^m x_1 w_{Y_1}^m \cdots x_n w_{Y_n}^m \in L^\downarrow\) for every \(m \geq |L| + 1\).
3. \(w_{Y_0}^m x_1 w_{Y_1}^m \cdots x_n w_{Y_n}^m \in L^\downarrow\) for some \(m \geq |L| + 1\).

Strategy for \(K^\downarrow \subseteq L^\downarrow\)

- Suppose \(|K|\) is polynomial and \(|L|\) exponential.
- Guess an ideal \(I\) of length \(\leq |K|\) and verify \(I \subseteq K, I \not\subseteq L\).
- Represent witness above succinctly.
Sometimes, we have a small bound on $|L|$ but only a large bound on $|K|$.

Proposition (Small alphabet witness)

Let $K, L \subseteq X$. If $K \subseteq L$, then there exists a $w \in K$ with $|w| \leq |L|$. This yields existence of small witnesses for fixed alphabets.

Turn every ideal into an ordered DFA: no cycles except self-loops

Then prove the following:

Lemma

If $w \in X^*$ with $|w| \geq |X|$, then w has a position at which every ordered n-state DFA cycles.

Induction yields length bound for subwords with less than $|X|$ symbols

Decompose w into at least n factors each of which sees all of X.

Each DFA has to repeat a state, hence cycle on the last letter of w.
Sometimes, we have a small bound on $|L|$ but only a large bound on $|K|$.

Proposition (Small alphabet witness)

Let $K, L \subseteq X^*$. If $K \Downarrow \subseteq L\Downarrow$, then there exists a $w \in K\Downarrow \setminus L\Downarrow$ with $|w| \leq |X| \cdot (|L| + 1)^{|X|}$.

- This yields existence of small witnesses for fixed alphabets.
Sometimes, we have a small bound on $|L|$ but only a large bound on $|K|$.

Proposition (Small alphabet witness)

Let $K, L \subseteq X^*$. If $K \downarrow \subseteq L \downarrow$, then there exists a $w \in K \downarrow \setminus L \downarrow$ with $|w| \leq |X| \cdot (|L| + 1)^{|X|}$.

- This yields existence of small witnesses for fixed alphabets.
- Turn every ideal into an ordered DFA: no cycles except self-loops.
Sometimes, we have a small bound on $|L|$ but only a large bound on $|K|$.

Proposition (Small alphabet witness)

Let $K, L \subseteq X^*$. If $K \downarrow \subseteq L \downarrow$, then there exists a $w \in K \downarrow \backslash L \downarrow$ with $|w| \leq |X| \cdot (|L| + 1)^{|X|}$.

- This yields existence of small witnesses for fixed alphabets.
- Turn every ideal into an *ordered DFA*: no cycles except self-loops.
- Then prove the following:

Lemma

If $w \in X^*$ *with* $|w| > |X| \cdot (n - 1)^{|X|}$, *then* w *has a position at which every* ordered n-*state DFA cycles.*
Sometimes, we have a small bound on $|L|$ but only a large bound on $|K|$.

Proposition (Small alphabet witness)

Let $K, L \subseteq X^*$. If $K \downarrow \subseteq L \downarrow$, then there exists a $w \in K \downarrow \setminus L \downarrow$ with $|w| \leq |X| \cdot (|L| + 1)^{|X|}$.

- This yields existence of small witnesses for fixed alphabets.
- Turn every ideal into an **ordered DFA**: no cycles except self-loops
- Then prove the following:

Lemma

If $w \in X^*$ with $|w| > |X| \cdot (n - 1)^{|X|}$, then w has a position at which every ordered n-state DFA cycles.

- Induction yields length bound for subwords with less than $|X|$ symbols
Sometimes, we have a small bound on $|L|$ but only a large bound on $|K|$.

Proposition (Small alphabet witness)

Let $K, L \subseteq X^*$. If $K \downarrow \not\subseteq L \downarrow$, then there exists a $w \in K \downarrow \setminus L \downarrow$ with $|w| \leq |X| \cdot (|L| + 1)^{|X|}$.

- This yields existence of small witnesses for fixed alphabets.
- Turn every ideal into an ordered DFA: no cycles except self-loops.
- Then prove the following:

Lemma

If $w \in X^*$ with $|w| > |X| \cdot (n - 1)^{|X|}$, then w has a position at which every ordered n-state DFA cycles.

- Induction yields length bound for subwords with less than $|X|$ symbols.
- Decompose w into at least n factors each of which sees all of X.
Sometimes, we have a small bound on $|L|$ but only a large bound on $|K|$.

Proposition (Small alphabet witness)

Let $K, L \subseteq X^*$. If $K \downarrow \subseteq L\downarrow$, then there exists a $w \in K\downarrow \setminus L\downarrow$ with

$$|w| \leq |X| \cdot (|L| + 1)^{|X|}.$$

- This yields existence of small witnesses for fixed alphabets.
- Turn every ideal into an ordered DFA: no cycles except self-loops.
- Then prove the following:

Lemma

If $w \in X^*$ with $|w| > |X| \cdot (n - 1)^{|X|}$, then w has a position at which every ordered n-state DFA cycles.

- Induction yields length bound for subwords with less than $|X|$ symbols.
- Decompose w into at least n factors each of which sees all of X.
- Each DFA has to repeat a state, hence cycle on the last letter of w.
Lower bounds

Theorem

There are order-n pushdown automata whose downward closure NFAs are at least n-fold exponential.
Lower bounds

Theorem

There are order-\(n\) pushdown automata whose downward closure NFAs are at least \(n\)-fold exponential.

- An NFA for \(\{w\} \downarrow\) requires \(|w| + 1\) states.
Lower bounds

Theorem

There are order-\(n\) pushdown automata whose downward closure NFAs are at least \(n\)-fold exponential.

- An NFA for \(\{w\}\downarrow\) requires \(|w| + 1\) states.
- Examples for \(\{a^{2^k}\}\) and \(\{a^{2^{2^k}}\}\) extend easily to order \(n\).
Lower bounds

Theorem

There are order-n pushdown automata whose downward closure NFAs are at least n-fold exponential.

- An NFA for $\{w\} \downarrow$ requires $|w| + 1$ states.
- Examples for $\{a^{2^k}\}$ and $\{a^{2^{2^k}}\}$ extend easily to order n.

Theorem

Under mild conditions on the models M and N: Suppose for each n we have a description of $\{a^{t(n)}\}$ in M and N of polynomial size. Then $M \subseteq \downarrow N$ is hard for coNTIME(t).
Lower bounds

Theorem

There are order-\(n\) pushdown automata whose downward closure NFAs are at least \(n\)-fold exponential.

- An NFA for \(\{w\}\downarrow\) requires \(|w| + 1\) states.
- Examples for \(\{a^{2^k}\}\) and \(\{a^{2^2^k}\}\) extend easily to order \(n\).

Theorem

Under mild conditions on the models \(\mathcal{M}\) and \(\mathcal{N}\): Suppose for each \(n\) we have a description of \(\{a^{t(n)}\}\) in \(\mathcal{M}\) and \(\mathcal{N}\) of polynomial size. Then \(\mathcal{M} \subseteq \downarrow \mathcal{N}\) is hard for \(\text{coNTIME}(t)\).

Corollary

The problem \(\text{HOPA}_n \subseteq \downarrow \text{HOPA}_n\) is co-\(n\)-\(\text{NEXP}\)-hard.
<table>
<thead>
<tr>
<th></th>
<th>Ideal</th>
<th>NFA</th>
<th>OCA</th>
<th>RBC<sub>k,r</sub></th>
<th>CFG</th>
<th>RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal</td>
<td>∈ L</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>P</td>
<td>NP</td>
</tr>
</tbody>
</table>
| **NFA** | NL | coNP| coNP| coNP | coNP | Π₂
| **OCA** | NL | coNP| coNP| coNP | coNP | Π₂
| **RBC_{k,r}** | NL | coNP| coNP| coNP | coNP | Π₂
| **CFG** | P | coNP| coNP| coNP[†] | coNEXP | coNEXP |
| **RBC** | coNP | coNP| coNP| coNP[†] | coNEXP | coNEXP |
Often better complexity than constructing an NFA:

- NFA \subseteq CFG: NFA for the CFG would be exponential, but problem is coNP-complete.

<table>
<thead>
<tr>
<th></th>
<th>Ideal</th>
<th>NFA</th>
<th>OCA</th>
<th>RBC$_{k,r}$</th>
<th>CFG</th>
<th>RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal</td>
<td>∈ L</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>P</td>
<td>NP</td>
</tr>
<tr>
<td>NFA</td>
<td>NL</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>Π_2^P</td>
</tr>
<tr>
<td>OCA</td>
<td>NL</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>Π_2^P</td>
</tr>
<tr>
<td>RBC$_{k,r}$</td>
<td>NL</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>Π_2^P</td>
</tr>
<tr>
<td>CFG</td>
<td>P</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP†</td>
<td>coNEXP</td>
<td>coNEXP</td>
</tr>
<tr>
<td>RBC</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP†</td>
<td>coNEXP</td>
<td>coNEXP</td>
</tr>
<tr>
<td></td>
<td>Ideal</td>
<td>NFA</td>
<td>OCA</td>
<td>RBC$_{k,r}$</td>
<td>CFG</td>
<td>RBC</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Ideal</td>
<td>∈ L</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>P</td>
<td>NP</td>
</tr>
<tr>
<td>NFA</td>
<td>NL</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>Π$_2^P$</td>
</tr>
<tr>
<td>OCA</td>
<td>NL</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>Π$_2^P$</td>
</tr>
<tr>
<td>RBC$_{k,r}$</td>
<td>NL</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>Π$_2^P$</td>
</tr>
<tr>
<td>CFG</td>
<td>P</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP*</td>
<td>coNEXP</td>
<td>coNEXP</td>
</tr>
<tr>
<td>RBC</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP*</td>
<td>coNEXP</td>
<td>coNEXP</td>
</tr>
</tbody>
</table>

Often better complexity than constructing an NFA:

- NFA \subseteq CFG: NFA for the CFG would be exponential, but problem is coNP-complete.
- HOPA$_2$ \subseteq NFA is EXPTIME-complete: Using “short witness”. Hardness inherited from emptiness.
<table>
<thead>
<tr>
<th></th>
<th>Ideal</th>
<th>NFA</th>
<th>OCA</th>
<th>RBC_{k,r}</th>
<th>CFG</th>
<th>RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal</td>
<td>∈ L</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>P</td>
<td>NP</td>
</tr>
<tr>
<td>NFA</td>
<td>NL</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>Π_{2}^{P}</td>
</tr>
<tr>
<td>OCA</td>
<td>NL</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>Π_{2}^{P}</td>
</tr>
<tr>
<td>RBC_{k,r}</td>
<td>NL</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>Π_{2}^{P}</td>
</tr>
<tr>
<td>CFG</td>
<td>P</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP\uparrow</td>
<td>coNEXP</td>
<td>coNEXP</td>
</tr>
<tr>
<td>RBC</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP\uparrow</td>
<td>coNEXP</td>
<td>coNEXP</td>
</tr>
</tbody>
</table>

- Often better complexity than constructing an NFA:
 - NFA \subseteq CFG: NFA for the CFG would be exponential, but problem is coNP-complete.
 - HOPA_{2} \subseteq NFA is EXPTIME-complete: Using “short witness”. Hardness inherited from emptiness.
- Pumping lemmas may give us bounds on ideal lengths
<table>
<thead>
<tr>
<th></th>
<th>Ideal</th>
<th>NFA</th>
<th>OCA</th>
<th>RBC_{k,r}</th>
<th>CFG</th>
<th>RBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal</td>
<td>∈ L</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>P</td>
<td>NP</td>
</tr>
<tr>
<td>NFA</td>
<td>NL</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>Π^P_2</td>
</tr>
<tr>
<td>OCA</td>
<td>NL</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>Π^P_2</td>
</tr>
<tr>
<td>RBC_{k,r}</td>
<td>NL</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>Π^P_2</td>
</tr>
<tr>
<td>CFG</td>
<td>P</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP \dagger</td>
<td>coNEXP</td>
<td>coNEXP</td>
</tr>
<tr>
<td>RBC</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP</td>
<td>coNP \dagger</td>
<td>coNEXP</td>
<td>coNEXP</td>
</tr>
</tbody>
</table>

- Often better complexity than constructing an NFA:
 - NFA ⊆↓ CFG: NFA for the CFG would be exponential, but problem is coNP-complete.
 - HOPA_2 ⊆↓ NFA is EXPTIME-complete: Using “short witness”. Hardness inherited from emptiness.
- Pumping lemmas may give us bounds on ideal lengths
- The problem HOPA_n ⊆↓ HOPA_n is co-n-NEXP-hard.