Monoids as Storage Mechanisms

Georg Zetzsche

LSV Cachan

INFINI Group Seminar
Example (Pushdown automaton)

- Initial state: q_0
- Transitions:
 - $a, \varepsilon, A \rightarrow q_1$
 - $b, \varepsilon, B \rightarrow q_0$
 - $\varepsilon, \varepsilon, \varepsilon \rightarrow q_0, q_1$

Example (Blind counter automaton)

- Initial states: q_0, q_1, q_2
- Transitions:
 - $a, 1 \rightarrow q_0$
 - $b, -1 \rightarrow q_1$
 - $c, 0 \rightarrow q_2$
 - $\varepsilon, 0 \rightarrow q_0, q_1, q_2$

Georg Zetzsche (LSV Cachan)
Example (Pushdown automaton)

\[L = \{ w w^\text{rev} \mid w \in \{a, b\}^* \} \]
Example (Pushdown automaton)

\[
\begin{align*}
q_0 & \xrightarrow{a, \varepsilon, A} q_0 & \quad & \varepsilon, \varepsilon, \varepsilon \\
q_0 & \xrightarrow{b, \varepsilon, B} q_1 & \quad & \varepsilon, \varepsilon, \varepsilon \\
q_1 & \xrightarrow{a, A, \varepsilon} q_1 & \quad & \varepsilon, \varepsilon, \varepsilon \\
q_1 & \xrightarrow{b, B, \varepsilon} q_2 & \quad & \varepsilon, \varepsilon, \varepsilon \\
q_2 & \xrightarrow{a, \varepsilon, A} q_0 & \quad & \varepsilon, \varepsilon, \varepsilon \\
q_2 & \xrightarrow{b, \varepsilon, B} q_1 & \quad & \varepsilon, \varepsilon, \varepsilon \\
q_2 & \xrightarrow{b, B, \varepsilon} q_2 & \quad & \varepsilon, \varepsilon, \varepsilon \\
q_2 & \xrightarrow{a, \varepsilon, A} q_1 & \quad & \varepsilon, \varepsilon, \varepsilon \\
q_2 & \xrightarrow{b, \varepsilon, B} q_2 & \quad & \varepsilon, \varepsilon, \varepsilon \\
\end{align*}
\]

\[L = \{ww^{\text{rev}} \mid w \in \{a, b\}^*\}\]

Example (Blind counter automaton)

\[
\begin{align*}
q_0 & \xrightarrow{a, 1, 0} q_0 & \quad & \varepsilon, 0, 0 \\
q_0 & \xrightarrow{b, -1, -1} q_1 & \quad & \varepsilon, 0, 0 \\
q_1 & \xrightarrow{c, 0, 1} q_2 & \quad & \varepsilon, 0, 0 \\
q_1 & \xrightarrow{\varepsilon, 0, 0} q_1 & \quad & \varepsilon, 0, 0 \\
q_2 & \xrightarrow{\varepsilon, 0, 0} q_2 & \quad & \varepsilon, 0, 0 \\
\end{align*}
\]
Example (Pushdown automaton)

\[L = \{ ww^{rev} \mid w \in \{a, b\}^* \} \]

Example (Blind counter automaton)

\[L = \{ a^n b^n c^n \mid n \geq 0 \} \]
Example (Partially blind counter automaton)

\[q_0 \xrightarrow{a,1} q_0 \xrightarrow{\varepsilon,0} q_0 \xrightarrow{b,-1} q_0 \]

\[q_0 \xrightarrow{\varepsilon,-1} q_1 \xrightarrow{\varepsilon,0} q_1 \xrightarrow{\varepsilon,0} q_1 \xrightarrow{\varepsilon,-1} q_1 \]
Example (Partially blind counter automaton)

\[L = \{ w \in \{a, b\}^* \mid |p|_a \geq |p|_b \text{ for each prefix } p \text{ of } w \} \]
Storage mechanisms

Automata models that extend finite automata by some storage mechanism:

- Pushdown automata
- Blind counter automata
- Partially blind counter automata
- Turing machines

Goal: General insights

Structure of storage \Leftrightarrow computational properties
Storage mechanisms

Automata models that extend finite automata by some storage mechanism:

- Pushdown automata
- Blind counter automata
- Partially blind counter automata
- Turing machines

Goal: General insights

Structure of storage ↔ computational properties

Framework

Abstract model with storage as parameter
Valence automata

Definition

A *monoid* is a set M with

- an associative binary operation $\cdot : M \times M \rightarrow M$ and
- a neutral element $1 \in M$ ($a1 = 1a = a$ for any $a \in M$).
Valence automata

Definition

A *monoid* is a set M with

- an associative binary operation $\cdot : M \times M \to M$ and
- a neutral element $1 \in M$ ($a1 = 1a = a$ for any $a \in M$).

Common generalization: Valence Automata

Valence automaton over M:

- Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

Georg Zetzsche (LSV Cachan)
Valence automata

Definition

A *monoid* is a set M with

- an associative binary operation $\cdot : M \times M \rightarrow M$ and
- a neutral element $1 \in M$ ($a1 = 1a = a$ for any $a \in M$).

Common generalization: Valence Automata

Valence automaton over M:

- Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.
- Run $q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$ is *accepting* for $w_1 \cdots w_n$ if
 - q_0 is the initial state,
 - q_n is a final state, and
Valence automata

Definition

A **monoid** is a set \(M \) with
- an associative binary operation \(\cdot : M \times M \to M \) and
- a neutral element \(1 \in M \) (\(a1 = 1a = a \) for any \(a \in M \)).

Common generalization: Valence Automata

Valence automaton over \(M \):
- Finite automaton with edges \(p \xrightarrow{w|m} q, \ w \in \Sigma^*, \ m \in M \).
- Run \(q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n \) is accepting for \(w_1 \cdots w_n \) if
 - \(q_0 \) is the initial state,
 - \(q_n \) is a final state, and
 - \(m_1 \cdots m_n = 1 \).
Valence automata

Definition

A *monoid* is a set M with

- an associative binary operation $\cdot : M \times M \to M$ and
- a neutral element $1 \in M$ ($a1 = 1a = a$ for any $a \in M$).

Common generalization: Valence Automata

Valence automaton over M:

- Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.
- Run $q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$ is accepting for $w_1 \cdots w_n$ if
 - q_0 is the initial state,
 - q_n is a final state, and
 - $m_1 \cdots m_n = 1$.

Language class

$\text{VA}(M)$ languages accepted by valence automata over M.
Classical results can now be generalized:

Questions

- For which storage mechanisms can we **decide emptiness**?
Classical results can now be generalized:

Questions

- For which storage mechanisms can we decide emptiness?
- For which do we have a particular closure property?
Classical results can now be generalized:

Questions

- For which storage mechanisms can we decide emptiness?
- For which do we have a particular closure property?
- How is the complexity of decision problems affected?
Classical results can now be generalized:

Questions

- For which storage mechanisms can we **decide emptiness**?
- For which do we have a particular **closure property**?
- How is the **complexity** of decision problems affected?
- For which can we compute **abstractions**?
Monoids defined by graphs

By graphs, we mean undirected graphs with loops allowed.
Monoids defined by graphs

By graphs, we mean undirected graphs with loops allowed.
Let $\Gamma = (V, E)$ be a graph. Let

$$X_\Gamma = \{a_v, \bar{a}_v \mid v \in V\}$$
Monoids defined by graphs

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_\Gamma = \{a_v, \bar{a}_v \mid v \in V\}$$

$$R_\Gamma = \{a_v \bar{a}_v = \varepsilon \mid v \in V\}$$
Monoids defined by graphs

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_\Gamma = \{a_v, \tilde{a}_v \mid v \in V\}$$

$$R_\Gamma = \{a_v \tilde{a}_v = \varepsilon \mid v \in V\}$$

$$\cup \{xy = yx \mid x \in \{a_u, \tilde{a}_u\}, y \in \{a_v, \tilde{a}_v\}, \{u, v\} \in E\}$$
Monoids defined by graphs

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_\Gamma = \{a_v, \bar{a}_v \mid v \in V\}$$

$$R_\Gamma = \{a_v \bar{a}_v = \varepsilon \mid v \in V\}$$

$$\cup \{xy = yx \mid x \in \{a_u, \bar{a}_u\}, y \in \{a_v, \bar{a}_v\}, \{u, v\} \in E\}$$

$$M_\Gamma = X_\Gamma^*/R_\Gamma$$
Monoids defined by graphs

By graphs, we mean undirected graphs with loops allowed.

Let $\Gamma = (V, E)$ be a graph. Let

$$X_\Gamma = \{a_v, \bar{a}_v \mid v \in V\}$$
$$R_\Gamma = \{a_v \bar{a}_v = \varepsilon \mid v \in V\}$$
$$\cup \{xy = yx \mid x \in \{a_u, \bar{a}_u\}, y \in \{a_v, \bar{a}_v\}, \{u, v\} \in E\}$$

$$\mathbb{M}_\Gamma = X_\Gamma^*/R_\Gamma$$

Intuition

- \mathbb{B}: bicyclic monoid, $\mathbb{B} = \{a, \bar{a}\}^*/\{a\bar{a} = \varepsilon\}$.
- \mathbb{Z}: group of integers
- For each unlooped vertex, we have a copy of \mathbb{B}
- For each looped vertex, we have a copy of \mathbb{Z}
- \mathbb{M}_Γ consists of sequences of such elements
- An edge between vertices means that elements can commute
Examples
Examples

\mathbb{Z}^3
Examples

Blind counter

\mathbb{Z}^3
Examples

Blind counter

\[\mathbb{Z}^3 \]
Examples

Blind counter

\[\mathbb{Z}^3 \]

\[\mathbb{B} \ast \mathbb{B} \ast \mathbb{B} \]
Examples

Blind counter

\[\mathbb{Z}^3 \]

Pushdown

\[B \ast B \ast B \]

Georg Zetzsche (LSV Cachan)
Examples

Blind counter

\mathbb{Z}^3

Pushdown

$B \ast B \ast B$
Examples

- Blind counter
- Pushdown

- Infinite tape (TM)
- Pushdown + partially blind counters

\[\mathbb{Z}^3 \]

\[B \hat{\times} B \hat{\times} B \]
Examples

- Blind counter
 - \(\mathbb{Z}^3 \)

- Pushdown
 - \(B \times B \times B \)

- Partially blind counter
 - \(B^3 \)
Examples

Blind counter

\[\mathbb{Z}^3 \]

Pushdown

\[\mathbb{B} \ast \mathbb{B} \ast \mathbb{B} \]

Partially blind counter

\[\mathbb{B}^3 \]
Examples

Blind counter

Pushdown

Partially blind counter
Examples

Blind counter

\[\mathbb{Z}^3 \]

Pushdown

\[B \times B \times B \]

Partially blind counter

\[B^3 \]

\[(B \times B) \times (B \times B)\]
Examples

Blind counter

Pushdown

Partially blind counter

Infinite tape (TM)
Examples

- **Blind counter**: \mathbb{Z}^3
- **Pushdown**: $B \times B \times B$
- **Partially blind counter**: B^3
- **Infinite tape (TM)**: $(B \times B) \times (B \times B)$
Examples

Blind counter

Pushdown

Partially blind counter

Infinite tape (TM)
Examples

Blind counter

Pushdown

Partially blind counter

Infinite tape (TM)
Examples

Blind counter

Pushdown

Partially blind counter

Infinite tape (TM)
Examples

Blind counter

\[\mathbb{Z}^3 \]

Pushdown

\[B \times B \times B \]

Pushdown + partially blind counters

\[(B \times B) \times B \times B \]

Partially blind counter

\[B^3 \]

Infinite tape (TM)

\[(B \times B) \times (B \times B) \]
The emptiness problem

Given a valence automaton over M, does it accept any word?
The emptiness problem

Given a valence automaton over M, does it accept any word?

Important problem

- Type of reachability problem
- Necessary for many other decision problems.
The emptiness problem

Given a valence automaton over M, does it accept any word?

Important problem

- Type of reachability problem
- Necessary for many other decision problems.

Question

For which storage mechanisms is the emptiness problem decidable?
The emptiness problem

Given a valence automaton over M, does it accept any word?

Important problem

- Type of reachability problem
- Necessary for many other decision problems.

Question

For which storage mechanisms is the emptiness problem decidable?

Obstacle

Pushdown + partially blind counters
The emptiness problem

Given a valence automaton over \(M \), does it accept any word?

Important problem

- Type of reachability problem
- Necessary for many other decision problems.

Question

For which storage mechanisms is the emptiness problem decidable?

Obstacle

Pushdown + partially blind counters

Decidability a long-standing open problem
Simplest graphs for pushdown + counters

One can show: These can simulate pushdown + one counter

Theorem (Z. 2015)

Let Γ be PPN-free. Then the following are equivalent:

- Emptiness is decidable for valence automata over M_Γ.
- Γ, minus loops, is a transitive forest.
Simplest graphs for pushdown + counters

- One can show: These can simulate pushdown + one counter
- We call these *PPN-graphs* (for “pushdown Petri net”).
Simplest graphs for pushdown + counters

- One can show: These can simulate pushdown + one counter
- We call these *PPN-graphs* (for “pushdown Petri net”).
- Without them as induced subgraphs: *PPN-free*.
Simplest graphs for pushdown + counters

One can show: These can simulate pushdown + one counter
We call these **PPN-graphs** (for “pushdown Petri net”).
Without them as induced subgraphs: **PPN-free**.

Theorem (Z. 2015)

Let Γ be PPN-free. Then the following are equivalent:
- Emptiness is decidable for valence automata over $M\Gamma$.
- Γ, minus loops, is a transitive forest.
Simplest graphs for pushdown + counters

- One can show: These can simulate pushdown + one counter
- We call these *PPN-graphs* (for “pushdown Petri net”).
- Without them as induced subgraphs: *PPN-free*.

Theorem (Z. 2015)

Let Γ be *PPN-free*. Then the following are equivalent:

- *Emptiness is decidable for valence automata over $\mathbb{M}\Gamma$.*
- Γ, minus loops, is a *transitive forest*.
Decidable mechanisms, SC ˘:

Start with partially blind counters
Build stacks
Add blind counters

Reduction to priority counter automata of Reinhardt

Left open, SC `:

Start with partially blind counters
Build stacks
Add partially blind counters

Generalize pushdown Petri nets and priority counter automata

New open problem
Intuition

Decidable mechanisms, SC

Start with partially blind counters
Build stacks
Add blind counters

Reduction to priority counter automata of Reinhardt

Left open, SC

Start with partially blind counters
Build stacks
Add partially blind counters

Generalize pushdown Petri nets and priority counter automata

New open problem
Intuition
Decidable mechanisms, \overline{SC}
• Start with partially blind counters
• Build stacks
• Add blind counters

Reduction to priority counter automata of Reinhardt

Left open, \overline{SC}
• Start with partially blind counters
• Build stacks
• Add partially blind counters

Generalize pushdown Petri nets and priority counter automata

New open problem
Intuition
Decidable mechanisms, SC

Start with partially blind counters
Build stacks
Add blind counters

Reduction to priority counter automata of Reinhardt

Left open, SC

Start with partially blind counters
Build stacks
Add partially blind counters

Generalize pushdown Petri nets and priority counter automata

New open problem
Intuition
Decidable mechanisms, SC

Start with partially blind counters
Build stacks
Add blind counters

Reduction to priority counter automata of Reinhardt

Left open, SC

Start with partially blind counters
Build stacks
Add partially blind counters

Generalize pushdown Petri nets and priority counter automata

New open problem

Georg Zetzsche (LSV Cachan)
Intuition
Decidable mechanisms, SC

Start with partially blind counters
Build stacks
Add blind counters

Reduction to priority counter automata of Reinhardt

Left open, SC

Start with partially blind counters
Build stacks
Add partially blind counters

Generalize pushdown Petri nets and priority counter automata

New open problem

Georg Zetzsche (LSV Cachan)
Intuition

Decidable mechanisms, SC^\pm:
- Start with partially blind counters
- Build stacks
- Add blind counters
Decidable mechanisms, SC$^\pm$:
- Start with partially blind counters
- Build stacks
- Add blind counters

\Rightarrow Reduction to priority counter automata of Reinhardt
Intuition

Decidable mechanisms, SC^\pm:

- Start with partially blind counters
- Build stacks
- Add blind counters

\Rightarrow Reduction to priority counter automata of Reinhardt

Left open, SC^+:

- Start with partially blind counters
- Build stacks
- Add partially blind counters
Intuition

Decidable mechanisms, SC^\pm:
- Start with partially blind counters
- Build stacks
- Add blind counters
 \Rightarrow Reduction to priority counter automata of Reinhardt

Left open, SC^+:
- Start with partially blind counters
- Build stacks
- Add partially blind counters
 \Rightarrow Generalize pushdown Petri nets and priority counter automata
 \Rightarrow New open problem
Petri nets
Priority counter

Monoids as Storage Mechanisms
INFINI Group Seminar
Theorem (Wolk 1965)

An undirected graph is a transitive forest iff it avoids as induced subgraphs:

- C_4:
- P_4:

\Rightarrow Show Turing completeness for C_4 and P_4
Poof: Decidability

Decidability

Combinatorial argument shows: equivalent to SC^\pm.
Decidability

Combinatorial argument shows: equivalent to SC^\pm.

Definition of SC^\pm

Smallest class with

- $\mathbb{B}^n \in \text{SC}^\pm$
- if $M \in \text{SC}^\pm$, then $\mathbb{B} \ast M$, $\mathbb{Z} \times M \in \text{SC}^\pm$
Poof: Decidability

Decidability

Combinatorial argument shows: equivalent to SC^\pm.

Definition of SC^\pm

Smallest class with

- $B^n \in SC^\pm$
- if $M \in SC^\pm$, then $B \star M$, $\mathbb{Z} \times M \in SC^\pm$

Reduction

$\Psi(\text{VA}(M)) \subseteq \text{Prio}$ for every $M \in SC^\pm$.
Priority counter machines

- Automaton with \(n \) counters

Language class: Prio

Theorem (Reinhardt)
Reachability is decidable for priority counter machines.
Priority counter machines

- Automaton with \(n \) counters
- Counters stay \(\geq 0 \)
Priority counter machines

- Automaton with n counters
- Counters stay ≥ 0
- Instructions:
 - inc_i: increment counter i
 - dec_i: decrement counter i
 - zero_i: test all the counters $1, \ldots, i$ for zero
Priority counter machines

- Automaton with n counters
- Counters stay ≥ 0
- Instructions:
 - inc_i: increment counter i
 - dec_i: decrement counter i
 - zero_i: test all the counters $1, \ldots, i$ for zero

- Language class: Prio
Priority counter machines

- Automaton with \(n \) counters
- Counters stay \(\geq 0 \)
- Instructions:
 - \(\text{inc}_i \): increment counter \(i \)
 - \(\text{dec}_i \): decrement counter \(i \)
 - \(\text{zero}_i \): test all the counters \(1, \ldots, i \) for zero
- Language class: Prio

Theorem (Reinhardt)

Reachability is decidable for priority counter machines.
Definition of SC^\pm

Smallest class with
- $\mathbb{B}^n \in \text{SC}^\pm$
- if $M \in \text{SC}^\pm$, then $\mathbb{B} \star M, \mathbb{Z} \times M \in \text{SC}^\pm$

Observations
- $\text{VA}(\mathbb{B}^n) \subseteq \text{Prio}$, hence $\psi(\text{VA}(\mathbb{B}^n)) \subseteq \psi(\text{Prio})$.
Definition of SC\(^\pm\)

Smallest class with

- \(B^n \in SC^\pm\)
- if \(M \in SC^\pm\), then \(B \ast M, \quad \mathbb{Z} \times M \in SC^\pm\)

Observations

- \(VA(B^n) \subseteq Prio\), hence \(\Psi(VA(B^n)) \subseteq \Psi(Prio)\).
- If \(\Psi(VA(M)) \subseteq Prio\), then \(\Psi(VA(M \times \mathbb{Z})) \subseteq \Psi(Prio)\).
Definition of SC$^\pm$

Smallest class with
- $\mathbb{B}^n \in \text{SC}^\pm$
- if $M \in \text{SC}^\pm$, then $\mathbb{B} \ast M$, $\mathbb{Z} \times M \in \text{SC}^\pm$

Observations

- $\text{VA}(\mathbb{B}^n) \subseteq \text{Prio}$, hence $\Psi(\text{VA}(\mathbb{B}^n)) \subseteq \Psi(\text{Prio})$.
- If $\Psi(\text{VA}(M)) \subseteq \text{Prio}$, then $\Psi(\text{VA}(M \times \mathbb{Z})) \subseteq \Psi(\text{Prio})$.
- What about $\text{VA}(\mathbb{B} \ast M)$?
Expressiveness

Algebraic extensions

Let \mathcal{C} be a language class. A \mathcal{C}-grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in \mathcal{C}$
Expressiveness

Algebraic extensions

Let C be a language class. A C-grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

$$uAv \Rightarrow uwv \quad \text{whenever } w \in L.$$
Expressiveness

Algebraic extensions

Let C be a language class. A C-grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.
- Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.

Such languages are algebraic over C, class denoted $\text{Alg}_p C$.

Theorem (Z. 2015)

Theorem (van Leeuwen 1974)

If C is closed under rational transductions and Kleene star, then

$\Psi_p \text{Alg}_p C \subseteq \Psi_p C$.

Georg Zetzsche (LSV Cachan)

INFINI Group Seminar 18 / 31
Expressiveness

Algebraic extensions

Let \mathcal{C} be a language class. A \mathcal{C}-grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in \mathcal{C}$

$$uAv \Rightarrow uvw \quad \text{whenever } w \in L.$$

- Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.
- Such languages are *algebraic over* \mathcal{C}, class denoted $\text{Alg}(\mathcal{C})$.
Expressiveness

Algebraic extensions

Let \mathcal{C} be a language class. A \mathcal{C}-grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in \mathcal{C}$

 $$uAv \Rightarrow uvw \quad \text{whenever } w \in L.$$
- Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.
- Such languages are algebraic over \mathcal{C}, class denoted $\text{Alg}(\mathcal{C})$.

Theorem (Z. 2015)

$$\text{VA}(\mathbb{B} \ast \mathbb{B} \ast M) = \text{Alg}(\text{VA}(M)).$$
Expressiveness

Algebraic extensions

Let C be a language class. A C-grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

$$uAv \Rightarrow uwv \text{ whenever } w \in L.$$

- Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.
- Such languages are algebraic over C, class denoted $\text{Alg}(C)$.

Theorem (Z. 2015)

$$\text{VA}(\mathbb{B} \ast \mathbb{B} \ast M) = \text{Alg}(\text{VA}(M)).$$

Theorem (van Leeuwen 1974)

*If C is closed under rational transductions and Kleene star, then
\[
\Psi(\text{Alg}(C)) \subseteq \Psi(C).
\]
Theorem (Lohrey and Steinberg 2008)

Let Γ be a graph in which every vertex is looped. Then emptiness is decidable for M_{Γ} if and only if Γ, minus loops, is a transitive forest.
Theorem (Lohrey and Steinberg 2008)

Let Γ be a graph in which every vertex is looped. Then emptiness is decidable for $\mathbb{M}\Gamma$ if and only if Γ, minus loops, is a transitive forest.
Semilinear Parikh images

- Numerous applications.
- Parikh’s Theorem: Pushdown automata
- Ibarra + Greibach: Blind counter automata

Question

For which monoids M are all languages in $\text{VA}(M)$ semilinear?
Characterization

Theorem (Buckheister, Z. 2013)

Let Γ be a graph. The following conditions are equivalent:

- All languages in $\mathcal{VA}(\mathbb{M}\Gamma)$ are semilinear.
- Γ satisfies:
 1. Γ contains neither $\bullet\bullet$ nor $\bullet\bullet\bullet\bullet\bullet$ as an induced subgraph and
 2. Γ, minus loops, is a transitive forest.
Characterization

Theorem (Buckheister, Z. 2013)

Let Γ be a graph. The following conditions are equivalent:

- All languages in $\text{VA}(M\Gamma)$ are semilinear.
- Γ satisfies:
 1. Γ contains neither $\bullet\bullet$ nor $\circ\circ\circ$ as an induced subgraph and
 2. Γ, minus loops, is a transitive forest.
- $\text{VA}(B \times B) \not\subseteq \text{VA}(M\Gamma)$
Characterization

Theorem (Buckheister, Z. 2013)

Let \(\Gamma \) be a graph. The following conditions are equivalent:

- All languages in \(\text{VA}(\mathbb{M}\Gamma) \) are semilinear.
- \(\Gamma \) satisfies:
 1. \(\Gamma \) contains neither \(\bullet \bullet \) nor \(\bullet \bullet \bullet \bullet \) as an induced subgraph and
 2. \(\Gamma \), minus loops, is a transitive forest.
- \(\text{VA}(\mathbb{B} \times \mathbb{B}) \nsubseteq \text{VA}(\mathbb{M}\Gamma) \)
- \(\text{VA}(\mathbb{M}\Gamma) \subseteq \text{VA}(\mathbb{M}) \) for some \(\mathbb{M} \in \text{SC}^- \).
Characterization

Theorem (Buckheister, Z. 2013)

Let Γ be a graph. The following conditions are equivalent:

- All languages in $\mathrm{VA}(\mathcal{M}\Gamma)$ are semilinear.
- Γ satisfies:
 1. contains neither $\bullet\bullet$ nor $\bullet\circ\bullet\circ$ as an induced subgraph and
 2. minus loops, is a transitive forest.

- $\mathrm{VA}(\mathcal{B} \times \mathcal{B}) \not\subseteq \mathrm{VA}(\mathcal{M}\Gamma)$
- $\mathrm{VA}(\mathcal{M}\Gamma) \subseteq \mathrm{VA}(M)$ for some $M \in \mathcal{SC}^-$.

\mathcal{SC}^-

Building stacks, adding blind counters
Petri nets
Priority counter

SC^+
SC^±
SC^-

Petri nets
Priority counter
Question

For which monoids M is $\text{VA}(M)$ closed under Boolean operations?

Motivation: Automatic structures

- Infinite structures described by finite automata
- Decidable first-order logic
Question
For which monoids M is $VA(M)$ closed under Boolean operations?

Motivation: Automatic structures
- Infinite structures described by finite automata
- Decidable first-order logic
- If $VA(M)$ is Boolean closed and has decidable emptiness:
 - valence automata over M instead of finite automata
Question
For which monoids M is $\text{VA}(M)$ closed under Boolean operations?

Motivation: Automatic structures

- Infinite structures described by finite automata
- Decidable first-order logic
- If $\text{VA}(M)$ is Boolean closed and has decidable emptiness:
 - valence automata over M instead of finite automata
 - new decidable structures?
Example (Transducer)

\[
\begin{align*}
\varepsilon | a, \varepsilon | b & \quad a | a, b | b & \quad \varepsilon | a, \varepsilon | b \\
q_0 & \quad \varepsilon | \# & \quad \varepsilon | \# & \quad q_2 \\
& \quad a | \varepsilon, b | \varepsilon
\end{align*}
\]
Definition

- **Rational transduction**: set of pairs given by a finite state transducer.
- For rational transduction $T \subseteq X^* \times Y^*$ and language $L \subseteq X^*$, let

$$ TL = \{ y \in Y^* \mid \exists x \in L : (x, y) \in T \} $$
Example (Transducer)

\[T(A) = \{(x, u\#v\#w) \mid u, v, w, x \in \{a, b\}^*, \ v \leq x\} \]

Definition

- **Rational transduction**: set of pairs given by a finite state transducer.
- For rational transduction \(T \subseteq X^* \times Y^* \) and language \(L \subseteq X^* \), let

\[TL = \{y \in Y^* \mid \exists x \in L : (x, y) \in T\} \]

- \(C \) is a full trio if \(LR \in C \) for each \(L \in C \) and rational transduction \(R \).
Example (Transducer)

\[T(A) = \{(x, u\#v\#w) \mid u, v, w, x \in \{a, b\}^*, \ v \leq x\} \]

Fact
Each VA(M) is a full trio.

Definition

- **Rational transduction**: set of pairs given by a finite state transducer.
- For rational transduction \(T \subseteq X^* \times Y^* \) and language \(L \subseteq X^* \), let

\[TL = \{y \in Y^* \mid \exists x \in L : (x, y) \in T\} \]

- \(C \) is a full trio if \(LR \in C \) for each \(L \in C \) and rational transduction \(R \).
RE(C): Accepted by Turing machine with oracle $L \in C$.

Definition

Arithmetical hierarchy:

$$\Sigma_1 = \text{RE}, \quad \Sigma_{n+1} = \text{RE}(\Sigma_n) \text{ for } n \geq 0, \quad \text{AH} = \bigcup_{n \geq 0} \Sigma_n.$$
RE(C): Accepted by Turing machine with oracle $L \in C$.

Definition

Arithmetical hierarchy:

$$\Sigma_1 = \text{RE}, \quad \Sigma_{n+1} = \text{RE}(\Sigma_n) \text{ for } n \geq 0, \quad \text{AH} = \bigcup_{n \geq 0} \Sigma_n.$$

Relative arithmetical hierarchy:

$$\Sigma_1(L) = \text{RE}(L), \quad \Sigma_{n+1}(L) = \text{RE}(\Sigma_n(L)) \text{ for } n \geq 0, \quad \text{AH}(L) = \bigcup_{n \geq 0} \Sigma_n(L).$$
RE(\mathcal{C})$: Accepted by Turing machine with oracle $L \in \mathcal{C}$.

Definition

Arithmetical hierarchy:

$$\Sigma_1 = \text{RE}, \quad \Sigma_{n+1} = \text{RE}(\Sigma_n) \text{ for } n \geq 0, \quad \text{AH} = \bigcup_{n \geq 0} \Sigma_n.$$

Relative arithmetical hierarchy:

$$\Sigma_1(L) = \text{RE}(L), \quad \Sigma_{n+1}(L) = \text{RE}(\Sigma_n(L)) \text{ for } n \geq 0, \quad \text{AH}(L) = \bigcup_{n \geq 0} \Sigma_n(L).$$

Theorem (Lohrey, Z. 2014)

If L is non-regular, then the smallest Boolean closed full trio containing L equals $\text{AH}(L)$.
How to construct $\text{AH}(L)$

- **Difficulty**: Construct language of counter instructions
- **Sequences** over $\{+,-,0\}$ that correspond to valid counter operations
- **Only information** about L: It is not regular

Idea

- **Use** Myhill-Nerode classes—infinitely many
- **Encode** counter values by Myhill-Nerode classes
Silent transitions

A transition that reads no input is called *silent transition* or \(\varepsilon \)-transition.
Silent transitions

A transition that reads no input is called *silent transition* or ε-transition.

Important problem

- Can silent transitions be eliminated?
- Without silent transitions, membership in NP.
- Elimination can be regarded as a precomputation.
Silent transitions

A transition that reads no input is called *silent transition* or *ε-transition*.

Important problem

- Can silent transitions be eliminated?
- Without silent transitions, membership in NP.
- Elimination can be regarded as a precomputation.

Question

For which storage mechanisms can we avoid silent transitions?
Examples, again

\[
\begin{align*}
Z^3 & \quad B \cdot B \cdot B \\
\text{Blind counter} & \quad \text{Pushdown} \\
(B \cdot B) \times B & \times B \\
\text{Pushdown + partially blind counters} & \quad \text{Partially blind counter} \\
B^3 & \quad (B \cdot B) \times (B \cdot B) \\
\text{Infinite tape (TM)} & \quad \text{Infinite tape (TM)}
\end{align*}
\]
Examples, again

- **Blind counter**: \mathbb{Z}^3
- **Pushdown**: $B \ast B \ast B$
- **Pushdown + partially blind counters**: $(B \ast B) \times B \times B$
- **Partially blind counter**: B^3
- **Infinite tape (TM)**: $(B \ast B) \times (B \ast B)$
Examples, again

- \mathbb{Z}^3
- $\mathbb{B} \times \mathbb{B} \times \mathbb{B}$
- \mathbb{B}^3
- $(\mathbb{B} \times \mathbb{B}) \times \mathbb{B} \times \mathbb{B}$
- $(\mathbb{B} \times \mathbb{B}) \times (\mathbb{B} \times \mathbb{B})$

- Blind counter
- Pushdown
- Pushdown + partially blind counters
- Partially blind counter
- Infinite tape (TM)
Theorem (Z. 2013)

Let Γ be a graph such that

- any two looped vertices are adjacent,
- no two unlooped vertices are adjacent.

The following conditions are equivalent:

- Silent transitions can be avoided over M_Γ.
- Γ does not contain P_{SC} as an induced subgraph.
Theorem (Z. 2013)

Let Γ be a graph such that

- any two looped vertices are adjacent,
- no two unlooped vertices are adjacent.

Silent transitions can be avoided over M_Γ. Γ does not contain P_{SC}' as an induced subgraph.
Theorem (Z. 2013)

Let Γ be a graph such that

- any two looped vertices are adjacent,
- no two unlooped vertices are adjacent.

Then the following conditions are equivalent:

- Silent transitions can be avoided over $M\Gamma$.
- Γ does not contain $\bullet - \bigcirc - \bigcirc - \bullet$ as an induced subgraph.
Theorem (Z. 2013)

Let Γ be a graph such that

- any two looped vertices are adjacent,
- no two unlooped vertices are adjacent.

Then the following conditions are equivalent:

- Silent transitions can be avoided over $M\Gamma$.
- Γ does not contain \[\bullet - \bullet - \bullet \] as an induced subgraph.
Theorem (Z. 2013)

Let Γ be a graph such that
- any two looped vertices are adjacent,
- no two unlooped vertices are adjacent.

Then the following conditions are equivalent:
- Silent transitions can be avoided over $M\Gamma$.
- Γ does not contain $\bullet \circlearrowright \bullet$ as an induced subgraph.
- $M\Gamma \in SC^-$.
Theorem (Z. 2013)

Let \(\Gamma \) be a graph such that between any two distinct vertices, there is an edge.

Let \(\Gamma \) be a graph such that between any two distinct vertices, there is an edge.
Theorem (Z. 2013)

Let Γ be a graph such that between any two distinct vertices, there is an edge.

Let Γ be a graph such that between any two distinct vertices, there is an edge.
Theorem (Z. 2013)

Let Γ be a graph such that between any two distinct vertices, there is an edge. Then $\text{VA}(M\Gamma) = \text{VA}^+(M\Gamma)$ if and only if the number of unlooped nodes is ≤ 1.

Georg Zetzsche (LSV Cachan)
Theorem (Z. 2013)

Let \(\Gamma \) be a graph such that between any two distinct vertices, there is an edge. Then \(VA(\mathbb{M}\Gamma) = VA^+(\mathbb{M}\Gamma) \) if and only if the number of unlooped nodes is \(\leq 1 \).
Theorem (Z. 2013)

Let Γ be a graph such that between any two distinct vertices, there is an edge. Then $VA(M\Gamma) = VA^+(M\Gamma)$ if and only if the number of unlooped nodes is ≤ 1. In other words:

$$VA(B^r \times \mathbb{Z}^s) = VA^+(B^r \times \mathbb{Z}^s) \text{ iff } r \leq 1.$$
Conclusion

Valence automata
- Generalize various automata with storage
- Meaningful characterizations of computational properties
- Reveal natural models with interesting properties
Conclusion

Valence automata
- Generalize various automata with storage
- Meaningful characterizations of computational properties
- Reveal natural models with interesting properties

Ongoing work
- For which storage mechanisms is FO+Reach decidable?
Conclusion

Valence automata

- Generalize various automata with storage
- Meaningful characterizations of computational properties
- Reveal natural models with interesting properties

Ongoing work

- For which storage mechanisms is FO+Reach decidable?

Thank you for your attention!