On Boolean closed full trios and rational Kripke frames

Markus Lohrey¹ Dietrich Kuske², Georg Zetzsche³

¹Department für Elektrotechnik und Informatik, Universität Siegen
²Institut für Theoretische Informatik, Technische Universität Ilmenau
³LSV, CNRS & ENS Cachan, Université Paris-Saclay

INFINI Seminar, 31.05.2016

1 E N 1 E N

Closure properties

Common closure properties

- Homomorphism: $h: \Sigma^* \to \Gamma^*$, replaces letters by words
- Inverse homomorphism: $\{w \in \Sigma^* \mid h(w) \in L\}$
- Intersection with regular sets.
- Boolean operations: union, intersection, complementation.

A B A A B A

Closure properties

Common closure properties

- Homomorphism: $h: \Sigma^* \to \Gamma^*$, replaces letters by words
- Inverse homomorphism: $\{w \in \Sigma^* \mid h(w) \in L\}$
- Intersection with regular sets.
- Boolean operations: union, intersection, complementation.

Definition

Language class C is a *full trio*, if it is closed under the first three above.

Closure properties

Common closure properties

- Homomorphism: $h: \Sigma^* \to \Gamma^*$, replaces letters by words
- Inverse homomorphism: $\{w \in \Sigma^* \mid h(w) \in L\}$
- Intersection with regular sets.
- Boolean operations: union, intersection, complementation.

Definition

Language class C is a *full trio*, if it is closed under the first three above.

Examples

REG, CF, LIN, Petri net languages, blind multicounter languages, classes of various grammar types, etc.

The regular languages constitute a Boolean closed full trio.

э

(3)

< 行

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios

Are there Boolean closed full trios beyond REG?

Lohrey, Kuske, Zetzsche

Boolean closed full trios

INFINI Seminar, 31.05.2016 3 / 18

・ 何 ト ・ ヨ ト ・ ヨ ト

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios

Are there Boolean closed full trios beyond REG?

• Automatic structures beyond regular languages

A B b A B b

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios

Are there Boolean closed full trios beyond REG?

- Automatic structures beyond regular languages
- Complementation closure for union closed full trios

A B A A B A

 $\mathsf{RE}(\mathcal{C})$: Accepted by Turing machine with oracle $L \in \mathcal{C}$.

Definition

Arithmetical hierarchy:

$$\Sigma_0 = \mathsf{REC}, \qquad \Sigma_{n+1} = \mathsf{RE}(\Sigma_n) \text{ for } n \ge 0, \qquad \mathsf{AH} = \bigcup_{n \ge 0} \Sigma_n.$$

Lohrey, Kuske, Zetzsche

э

イロト イポト イヨト イヨト

 $\mathsf{RE}(\mathcal{C})$: Accepted by Turing machine with oracle $L \in \mathcal{C}$.

Definition

Arithmetical hierarchy:

$$\Sigma_0 = \mathsf{REC}, \qquad \Sigma_{n+1} = \mathsf{RE}(\Sigma_n) \text{ for } n \ge 0, \qquad \mathsf{AH} = \bigcup_{n \ge 0} \Sigma_n.$$

Relative arithmetical hierarchy:

$$\Sigma_0(L) = \mathsf{REC}(L), \quad \Sigma_{n+1}(L) = \mathsf{RE}(\Sigma_n(L)) \text{ for } n \ge 0, \quad \mathsf{AH}(L) = \bigcup_{n \ge 0} \Sigma_n(L).$$

3

 $\mathsf{RE}(\mathcal{C})$: Accepted by Turing machine with oracle $L \in \mathcal{C}$.

Definition

Arithmetical hierarchy:

$$\Sigma_0 = \mathsf{REC}, \qquad \Sigma_{n+1} = \mathsf{RE}(\Sigma_n) \text{ for } n \ge 0, \qquad \mathsf{AH} = \bigcup_{n \ge 0} \Sigma_n.$$

Relative arithmetical hierarchy:

$$\Sigma_0(L) = \mathsf{REC}(L), \quad \Sigma_{n+1}(L) = \mathsf{RE}(\Sigma_n(L)) \text{ for } n \ge 0, \quad \mathsf{AH}(L) = \bigcup_{n \ge 0} \Sigma_n(L).$$

Theorem

Let \mathcal{T} be a Boolean closed full trio. If \mathcal{T} contains any non-regular language L, then \mathcal{T} includes AH(L).

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example (Transducer)

2

Example (Transducer)

$$T(A) = \{(x, u \# v \# w) \mid u, v, w, x \in \{0, 1\}^*, v \le x\}$$

Lohrey, Kuske, Zetzsche

Boolean closed full trios

INFINI Seminar, 31.05.2016 5 / 18

2

Example (Transducer)

$$T(A) = \{(x, u \# v \# w) \mid u, v, w, x \in \{0, 1\}^*, v \le x\}$$

Definition

- Rational transduction: set of pairs given by a finite state transducer.
- For rational transduction $T \subseteq X^* \times Y^*$ and language $L \subseteq Y^*$, let

$$TL = \{ y \in X^* \mid \exists x \in L : (x, y) \in T \}$$

3

(日)

Theorem (Nivat 1968)

A language class is a full trio iff it is closed under rational transductions.

Lohrey, Kuske, Zetzsche

ヨト イヨト INFINI Seminar, 31.05.2016 6/18

э

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

<ロ> <四> <四> <四> <四> <四</p>

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

< □ > < 同 > < 回 > < 回 > < 回 >

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

1 if
$$\delta_i = +$$
, then $x_i = x_{i-1} + 1$,

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

• if
$$\delta_i = +$$
, then $x_i = x_{i-1} + 1$,
• if $\delta_i = -$, then $x_i = x_{i-1} - 1$, and

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

Crucial step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

Crucial step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

Definition

 $u \equiv_L v$: for each $w \in X^*$, $uw \in L$ iff $vw \in L$.

イロト 不得 トイラト イラト 一日

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

Crucial step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

Definition

 $u \equiv_L v$: for each $w \in X^*$, $uw \in L$ iff $vw \in L$.

Theorem (Myhill-Nerode)

L is regular if and only if \equiv_L has finite index.

Lohrey, Kuske, Zetzsche

▲ 白田 ▶ ▲ 三 ▶ ▲

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$

3

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \neq_L u_\ell$ $(k \neq \ell)$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \not\equiv_L u_\ell$ $(k \neq \ell)$ and for each $1 \leq i \leq m$ there is a $1 \leq j \leq n$ with

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \neq_L u_\ell$ $(k \neq \ell)$ and for each $1 \leq i \leq m$ there is a $1 \leq j \leq n$ with

• if
$$\delta_i = +$$
, then $v_{i-1} \equiv_L u_{j-1}$, $v_i \equiv_L u_j$

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \not\equiv_L u_\ell$ $(k \neq \ell)$ and for each $1 \leq i \leq m$ there is a $1 \leq j \leq n$ with

- if $\delta_i = +$, then $v_{i-1} \equiv_L u_{j-1}$, $v_i \equiv_L u_j$
- if $\delta_i = -$, then $v_{i-1} \equiv_L u_j$, $v_i \equiv_L u_{j-1}$

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \not\equiv_L u_\ell$ $(k \neq \ell)$ and for each $1 \leq i \leq m$ there is a $1 \leq j \leq n$ with

- if $\delta_i = +$, then $v_{i-1} \equiv_L u_{j-1}$, $v_i \equiv_L u_j$
- if $\delta_i = -$, then $v_{i-1} \equiv_L u_j$, $v_i \equiv_L u_{j-1}$
- if $\delta_i = z$, then $v_{i-1} \equiv_L v_i \equiv_L u_j \equiv_L u_0$.

A B A A B A

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \neq_L u_\ell$ $(k \neq \ell)$ and for each $1 \leq i \leq m$ there is a $1 \leq j \leq n$ with

• if $\delta_i = +$, then $v_{i-1} \equiv_L u_{j-1}$, $v_i \equiv_L u_j$

• if
$$\delta_i = -$$
, then $v_{i-1} \equiv_L u_j$, $v_i \equiv_L u_{j-1}$

• if $\delta_i = z$, then $v_{i-1} \equiv_L v_i \equiv_L u_j \equiv_L u_0$.

Observation

If L is non-regular, C can be obtained from \hat{C}_L .

Lohrey, Kuske, Zetzsche

- 3

イロト イボト イヨト イヨト

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, \\ W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

 $W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$

- 3

イロト イボト イヨト イヨト

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, \\ W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, \\ W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

 $W = \{u \# v \mid u, v \in X^*, u \not\equiv_L v\}$

- 2

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W = \{ u \# v \mid u, v \in X^*, u \neq_L v \} = \{ u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^* \}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W = \{ u \# v \mid u, v \in X^*, u \neq_L v \} = \{ u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^* \}$$

$$P = \{u \# v \mid u \equiv_L v\}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣
Proof III

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W = \{u \# v \mid u, v \in X^*, u \not\equiv_L v\} = \{u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^*\}$$

$$P = \{u \# v \mid u \equiv_L v\} = X^* \# X^* \setminus W$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Proof III

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

 $W = \{ u \# v \mid u, v \in X^*, u \not\equiv_L v \} = \{ u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^* \}$

$$P = \{u \# v \mid u \equiv_L v\} = X^* \# X^* \setminus W$$

$$S = \{u_0 \# u_1 \# \cdots u_n \# \mid u_i \not\equiv_L u_j \text{ for all } i \neq j\}$$

Lohrey, Kuske, Zetzsche

イロト 不得 トイヨト イヨト 二日

Proof III

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \}, W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

 $W = \{u \# v \mid u, v \in X^*, u \not\equiv_L v\} = \{u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^*\}$

$$P = \{u \# v \mid u \equiv_L v\} = X^* \# X^* \setminus W$$

$$S = \{u_0 \# u_1 \# \cdots u_n \# \mid u_i \neq_L u_j \text{ for all } i \neq j\} \\ = (X^* \#)^* \setminus \{ru \# sv \# t \mid r, s, t \in (X^* \#)^*, u \# v \in P\}.$$

イロト 不得 トイラト イラト 一日

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

イロト 不得 トイヨト イヨト 二日

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

• if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

- if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,
- if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

• if
$$\delta = +$$
, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,

• if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and

• if
$$\delta = z$$
, then $v_1 \equiv_L v_2 \equiv_L u_1$.

イロト 不得 トイヨト イヨト 二日

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

• if
$$\delta = +$$
, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,

• if
$$\delta = -$$
, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and

• if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$.

$$M = \{ v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P \}$$

$$\cup \{ v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P \}$$

$$\cup \{ v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^* \}$$

イロト 不得下 イヨト イヨト 二日

Let *M* (*matching*) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with • if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$, • if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and • if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$. $M = \{v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P\}$ $\cup \{v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P\}$

 $\cup \{v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^*\}$

Let *E* (*error*) be the set of words $v_1 \delta v_2 \# u_0 \# \cdots u_n \#$ such that for every $1 \leq j \leq n$, we have $v_1 \delta v_2 \# u_{j-1} \# u_j \notin M$ or we have $\delta = z$ and $v_1 \neq u_0$.

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with • if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$, • if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and

• if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$.

$$M = \{v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P\}$$

$$\cup \{v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P\}$$

$$\cup \{v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^*\}$$

Let E (error) be the set of words $v_1 \delta v_2 \# u_0 \# \cdots u_n \#$ such that for every $1 \leq j \leq n$, we have $v_1 \delta v_2 \# u_{j-1} \# u_j \notin M$ or we have $\delta = z$ and $v_1 \not\equiv_L u_0$. $E' = \{v_1 \delta v_2 \# r u_1 \# u_2 \# s \mid v_1 \delta v_2 \# u_1 \# u_2 \in M, r, s \in (X^* \#)^*\}$

10 / 18

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with • if $\delta = +$, then $v_1 \equiv u_1$ and $v_2 \equiv u_2$, • if $\delta = -$, then $v_1 \equiv_I u_2$ and $v_2 \equiv_I u_1$, and

• if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$.

$$M = \{ v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P \}$$

$$\cup \{ v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P \}$$

$$\cup \{ v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^* \}$$

Let E (error) be the set of words $v_1 \delta v_2 \# u_0 \# \cdots u_n \#$ such that for every $1 \leq i \leq n$, we have $v_1 \delta v_2 \# u_{i-1} \# u_i \notin M$ or we have $\delta = z$ and $v_1 \neq u_0$. $E' = \{v_1 \delta v_2 \# r u_1 \# u_2 \# s \mid v_1 \delta v_2 \# u_1 \# u_2 \in M, r, s \in (X^* \#)^*\}$

 $E = \left[(X^* \Delta X^* \# (X^* \#)^* \backslash E') \right]$

10 / 18

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with • if $\delta = +$, then $v_1 \equiv u_1$ and $v_2 \equiv u_2$, • if $\delta = -$, then $v_1 \equiv_I u_2$ and $v_2 \equiv_L u_1$, and • if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$. $M = \{v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P\}$ $\cup \{v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P\}$

 $\cup \{v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^*\}$

Let E (error) be the set of words $v_1 \delta v_2 \# u_0 \# \cdots u_n \#$ such that for every $1 \leq i \leq n$, we have $v_1 \delta v_2 \# u_{i-1} \# u_i \notin M$ or we have $\delta = z$ and $v_1 \neq u_0$. $E' = \{v_1 \delta v_2 \# r u_1 \# u_2 \# s \mid v_1 \delta v_2 \# u_1 \# u_2 \in M, r, s \in (X^* \#)^*\}$

 $E = [(X^* \Delta X^* \# (X^* \#)^* \setminus E'] \cup \{v_1 z v_2 \# u_0 r \mid v_1 \neq_L u_0, r \in (X^* \#)^*\}.$

10/18

Let *N* (*no error*) be the set of words $v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$ such that for every $1 \leq i \leq m$, there is a $1 \leq j \leq n$ with $v_{i-1}\delta_iv_i\#u_{j-1}\#u_j \in M$ and if $\delta_i = z$, then $v_{i-1} \equiv_L u_0$.

3

Let *N* (*no error*) be the set of words $v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$ such that for every $1 \leq i \leq m$, there is a $1 \leq j \leq n$ with $v_{i-1}\delta_iv_i\#u_{j-1}\#u_j \in M$ and if $\delta_i = z$, then $v_{i-1} \equiv_L u_0$.

$$N' = \{ w \in (X^* \Delta)^* v_1 \delta v_2 (\Delta X^*)^* \# u_0 \# \cdots u_n \# \mid v_1 \delta v_2 \# u_0 \# \cdots u_n \# \in E \},\$$

3

Let *N* (*no error*) be the set of words $v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$ such that for every $1 \leq i \leq m$, there is a $1 \leq j \leq n$ with $v_{i-1}\delta_iv_i\#u_{j-1}\#u_j \in M$ and if $\delta_i = z$, then $v_{i-1} \equiv_L u_0$.

$$N' = \{ w \in (X^* \Delta)^* v_1 \delta v_2 (\Delta X^*)^* \# u_0 \# \cdots u_n \# \mid v_1 \delta v_2 \# u_0 \# \cdots u_n \# \in E \}, \\ N = (X^* \Delta)^+ X^* \# (X^* \#)^* \backslash N'.$$

3

Let *N* (*no error*) be the set of words $v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$ such that for every $1 \leq i \leq m$, there is a $1 \leq j \leq n$ with $v_{i-1}\delta_iv_i\#u_{j-1}\#u_j \in M$ and if $\delta_i = z$, then $v_{i-1} \equiv_L u_0$.

$$N' = \{ w \in (X^* \Delta)^* v_1 \delta v_2 (\Delta X^*)^* \# u_0 \# \cdots u_n \# \mid v_1 \delta v_2 \# u_0 \# \cdots u_n \# \in E \}, \\ N = (X^* \Delta)^+ X^* \# (X^* \#)^* \backslash N'.$$

Now we have

$$\hat{C}_L = N \cap (X^* \Delta)^* X^* \# S.$$

Hence, $C \in \mathcal{T}$.

 $\mathsf{RE} \subseteq \mathcal{T}$ follows by standard techniques:

2

イロト イポト イヨト イヨト

- $\mathsf{RE} \subseteq \mathcal{T}$ follows by standard techniques:
 - Use intersection to get counter language for two counters.

- $\mathsf{RE} \subseteq \mathcal{T}$ follows by standard techniques:
 - Use intersection to get counter language for two counters.
 - Use transducer to obtain language accepted by given two-counter automaton.

 $\mathsf{RE} \subseteq \mathcal{T}$ follows by standard techniques:

- Use intersection to get counter language for two counters.
- Use transducer to obtain language accepted by given two-counter automaton.

For $AH(L) \subseteq \mathcal{T}$: show that $K \in \mathcal{T}$ implies $RE(K) \subseteq \mathcal{T}$ (as above).

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

3

イロト 不得 トイヨト イヨト

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathsf{RE}$ is Boolean closed.

3

イロト イボト イヨト イヨト

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathsf{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

3

イロト イポト イヨト イヨト

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathsf{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathsf{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of RL for rational transductions R.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathsf{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of RL for rational transductions R. Hence, \mathcal{T} is union-closed and $\mathcal{T} \subseteq \mathsf{RE}(L) \subsetneq \mathsf{AH}(L)$.

3

A D N A B N A B N A B N

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathsf{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of RL for rational transductions R. Hence, \mathcal{T} is union-closed and $\mathcal{T} \subseteq \operatorname{RE}(L) \subsetneq \operatorname{AH}(L)$. If \mathcal{T} were complementation closed, it would contain $\operatorname{AH}(L)$, contradiction!

- 3

イロト イボト イヨト イヨト

Definition

A monoid is a set M together with an associative operation and a neutral element.

Definition

A monoid is a set M together with an associative operation and a neutral element.

Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• Run $q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$ is accepting for $w_1 \cdots w_n$ if q_0 is the initial state, q_n is a final state, and

Definition

A monoid is a set M together with an associative operation and a neutral element.

Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• Run $q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$ is accepting for $w_1 \cdots w_n$ if q_0 is the initial state, q_n is a final state, and

 $m_1 \cdots m_n = 1.$

Definition

A monoid is a set M together with an associative operation and a neutral element.

Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• Run $q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$ is accepting for $w_1 \cdots w_n$ if q_0 is the initial state, q_n is a final state, and $m_1 \cdots m_n = 1$.

Language class

VA(M) languages accepted by valence automata over M.

Lohrey, Kuske, Zetzsche

Boolean closed full trios

INFINI Seminar, 31.05.2016

14 / 18

イロト 不得下 イヨト イヨト 二日

Let M be a finitely generated monoid. The following are equivalent:

- VA(M) is complementation closed.
- **2** VA(M) = REG.

M has finitely many right-invertible elements.

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

Let M be a finitely generated monoid. The following are equivalent:

- VA(M) is complementation closed.
- **2** VA(M) = REG.
- M has finitely many right-invertible elements.

Proof.

If M is finitely generated, VA(M) is a principal full trio.

3

< 回 > < 三 > < 三 >

Let M be a finitely generated monoid. The following are equivalent:

- VA(M) is complementation closed.
- **2** VA(M) = REG.

M has finitely many right-invertible elements.

Proof.

If *M* is finitely generated, VA(M) is a principal full trio. Equivalence of 2 and 3 has been shown by Render (2010) and Z. (2011).

(人間) トイヨト イヨト

Application: Rational Kripke Frames

Improvement

In order to construct languages over $\{0,1\},$ three fixed rational transductions suffice.

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Application: Rational Kripke Frames

Improvement

In order to construct languages over $\{0,1\},$ three fixed rational transductions suffice.

Theorem

Let $X = \{0, 1\}$. There is a Kripke frame with

• X* as its set of worlds and

• rational transductions $R, S, T \subseteq X^* \times X^*$ as modalities

such that for any non-regular L, in the Kripke structure $\mathcal{K} = (X^*, R, S, T, L)$, for each $K \in AH(L)$, there is a φ with $[\![\varphi]\!]_{\mathcal{K}} = K$.
Synchronous rational transductions

• For automatic structures, synchronous rational transductions suffice.

Synchronous rational transductions

- For automatic structures, synchronous rational transductions suffice.
- Does every language class (beyon REG) closed under synchronous rational transductions and Boolean operations have undecidable emptiness?

Synchronous rational transductions

- For automatic structures, synchronous rational transductions suffice.
- Does every language class (beyon REG) closed under synchronous rational transductions and Boolean operations have undecidable emptiness?

Result

(日)

Synchronous rational transductions

- For automatic structures, synchronous rational transductions suffice.
- Does every language class (beyon REG) closed under synchronous rational transductions and Boolean operations have undecidable emptiness?

Result

• No: Pick an ω -word w with a decidable MSO theory but with non-regular set of prefixes

(日)

Synchronous rational transductions

- For automatic structures, synchronous rational transductions suffice.
- Does every language class (beyon REG) closed under synchronous rational transductions and Boolean operations have undecidable emptiness?

Result

- No: Pick an ω-word w with a decidable MSO theory but with non-regular set of prefixes
- Example: Characteristic sequence of factorials, k-th powers

э

(日)

Synchronous rational transductions

- For automatic structures, synchronous rational transductions suffice.
- Does every language class (beyon REG) closed under synchronous rational transductions and Boolean operations have undecidable emptiness?

Result

- No: Pick an ω-word w with a decidable MSO theory but with non-regular set of prefixes
- Example: Characteristic sequence of factorials, k-th powers
- Take the class containing the set of prefixes *P* of *w* and build the closure under synchronous rational transductions and Boolean operations

(日) (同) (日) (日)

3

Synchronous rational transductions

- For automatic structures, synchronous rational transductions suffice.
- Does every language class (beyon REG) closed under synchronous rational transductions and Boolean operations have undecidable emptiness?

Result

- No: Pick an ω-word w with a decidable MSO theory but with non-regular set of prefixes
- Example: Characteristic sequence of factorials, k-th powers
- Take the class containing the set of prefixes *P* of *w* and build the closure under synchronous rational transductions and Boolean operations
- Decidable MSO-theory yields decidability

A D N A B N A B N A B N

3

Definition

Let $L \subseteq X^*$. A neutral word for L is a word $v \in X^+$ such that $uvw \in L$ if and only if $uw \in L$ for any $u, w \in X^*$.

Definition

Let $L \subseteq X^*$. A neutral word for L is a word $v \in X^+$ such that $uvw \in L$ if and only if $uw \in L$ for any $u, w \in X^*$.

Example: Identity language of a finitely generated infinite group.

Definition

Let $L \subseteq X^*$. A neutral word for L is a word $v \in X^+$ such that $uvw \in L$ if and only if $uw \in L$ for any $u, w \in X^*$.

Example: Identity language of a finitely generated infinite group.

Theorem

Let $L \subseteq \{0,1\}^*$ be a non-regular language with a neutral word. Using synchronous rational transductions and Boolean operations, one can construct a non-recursively enumerable language from L. If, in addition, L is recursive, one can construct a Σ_n -hard language from L.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >