Knapsack in Graph Groups, HNN-Extensions and Amalgamated Products

Markus Lohrey ${ }^{1} \quad$ Georg Zetzsche ${ }^{2 *}$
${ }^{1}$ Department für Elektrotechnik und Informatik Universität Siegen
${ }^{2}$ LSV, CNRS \& ENS Cachan Université Paris-Saclay

STACS 2016

[^0]
The knapsack problem in groups

Definition (Myasnikov, Nikolaev, and Ushakov)

Let G be a finitely generated group. The knapsack problem for G is the following decision problem:

Given: Elements $g_{1}, \ldots, g_{k}, g \in G$.
Question: Are there $x_{1}, \ldots, x_{k} \in \mathbb{N}$ with $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}}=g$?

The knapsack problem in groups

Definition (Myasnikov, Nikolaev, and Ushakov)
Let G be a finitely generated group. The knapsack problem for G is the following decision problem:

Given: Elements $g_{1}, \ldots, g_{k}, g \in G$.
Question: Are there $x_{1}, \ldots, x_{k} \in \mathbb{N}$ with $g_{1}^{\chi_{1}} \cdots g_{k}^{x_{k}}=g$?
The knapsack problem

- If $G=\mathbb{Z}$ and elements are encoded in binary: NP-complete.

The knapsack problem in groups

Definition (Myasnikov, Nikolaev, and Ushakov)
Let G be a finitely generated group. The knapsack problem for G is the following decision problem:

Given: Elements $g_{1}, \ldots, g_{k}, g \in G$.
Question: Are there $x_{1}, \ldots, x_{k} \in \mathbb{N}$ with $g_{1}^{\chi_{1}} \cdots g_{k}^{x_{k}}=g$?
The knapsack problem

- If $G=\mathbb{Z}$ and elements are encoded in binary: NP-complete.
- For which groups is knapsack decidable?

The knapsack problem in groups

Definition (Myasnikov, Nikolaev, and Ushakov)

Let G be a finitely generated group. The knapsack problem for G is the following decision problem:

Given: Elements $g_{1}, \ldots, g_{k}, g \in G$.
Question: Are there $x_{1}, \ldots, x_{k} \in \mathbb{N}$ with $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}}=g$?
The knapsack problem

- If $G=\mathbb{Z}$ and elements are encoded in binary: NP-complete.
- For which groups is knapsack decidable?
- What is the complexity?

Graph Groups

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric.

Graph Groups

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric. The group $\mathbb{G}(A, I)$ is defined as

$$
\mathbb{G}(A, I)=\langle A \mid a b=b a((a, b) \in I)\rangle
$$

Graph Groups

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric. The group $\mathbb{G}(A, I)$ is defined as

$$
\mathbb{G}(A, I)=\langle A \mid a b=b a((a, b) \in I)\rangle
$$

Groups of the form $\mathbb{G}(A, I)$ are called graph groups.

Graph Groups

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric. The group $\mathbb{G}(A, I)$ is defined as

$$
\mathbb{G}(A, I)=\langle A \mid a b=b a((a, b) \in I)\rangle .
$$

Groups of the form $\mathbb{G}(A, I)$ are called graph groups.

Theorem

For each graph group $\mathbb{G}(A, I)$, knapsack is in NP.

Virtually special groups

A group is virtually special if it is a finite extension of a subgroup of a graph group.

Virtually special groups

A group is virtually special if it is a finite extension of a subgroup of a graph group.
Class turned out to be very rich:

- Coxeter groups
- one-relator groups with torsion
- fully residually free groups
- fundamental groups of hyperbolic 3-manifolds

Virtually special groups
A group is virtually special if it is a finite extension of a subgroup of a graph group.
Class turned out to be very rich:

- Coxeter groups
- one-relator groups with torsion
- fully residually free groups
- fundamental groups of hyperbolic 3-manifolds

Not hard to see: finite extensions inherit NP-membership.

Virtually special groups

A group is virtually special if it is a finite extension of a subgroup of a graph group.
Class turned out to be very rich:

- Coxeter groups
- one-relator groups with torsion
- fully residually free groups
- fundamental groups of hyperbolic 3-manifolds

Not hard to see: finite extensions inherit NP-membership.

Theorem

For every virtually special group, knapsack is in NP.

Virtually special groups

A group is virtually special if it is a finite extension of a subgroup of a graph group.
Class turned out to be very rich:

- Coxeter groups
- one-relator groups with torsion
- fully residually free groups
- fundamental groups of hyperbolic 3-manifolds

Not hard to see: finite extensions inherit NP-membership.

Theorem

For every virtually special group, knapsack is in NP.
Did we make the problem easy by using unary encoding?

Succinct encoding of strings

A straight-line program (SLP) is a context-free grammar that generates exactly one string.

Succinct encoding of strings

A straight-line program $(S L P)$ is a context-free grammar that generates exactly one string.

Example

$$
A_{0} \rightarrow a, \quad A_{i} \rightarrow A_{i-1} A_{i-1}
$$

Succinct encoding of strings

A straight-line program (SLP) is a context-free grammar that generates exactly one string.

Example

$A_{0} \rightarrow a, A_{i} \rightarrow A_{i-1} A_{i-1}$: Start symbol A_{n} generates $a^{2^{n}}$.

Succinct encoding of strings

A straight-line program (SLP) is a context-free grammar that generates exactly one string.

Example

$A_{0} \rightarrow a, A_{i} \rightarrow A_{i-1} A_{i-1}$: Start symbol A_{n} generates $a^{2^{n}}$.

- For strings over one letter, SLPs are essentially binary encodings.

Succinct encoding of strings

A straight-line program (SLP) is a context-free grammar that generates exactly one string.

Example

$A_{0} \rightarrow a, A_{i} \rightarrow A_{i-1} A_{i-1}$: Start symbol A_{n} generates $a^{2^{n}}$.

- For strings over one letter, SLPs are essentially binary encodings.
- By a compressed string, we mean one given as an SLP.

Succinct encoding of strings

A straight-line program (SLP) is a context-free grammar that generates exactly one string.

Example

$A_{0} \rightarrow a, A_{i} \rightarrow A_{i-1} A_{i-1}$: Start symbol A_{n} generates $a^{2^{n}}$.

- For strings over one letter, SLPs are essentially binary encodings.
- By a compressed string, we mean one given as an SLP.

Theorem
For every virtually special group, compressed knapsack is in NP.

Algorithm

Algorithm in \mathbb{Z} case: Guess binary representations and verify.

Algorithm

Algorithm in \mathbb{Z} case: Guess binary representations and verify. Possible because:

- We have an exponential bound on solution
- Verification can be done in polynomial time

Algorithm

Algorithm in \mathbb{Z} case: Guess binary representations and verify. Possible because:

- We have an exponential bound on solution
- Verification can be done in polynomial time

Verification in Graph Groups

- Suppose we have an exponential bound on solutions.
- Construct SLP for $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}}: B_{0} \rightarrow g_{k}, \quad B_{i} \rightarrow B_{i-1} B_{i-1}$

Algorithm

Algorithm in \mathbb{Z} case: Guess binary representations and verify. Possible because:

- We have an exponential bound on solution
- Verification can be done in polynomial time

Verification in Graph Groups

- Suppose we have an exponential bound on solutions.
- Construct SLP for $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}}: B_{0} \rightarrow g_{k}, \quad B_{i} \rightarrow B_{i-1} B_{i-1}$

Theorem (Lohrey, Schleimer 2007)
For every fixed graph group, the compressed word problem belongs to P.

Algorithm

Algorithm in \mathbb{Z} case: Guess binary representations and verify. Possible because:

- We have an exponential bound on solution
- Verification can be done in polynomial time

Verification in Graph Groups

- Suppose we have an exponential bound on solutions.
- Construct SLP for $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}}: B_{0} \rightarrow g_{k}, \quad B_{i} \rightarrow B_{i-1} B_{i-1}$

Theorem (Lohrey, Schleimer 2007)
For every fixed graph group, the compressed word problem belongs to P.

Task

Show: If there is a solution, then there is an exponential one.

Trace monoids

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.

Trace monoids

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv, be the smallest congruence on A^{*} with $a b \equiv$, ba for all $(a, b) \in I$.

Trace monoids

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv, be the smallest congruence on A^{*} with $a b \equiv$ ן ba for all $(a, b) \in I$.
- The trace monoid $\mathbb{M}(A, I)$ is defined as

$$
\mathbb{M}(A, I)=A^{*} / \equiv I
$$

Trace monoids

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv, be the smallest congruence on A^{*} with $a b \equiv$ ן ba for all $(a, b) \in I$.
- The trace monoid $\mathbb{M}(A, I)$ is defined as

$$
\mathbb{M}(A, I)=A^{*} / \equiv I
$$

- $[u]_{/}$denotes the congruence class of $u \in A^{*}$.

Trace monoids

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv, be the smallest congruence on A^{*} with $a b \equiv$, ba for all $(a, b) \in I$.
- The trace monoid $\mathbb{M}(A, I)$ is defined as

$$
\mathbb{M}(A, I)=A^{*} / \equiv I
$$

- $[u]_{\text {, }}$ denotes the congruence class of $u \in A^{*}$.
- We consider $\mathbb{M}\left(A^{ \pm 1}, I^{ \pm 1}\right)$, where

$$
A^{ \pm 1}=\left\{a^{+1}, a^{-1} \mid a \in A\right\}, \quad I^{ \pm}=\left\{\left(a^{ \pm 1}, b^{ \pm 1}\right) \mid(a, b) \in I\right\}
$$

Trace monoids

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv, be the smallest congruence on A^{*} with $a b \equiv$ ן ba for all $(a, b) \in I$.
- The trace monoid $\mathbb{M}(A, I)$ is defined as

$$
\mathbb{M}(A, I)=A^{*} / \equiv I
$$

- $[u]$, denotes the congruence class of $u \in A^{*}$.
- We consider $\mathbb{M}\left(A^{ \pm 1}, I^{ \pm 1}\right)$, where

$$
A^{ \pm 1}=\left\{a^{+1}, a^{-1} \mid a \in A\right\}, \quad I^{ \pm}=\left\{\left(a^{ \pm 1}, b^{ \pm 1}\right) \mid(a, b) \in I\right\} .
$$

- A trace t is irreducible if there is no decomposition $t=\left[u a a^{-1} v\right]_{/}$for $a \in A^{ \pm 1}, u, v \in\left(A^{ \pm 1}\right)^{*}$.

We call a trace t connected if there is no factorization $t=u v$ with $u \neq 1 \neq v$ and $u l v$.

We call a trace t connected if there is no factorization $t=u v$ with $u \neq 1 \neq v$ and $u l v$.

We call a trace t connected if there is no factorization $t=u v$ with $u \neq 1 \neq v$ and $u l v$.

Lemma

Fix the alphabet A. Let $p, q, u, v, s, t \in \mathbb{M}(A, I)$ with $u \neq 1$ and $v \neq 1$ connected. Then the set

$$
L(p, u, s, q, v, t):=\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid p u^{x} s=q v^{y} t\right\}
$$

is a union of linear sets of the form $\{(a+b z, c+d z) \mid z \in \mathbb{N}\}$ where a, b, c, d are polynomial in the lengths of p, q, u, v, s, t..

We call a trace t connected if there is no factorization $t=u v$ with $u \neq 1 \neq v$ and $u l v$.

Lemma

Fix the alphabet A. Let $p, q, u, v, s, t \in \mathbb{M}(A, I)$ with $u \neq 1$ and $v \neq 1$ connected. Then the set

$$
L(p, u, s, q, v, t):=\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid p u^{x} s=q v^{y} t\right\}
$$

is a union of linear sets of the form $\{(a+b z, c+d z) \mid z \in \mathbb{N}\}$ where a, b, c, d are polynomial in the lengths of p, q, u, v, s, t..

- Techniques from recognizable trace languages:
- Construct poly-size automaton for $L=\left[p u^{*} s\right]_{I} \cap\left[q v^{*} t\right]_{I}$.

We call a trace t connected if there is no factorization $t=u v$ with $u \neq 1 \neq v$ and $u l v$.

Lemma

Fix the alphabet A. Let $p, q, u, v, s, t \in \mathbb{M}(A, I)$ with $u \neq 1$ and $v \neq 1$ connected. Then the set

$$
L(p, u, s, q, v, t):=\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid p u^{x} s=q v^{y} t\right\}
$$

is a union of linear sets of the form $\{(a+b z, c+d z) \mid z \in \mathbb{N}\}$ where a, b, c, d are polynomial in the lengths of p, q, u, v, s, t..

- Techniques from recognizable trace languages:
- Construct poly-size automaton for $L=\left[p u^{*} s\right]_{I} \cap\left[q v^{*} t\right]_{I}$.
- Possible because u and v are connected.

We call a trace t connected if there is no factorization $t=u v$ with $u \neq 1 \neq v$ and $u l v$.

Lemma

Fix the alphabet A. Let $p, q, u, v, s, t \in \mathbb{M}(A, I)$ with $u \neq 1$ and $v \neq 1$ connected. Then the set

$$
L(p, u, s, q, v, t):=\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid p u^{x} s=q v^{y} t\right\}
$$

is a union of linear sets of the form $\{(a+b z, c+d z) \mid z \in \mathbb{N}\}$ where a, b, c, d are polynomial in the lengths of p, q, u, v, s, t..

- Techniques from recognizable trace languages:
- Construct poly-size automaton for $L=\left[p u^{*} s\right]_{I} \cap\left[q v^{*} t\right]_{I}$.
- Possible because u and v are connected.
- Apply results for unary finite automata to set of lengths of L :
- Known size bounds for semilinear representation

Levi's Lemma

Lemma

Let $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n} \in \mathbb{M}(A, l)$. Then $u_{1} u_{2} \cdots u_{m}=v_{1} v_{2} \cdots v_{n}$ if and only if there exist $w_{i, j} \in \mathbb{M}(A, I)(1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n)$ such that

- $u_{i}=w_{i, 1} w_{i, 2} \cdots w_{i, n}$ for every $1 \leqslant i \leqslant m$,
- $v_{j}=w_{1, j} w_{2, j} \cdots w_{m, j}$ for every $1 \leqslant j \leqslant n$, and
- $\left(w_{i, j}, w_{k, \ell}\right) \in I$ if $1 \leqslant i<k \leqslant m$ and $n \geqslant j>\ell \geqslant 1$.

v_{n}	$w_{1, n}$	$w_{2, n}$	$w_{3, n}$	\ldots	$w_{m, n}$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
v_{3}	$w_{1,3}$	$w_{2,3}$	$w_{3,3}$	\ldots	$w_{m, 3}$
v_{2}	$w_{1,2}$	$w_{2,2}$	$w_{3,2}$	\ldots	$w_{m, 2}$
v_{1}	$w_{1,1}$	$w_{2,1}$	$w_{3,1}$	\ldots	$w_{m, 1}$
	u_{1}	u_{2}	u_{3}	\ldots	u_{m}

Levi's Lemma

Lemma

Let $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n} \in \mathbb{M}(A, l)$. Then $u_{1} u_{2} \cdots u_{m}=v_{1} v_{2} \cdots v_{n}$ if and only if there exist $w_{i, j} \in \mathbb{M}(A, I)(1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n)$ such that

- $u_{i}=w_{i, 1} w_{i, 2} \cdots w_{i, n}$ for every $1 \leqslant i \leqslant m$,
- $v_{j}=w_{1, j} w_{2, j} \cdots w_{m, j}$ for every $1 \leqslant j \leqslant n$, and
- $\left(w_{i, j}, w_{k, \ell}\right) \in I$ if $1 \leqslant i<k \leqslant m$ and $n \geqslant j>\ell \geqslant 1$.

v_{n}	$w_{1, n}$	$w_{2, n}$	$w_{3, n}$	\ldots	$w_{m, n}$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
v_{3}	$w_{1,3}$	$w_{2,3}$	$w_{3,3}$	\ldots	$w_{m, 3}$
v_{2}	$w_{1,2}$	$w_{2,2}$	$w_{3,2}$	\ldots	$w_{m, 2}$
v_{1}	$w_{1,1}$	$w_{2,1}$	$w_{3,1}$	\ldots	$w_{m, 1}$
	u_{1}	u_{2}	u_{3}	\ldots	u_{m}

Let $u_{1}, u_{2}, \ldots, u_{n} \in \operatorname{IRR}\left(A^{ \pm 1}, I\right)$ be irreducible traces.
The sequence $u_{1}, u_{2}, \ldots, u_{n}$ is I-freely reducible if it can be reduced to the empty sequence ε by the following rules:

- $u_{i}, u_{j} \rightarrow u_{j}, u_{i}$ if $u_{i} l u_{j}$
- $u_{i}, u_{j} \rightarrow \varepsilon$ if $u_{i}=u_{j}^{-1}$ in $\mathbb{G}(A, l)$
- $u_{i} \rightarrow \varepsilon$ if $u_{i}=\varepsilon$.

Let $u_{1}, u_{2}, \ldots, u_{n} \in \operatorname{IRR}\left(A^{ \pm 1}, I\right)$ be irreducible traces.
The sequence $u_{1}, u_{2}, \ldots, u_{n}$ is I-freely reducible if it can be reduced to the empty sequence ε by the following rules:

- $u_{i}, u_{j} \rightarrow u_{j}, u_{i}$ if $u_{i} l u_{j}$
- $u_{i}, u_{j} \rightarrow \varepsilon$ if $u_{i}=u_{j}^{-1}$ in $\mathbb{G}(A, l)$
- $u_{i} \rightarrow \varepsilon$ if $u_{i}=\varepsilon$.

Lemma

Let $n \geqslant 2$ and $u_{1}, u_{2}, \ldots, u_{n} \in \operatorname{IRR}\left(A^{ \pm 1}\right.$, I). If $u_{1} u_{2} \cdots u_{n}=1$ in $\mathbb{G}(A, I)$, then there exist factorizations $u_{i}=u_{i, 1} \cdots u_{i, k_{i}}$ such that the sequence

$$
u_{1,1}, \ldots, u_{1, k_{1}}, u_{2,1}, \ldots, u_{2, k_{2}}, \ldots, u_{n, 1}, \ldots, u_{n, k_{n}}
$$

is I-freely reducible. Moreover, $\sum_{i=1}^{n} k_{i} \leqslant 2^{n}-2$.

Lemma

Let $u^{x}=y_{1} \cdots y_{m}$ be an equation where u is a concrete connected trace. It is equivalent to a disjunction of statements

$$
\exists x_{i}>0(i \in K): x=\sum_{i \in K} x_{i}+c \wedge \bigwedge_{i \in K} y_{i}=p_{i} u^{x_{i}} s_{i} \wedge \bigwedge_{i \in[1, m] \backslash K} y_{i}=p_{i} s_{i},
$$

where

- $K \subseteq[1, m]$
- p_{i}, s_{i} are concrete traces of length polynomial in m and $|u|$
- c is a concrete number, polynomial in m

Theorem
Let $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{G}(A, I) \backslash\{1\}, v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{G}(A, I)$ and let x_{1}, \ldots, x_{n} be variables ranging over \mathbb{N}. Then, the set of solutions of the exponent equation

$$
v_{0} u_{1}^{x_{1}} v_{1} u_{2}^{x_{2}} v_{2} \cdots u_{n}^{x_{n}} v_{n}=1
$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_{i} are exponential in n and $\left|u_{1}\right|,\left|u_{2}\right|, \ldots,\left|u_{n}\right|,\left|v_{0}\right|,\left|v_{1}\right|, \ldots,\left|v_{n}\right|$.

Theorem

Let $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{G}(A, I) \backslash\{1\}, v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{G}(A, I)$ and let x_{1}, \ldots, x_{n} be variables ranging over \mathbb{N}. Then, the set of solutions of the exponent equation

$$
v_{0} u_{1}^{x_{1}} v_{1} u_{2}^{x_{2}} v_{2} \cdots u_{n}^{x_{n}} v_{n}=1
$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_{i} are exponential in n and $\left|u_{1}\right|,\left|u_{2}\right|, \ldots,\left|u_{n}\right|,\left|v_{0}\right|,\left|v_{1}\right|, \ldots,\left|v_{n}\right|$.

Preprocessing:

- Make sure $u_{i}^{x_{i}}$ is reduced: "cyclically reduce" each u_{i}.
- If u_{i} not connected with $u_{i}=u_{i, 1} u_{i, 2}, u_{i, 1} / u_{i, 2}$, then replace $u_{i}^{x_{i}}$ with $u_{i, 1}^{x_{i}} u_{i, 2}^{x_{i}}$.
- Consider $v_{0} \cdot u_{1}^{\chi_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{x_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{x_{n}}, v_{0}, \ldots, v_{n}$ are irreducible
- Consider $v_{0} \cdot u_{1}^{\chi_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{x_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{x_{n}}, v_{0}, \ldots, v_{n}$ are irreducible
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider $v_{0} \cdot u_{1}^{\chi_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{x_{1}}, u_{2}^{x_{2}}, \ldots, u_{n}^{x_{n}}, v_{0}, \ldots, v_{n}$ are irreducible
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- Consider $v_{0} \cdot u_{1}^{\chi_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{x_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{x_{n}}, v_{0}, \ldots, v_{n}$ are irreducible
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
(a) $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}(1 \leqslant i \leqslant n)$
(e) $z_{i, j} l z_{k, l}$ for all $(i, j, k, l) \in J_{3}$
(D) $v_{i}=z_{i, 1} \cdots z_{i, l_{i}}(0 \leqslant i \leqslant n)$
(f) $y_{i, j}=y_{k, l}^{-1}$ for all $(i, j, k, I) \in M_{1}$
(c) $y_{i, j} l y_{k, l}$ for all $(i, j, k, I) \in J_{1}$
(g) $y_{i, j}=z_{k, l}^{-1}$ for all $(i, j, k, I) \in M_{2}$
(a) $y_{i, j} l z_{k, l}$ for all $(i, j, k, I) \in J_{2}$
(h) $z_{i, j}=z_{k, l}^{-1}$ for all $(i, j, k, l) \in M_{3}$
- Consider $v_{0} \cdot u_{1}^{\chi_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{x_{1}}, u_{2}^{x_{2}}, \ldots, u_{n}^{x_{n}}, v_{0}, \ldots, v_{n}$ are irreducible
- Apply exponential refinement to obtain l-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
(a) $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}(1 \leqslant i \leqslant n)$
(e) $z_{i, j} l z_{k, l}$ for all $(i, j, k, l) \in J_{3}$
(b) $v_{i}=z_{i, 1} \cdots z_{i, l_{i}}(0 \leqslant i \leqslant n)$
(f) $y_{i, j}=y_{k, l}^{-1}$ for all $(i, j, k, I) \in M_{1}$
(c) $y_{i, j} l y_{k, l}$ for all $(i, j, k, I) \in J_{1}$
(g) $y_{i, j}=z_{k, l}^{-1}$ for all $(i, j, k, I) \in M_{2}$
(0) $y_{i, j} \mid z_{k, I}$ for all $(i, j, k, I) \in J_{2}$
(h) $z_{i, j}=z_{k, l}^{-1}$ for all $(i, j, k, l) \in M_{3}$
- Replace $z_{k, l}$ by concrete traces.
- Consider $v_{0} \cdot u_{1}^{\chi_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{x_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{x_{n}}, v_{0}, \ldots, v_{n}$ are irreducible
- Apply exponential refinement to obtain l-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
(a) $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}(1 \leqslant i \leqslant n)$
(e) $z_{i, j} \mid z_{k, l}$ for all $(i, j, k, l) \in J_{3}$
(D) $v_{i}=z_{i, 1} \cdots z_{i, l_{i}}(0 \leqslant i \leqslant n)$
(f) $y_{i, j}=y_{k, l}^{-1}$ for all $(i, j, k, I) \in M_{1}$
(c) $y_{i, j} l y_{k, l}$ for all $(i, j, k, I) \in J_{1}$
(g) $y_{i, j}=z_{k, l}^{-1}$ for all $(i, j, k, I) \in M_{2}$
(0) $y_{i, j} \mid z_{k, I}$ for all $(i, j, k, I) \in J_{2}$
(h) $z_{i, j}=z_{k, l}^{-1}$ for all $(i, j, k, l) \in M_{3}$
- Replace $z_{k, l}$ by concrete traces.
- Consider $v_{0} \cdot u_{1}^{\chi_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{x_{1}}, u_{2}^{x_{2}}, \ldots, u_{n}^{x_{n}}, v_{0}, \ldots, v_{n}$ are irreducible
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
(a) $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}(1 \leqslant i \leqslant n)$
(e) $z_{i, j} l z_{k, l}$ for all $(i, j, k, I) \in J_{3}$
(b) $v_{i}=z_{i, 1} \cdots z_{i, l_{i}}(0 \leqslant i \leqslant n)$
(f) $y_{i, j}=y_{k, l}^{-1}$ for all $(i, j, k, l) \in M_{1}$
(c) $y_{i, j} l_{y_{k, l}}$ for all $(i, j, k, I) \in J_{1}$
(g) $y_{i, j}=z_{k, l}^{-1}$ for all $(i, j, k, l) \in M_{2}$
(a) $y_{i, j} l z_{k, l}$ for all $(i, j, k, l) \in J_{2}$
(h) $z_{i, j}=z_{k, l}^{-1}$ for all $(i, j, k, l) \in M_{3}$
- Replace $z_{k, l}$ by concrete traces.
- Consider $v_{0} \cdot u_{1}^{x_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{x_{1}}, u_{2}^{x_{2}}, \ldots, u_{n}^{x_{n}}, v_{0}, \ldots, v_{n}$ are irreducible
- Apply exponential refinement to obtain l-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
(D) $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}(1 \leqslant i \leqslant n)$

$$
\text { (f) } y_{i, j}=y_{k, l}^{-1} \text { for all }(i, j, k, I) \in M_{1}
$$

(c) $y_{i, j} l y_{k, l}$ for all $(i, j, k, I) \in J_{1}$
(a) $y_{i, j} \mid z_{k, l}$ for all $(i, j, k, I) \in J_{2}$

- Replace $z_{k, l}$ by concrete traces.
- Consider $v_{0} \cdot u_{1}^{\chi_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{x_{1}}, u_{2}^{x_{2}}, \ldots, u_{n}^{x_{n}}, v_{0}, \ldots, v_{n}$ are irreducible
- Apply exponential refinement to obtain l-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
(a) $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}(1 \leqslant i \leqslant n)$

$$
\text { (f) } y_{i, j}=y_{k, l}^{-1} \text { for all }(i, j, k, l) \in M_{1}
$$

(c) $y_{i, j} l y_{k, l}$ for all $(i, j, k, I) \in J_{1}$
(a) $y_{i, j} I z_{k, l}$ for all $(i, j, k, I) \in J_{2}$

- Replace $z_{k, l}$ by concrete traces.
- Replace $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}$. For some $x_{i, j}>0$:
- $x_{i}=c_{i}+\sum_{j \in K_{i}} x_{i, j}$ for all $1 \leqslant i \leqslant n$,
- $y_{i, j}=p_{i, j} u_{i}^{x_{i, j}} s_{i, j}$ for all $1 \leqslant i \leqslant n, j \in K_{i}$,
- $y_{i, j}=p_{i, j} s_{i, j}$ for all $1 \leqslant i \leqslant n, j \in\left[1, k_{i}\right] \backslash K_{i}$.
- Consider $v_{0} \cdot u_{1}^{\chi_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{x_{1}}, u_{2}^{x_{2}}, \ldots, u_{n}^{x_{n}}, v_{0}, \ldots, v_{n}$ are irreducible
- Apply exponential refinement to obtain l-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

$$
\text { (f) } y_{i, j}=y_{k, l}^{-1} \text { for all }(i, j, k, I) \in M_{1}
$$

(c) $y_{i, j} l_{k, l}$ for all $(i, j, k, I) \in J_{1}$
(a) $y_{i, j} \mid z_{k, l}$ for all $(i, j, k, l) \in J_{2}$

- Replace $z_{k, l}$ by concrete traces.
- Replace $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}$. For some $x_{i, j}>0$:
- $x_{i}=c_{i}+\sum_{j \in K_{i}} x_{i, j}$ for all $1 \leqslant i \leqslant n$,
- $y_{i, j}=p_{i, j} u_{i}^{x_{i, j}} s_{i, j}$ for all $1 \leqslant i \leqslant n, j \in K_{i}$,
- $y_{i, j}=p_{i, j} s_{i, j}$ for all $1 \leqslant i \leqslant n, j \in\left[1, k_{i}\right] \backslash K_{i}$.
- Now we know alphabet of $y_{i, j}$
- Consider $v_{0} \cdot u_{1}^{\chi_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{x_{1}}, u_{2}^{x_{2}}, \ldots, u_{n}^{x_{n}}, v_{0}, \ldots, v_{n}$ are irreducible
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

$$
\text { (f) } y_{i, j}=y_{k, l}^{-1} \text { for all }(i, j, k, l) \in M_{1}
$$

- Replace $z_{k, l}$ by concrete traces.
- Replace $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}$. For some $x_{i, j}>0$:
- $x_{i}=c_{i}+\sum_{j \in K_{i}} x_{i, j}$ for all $1 \leqslant i \leqslant n$,
- $y_{i, j}=p_{i, j} u_{i}^{x_{i, j}} s_{i, j}$ for all $1 \leqslant i \leqslant n, j \in K_{i}$,
- $y_{i, j}=p_{i, j} s_{i, j}$ for all $1 \leqslant i \leqslant n, j \in\left[1, k_{i}\right] \backslash K_{i}$.
- Now we know alphabet of $y_{i, j}$
- The only remaining statements are of the form:
(2) $x_{i}=c_{i}+\sum_{j \in K_{i}^{\prime}} x_{i, j}$ for all $1 \leqslant i \leqslant n$, and
($p_{i, j} u_{i}^{x_{i, j}} s_{i, j}=s_{k, l}^{-1}\left(u_{k}^{-1}\right)^{x_{k, l}} p_{k, l}^{-1}$ for all $(i, j, k, l) \in M$.
- The only remaining statements are of the form:
(2) $x_{i}=c_{i}+\sum_{j \in K_{i}^{\prime}} x_{i, j}$ for all $1 \leqslant i \leqslant n$, and
(0) $p_{i, j} u_{i}^{x_{i, j}} s_{i, j}=s_{k, l}^{-1}\left(u_{k}^{-1}\right)^{x_{k}, l} p_{k, l}^{-1}$ for all $(i, j, k, l) \in M$.
- Now we apply the fact that sets

$$
L(p, u, s, q, v, t):=\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid p u^{x} s=q v^{y} t\right\}
$$

are semilinear (with small representations).

- The only remaining statements are of the form:
(2) $x_{i}=c_{i}+\sum_{j \in K_{i}^{\prime}} x_{i, j}$ for all $1 \leqslant i \leqslant n$, and
(0) $p_{i, j} u_{i}^{x_{i, j}} s_{i, j}=s_{k, l}^{-1}\left(u_{k}^{-1}\right)^{x_{k, l},} p_{k, l}^{-1}$ for all $(i, j, k, l) \in M$.
- Now we apply the fact that sets

$$
L(p, u, s, q, v, t):=\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid p u^{x} s=q v^{y} t\right\}
$$

are semilinear (with small representations).

- Replace equations (a') by linear diophantine equations.
- The only remaining statements are of the form:
(a) $x_{i}=c_{i}+\sum_{j \in K_{i}^{\prime}} x_{i, j}$ for all $1 \leqslant i \leqslant n$, and
($p_{i, j} u_{i}^{x_{i, j}} s_{i, j}=s_{k, l}^{-1}\left(u_{k}^{-1}\right)^{x_{k, l}} p_{k, l}^{-1}$ for all $(i, j, k, l) \in M$.
- Now we apply the fact that sets

$$
L(p, u, s, q, v, t):=\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid p u^{x} s=q v^{y} t\right\}
$$

are semilinear (with small representations).

- Replace equations (a^{\prime}) by linear diophantine equations.
- Coefficients are linear in the length of $p_{i, j}, s_{i, j}$, hence exponential in n.
- The only remaining statements are of the form:
(1) $x_{i}=c_{i}+\sum_{j \in K_{i}^{\prime}} x_{i, j}$ for all $1 \leqslant i \leqslant n$, and
(0) $p_{i, j} u_{i}^{x_{i, j}} s_{i, j}=s_{k, l}^{-1}\left(u_{k}^{-1}\right)^{x_{k}, l} p_{k, l}^{-1}$ for all $(i, j, k, l) \in M$.
- Now we apply the fact that sets

$$
L(p, u, s, q, v, t):=\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid p u^{x} s=q v^{y} t\right\}
$$

are semilinear (with small representations).

- Replace equations (a') by linear diophantine equations.
- Coefficients are linear in the length of $p_{i, j}, s_{i, j}$, hence exponential in n.
- This yields small enough linear equation system for the x_{i}.
- Well-known result of von zur Gathen and Sieveking yields a small solution.

Transfer results

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

Transfer results

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Guess cosets of $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{i}^{x_{i}} v_{i}$ for all $i \in[1, n]$

Transfer results

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Guess cosets of $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{i}^{x_{i}} v_{i}$ for all $i \in[1, n]$
- Create modified instance that has solution iff instance has solution with these cosets

Transfer results

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Guess cosets of $v_{0} u_{1}^{\chi_{1}} v_{1} \cdots u_{i}^{x_{i}} v_{i}$ for all $i \in[1, n]$
- Create modified instance that has solution iff instance has solution with these cosets

For other transformations:

- Saturation procedure that successively adds transitions to automaton

Transfer results

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Guess cosets of $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{i}^{x_{i}} v_{i}$ for all $i \in[1, n]$
- Create modified instance that has solution iff instance has solution with these cosets

For other transformations:

- Saturation procedure that successively adds transitions to automaton
- Choose suitable class of automata such that adding transitions still leads to knapsack instances: knapsack automata.

[^0]: *Supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD).

