Knapsack in Graph Groups, HNN-Extensions and Amalgamated Products

Markus Lohrey¹ Georg Zetzsche^{2*}

¹Department für Elektrotechnik und Informatik Universität Siegen

> ²LSV, CNRS & ENS Cachan Université Paris-Saclay

> > **STACS 2016**

*Supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD).

Lohrey, Zetzsche (Uni Siegen, LSV Cachan)

Definition (Myasnikov, Nikolaev, and Ushakov)

Let G be a finitely generated group. The *knapsack problem for* G is the following decision problem:

Given: Elements $g_1, \ldots, g_k, g \in G$.

Question: Are there $x_1, \ldots, x_k \in \mathbb{N}$ with $g_1^{x_1} \cdots g_k^{x_k} = g$?

Definition (Myasnikov, Nikolaev, and Ushakov)

Let G be a finitely generated group. The *knapsack problem for* G is the following decision problem:

Given: Elements $g_1, \ldots, g_k, g \in G$.

Question: Are there $x_1, \ldots, x_k \in \mathbb{N}$ with $g_1^{x_1} \cdots g_k^{x_k} = g$?

The knapsack problem

• If $G = \mathbb{Z}$ and elements are encoded in binary: NP-complete.

Definition (Myasnikov, Nikolaev, and Ushakov)

Let G be a finitely generated group. The *knapsack problem for* G is the following decision problem:

Given: Elements $g_1, \ldots, g_k, g \in G$.

Question: Are there $x_1, \ldots, x_k \in \mathbb{N}$ with $g_1^{x_1} \cdots g_k^{x_k} = g$?

The knapsack problem

- If $G = \mathbb{Z}$ and elements are encoded in binary: NP-complete.
- For which groups is knapsack decidable?

Definition (Myasnikov, Nikolaev, and Ushakov)

Let G be a finitely generated group. The *knapsack problem for* G is the following decision problem:

Given: Elements $g_1, \ldots, g_k, g \in G$.

Question: Are there $x_1, \ldots, x_k \in \mathbb{N}$ with $g_1^{x_1} \cdots g_k^{x_k} = g$?

The knapsack problem

- If $G = \mathbb{Z}$ and elements are encoded in binary: NP-complete.
- For which groups is knapsack decidable?
- What is the complexity?

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric.

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric. The group $\mathbb{G}(A, I)$ is defined as

$$\mathbb{G}(A, I) = \langle A \mid ab = ba \ ((a, b) \in I) \rangle.$$

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric. The group $\mathbb{G}(A, I)$ is defined as

$$\mathbb{G}(A,I) = \langle A \mid ab = ba \ ((a,b) \in I) \rangle.$$

Groups of the form $\mathbb{G}(A, I)$ are called *graph groups*.

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric. The group $\mathbb{G}(A, I)$ is defined as

$$\mathbb{G}(A,I) = \langle A \mid ab = ba \ ((a,b) \in I) \rangle.$$

Groups of the form $\mathbb{G}(A, I)$ are called *graph groups*.

Theorem

For each graph group $\mathbb{G}(A, I)$, knapsack is in NP.

A group is *virtually special* if it is a finite extension of a subgroup of a graph group.

A group is *virtually special* if it is a finite extension of a subgroup of a graph group.

Class turned out to be very rich:

- Coxeter groups
- one-relator groups with torsion
- fully residually free groups
- fundamental groups of hyperbolic 3-manifolds

A group is *virtually special* if it is a finite extension of a subgroup of a graph group.

Class turned out to be very rich:

- Coxeter groups
- one-relator groups with torsion
- fully residually free groups
- fundamental groups of hyperbolic 3-manifolds

Not hard to see: finite extensions inherit NP-membership.

A group is *virtually special* if it is a finite extension of a subgroup of a graph group.

Class turned out to be very rich:

- Coxeter groups
- one-relator groups with torsion
- fully residually free groups
- fundamental groups of hyperbolic 3-manifolds

Not hard to see: finite extensions inherit NP-membership.

Theorem

For every virtually special group, knapsack is in NP.

A group is *virtually special* if it is a finite extension of a subgroup of a graph group.

Class turned out to be very rich:

- Coxeter groups
- one-relator groups with torsion
- fully residually free groups
- fundamental groups of hyperbolic 3-manifolds

Not hard to see: finite extensions inherit NP-membership.

Theorem

For every virtually special group, knapsack is in NP.

Did we make the problem easy by using unary encoding?

A *straight-line program (SLP)* is a context-free grammar that generates exactly one string.

A *straight-line program (SLP)* is a context-free grammar that generates exactly one string.

Example

$$A_0 \rightarrow a, A_i \rightarrow A_{i-1}A_{i-1}$$

A *straight-line program (SLP)* is a context-free grammar that generates exactly one string.

Example

 $A_0 \rightarrow a$, $A_i \rightarrow A_{i-1}A_{i-1}$: Start symbol A_n generates a^{2^n} .

A *straight-line program (SLP)* is a context-free grammar that generates exactly one string.

Example

 $A_0 \rightarrow a$, $A_i \rightarrow A_{i-1}A_{i-1}$: Start symbol A_n generates a^{2^n} .

• For strings over one letter, SLPs are essentially binary encodings.

A *straight-line program (SLP)* is a context-free grammar that generates exactly one string.

Example

 $A_0 \rightarrow a$, $A_i \rightarrow A_{i-1}A_{i-1}$: Start symbol A_n generates a^{2^n} .

- For strings over one letter, SLPs are essentially binary encodings.
- By a *compressed string*, we mean one given as an SLP.

A *straight-line program (SLP)* is a context-free grammar that generates exactly one string.

Example

 $A_0 \rightarrow a$, $A_i \rightarrow A_{i-1}A_{i-1}$: Start symbol A_n generates a^{2^n} .

- For strings over one letter, SLPs are essentially binary encodings.
- By a *compressed string*, we mean one given as an SLP.

Theorem

For every virtually special group, compressed knapsack is in NP.

Algorithm in $\ensuremath{\mathbb{Z}}$ case: Guess binary representations and verify.

Algorithm in $\ensuremath{\mathbb{Z}}$ case: Guess binary representations and verify. Possible because:

- We have an exponential bound on solution
- Verification can be done in polynomial time

Algorithm in $\ensuremath{\mathbb{Z}}$ case: Guess binary representations and verify. Possible because:

- We have an exponential bound on solution
- Verification can be done in polynomial time

Verification in Graph Groups

- Suppose we have an exponential bound on solutions.
- Construct SLP for $g_1^{x_1} \cdots g_k^{x_k}$: $B_0 \to g_k, \quad B_i \to B_{i-1}B_{i-1}$

Algorithm in $\ensuremath{\mathbb{Z}}$ case: Guess binary representations and verify. Possible because:

- We have an exponential bound on solution
- Verification can be done in polynomial time

Verification in Graph Groups

- Suppose we have an exponential bound on solutions.
- Construct SLP for $g_1^{x_1} \cdots g_k^{x_k}$: $B_0 \to g_k$, $B_i \to B_{i-1}B_{i-1}$

Theorem (Lohrey, Schleimer 2007)

For every fixed graph group, the compressed word problem belongs to P.

Algorithm in $\ensuremath{\mathbb{Z}}$ case: Guess binary representations and verify. Possible because:

- We have an exponential bound on solution
- Verification can be done in polynomial time

Verification in Graph Groups

- Suppose we have an exponential bound on solutions.
- Construct SLP for $g_1^{x_1} \cdots g_k^{x_k}$: $B_0 \to g_k$, $B_i \to B_{i-1}B_{i-1}$

Theorem (Lohrey, Schleimer 2007)

For every fixed graph group, the compressed word problem belongs to P.

Task

Show: If there is a solution, then there is an exponential one.

Definition

• Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let ≡_I be the smallest congruence on A* with ab ≡_I ba for all (a, b) ∈ I.

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let ≡_I be the smallest congruence on A* with ab ≡_I ba for all (a, b) ∈ I.
- The trace monoid $\mathbb{M}(A, I)$ is defined as

$$\mathbb{M}(A,I) = A^*/\equiv_I.$$

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let ≡_I be the smallest congruence on A* with ab ≡_I ba for all (a, b) ∈ I.
- The trace monoid $\mathbb{M}(A, I)$ is defined as

$$\mathbb{M}(A,I) = A^*/\equiv_I.$$

• $[u]_I$ denotes the congruence class of $u \in A^*$.

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let ≡_I be the smallest congruence on A* with ab ≡_I ba for all (a, b) ∈ I.
- The trace monoid $\mathbb{M}(A, I)$ is defined as

$$\mathbb{M}(A,I) = A^* / \equiv_I.$$

- $[u]_I$ denotes the congruence class of $u \in A^*$.
- We consider $\mathbb{M}(A^{\pm 1}, I^{\pm 1})$, where

$$A^{\pm 1} = \{a^{+1}, a^{-1} \mid a \in A\}, \quad I^{\pm} = \{(a^{\pm 1}, b^{\pm 1}) \mid (a, b) \in I\}.$$

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let ≡_I be the smallest congruence on A* with ab ≡_I ba for all (a, b) ∈ I.
- The trace monoid $\mathbb{M}(A, I)$ is defined as

$$\mathbb{M}(A,I) = A^* / \equiv_I.$$

- $[u]_I$ denotes the congruence class of $u \in A^*$.
- We consider $\mathbb{M}(A^{\pm 1}, I^{\pm 1})$, where

$$A^{\pm 1} = \{a^{+1}, a^{-1} \mid a \in A\}, \quad I^{\pm} = \{(a^{\pm 1}, b^{\pm 1}) \mid (a, b) \in I\}.$$

A trace t is irreducible if there is no decomposition t = [uaa⁻¹v]_I for a ∈ A^{±1}, u, v ∈ (A^{±1})*.

Lemma

Fix the alphabet A. Let $p, q, u, v, s, t \in \mathbb{M}(A, I)$ with $u \neq 1$ and $v \neq 1$ connected. Then the set

$$L(p, u, s, q, v, t) := \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid pu^{x}s = qv^{y}t\}$$

is a union of linear sets of the form $\{(a + bz, c + dz) \mid z \in \mathbb{N}\}$ where a, b, c, d are polynomial in the lengths of p, q, u, v, s, t..

Lemma

Fix the alphabet A. Let $p, q, u, v, s, t \in \mathbb{M}(A, I)$ with $u \neq 1$ and $v \neq 1$ connected. Then the set

$$L(p, u, s, q, v, t) := \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid pu^{x}s = qv^{y}t\}$$

is a union of linear sets of the form $\{(a + bz, c + dz) \mid z \in \mathbb{N}\}$ where a, b, c, d are polynomial in the lengths of p, q, u, v, s, t..

- Techniques from recognizable trace languages:
- Construct poly-size automaton for $L = [pu^*s]_I \cap [qv^*t]_I$.

Lemma

Fix the alphabet A. Let $p, q, u, v, s, t \in \mathbb{M}(A, I)$ with $u \neq 1$ and $v \neq 1$ connected. Then the set

$$L(p, u, s, q, v, t) := \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid pu^{x}s = qv^{y}t\}$$

is a union of linear sets of the form $\{(a + bz, c + dz) \mid z \in \mathbb{N}\}$ where a, b, c, d are polynomial in the lengths of p, q, u, v, s, t..

- Techniques from recognizable trace languages:
- Construct poly-size automaton for $L = [pu^*s]_I \cap [qv^*t]_I$.
- Possible because *u* and *v* are connected.

We call a trace *t* connected if there is no factorization t = uv with $u \neq 1 \neq v$ and ulv.

Lemma

Fix the alphabet A. Let $p, q, u, v, s, t \in \mathbb{M}(A, I)$ with $u \neq 1$ and $v \neq 1$ connected. Then the set

$$L(p, u, s, q, v, t) := \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid pu^{x}s = qv^{y}t\}$$

is a union of linear sets of the form $\{(a + bz, c + dz) \mid z \in \mathbb{N}\}$ where a, b, c, d are polynomial in the lengths of p, q, u, v, s, t..

- Techniques from recognizable trace languages:
- Construct poly-size automaton for $L = [pu^*s]_I \cap [qv^*t]_I$.
- Possible because *u* and *v* are connected.
- Apply results for unary finite automata to set of lengths of L:
- Known size bounds for semilinear representation

Levi's Lemma

Lemma

Let $u_1, \ldots, u_m, v_1, \ldots, v_n \in \mathbb{M}(A, I)$. Then $u_1u_2 \cdots u_m = v_1v_2 \cdots v_n$ if and only if there exist $w_{i,j} \in \mathbb{M}(A, I)$ $(1 \leq i \leq m, 1 \leq j \leq n)$ such that

- $u_i = w_{i,1}w_{i,2}\cdots w_{i,n}$ for every $1 \leq i \leq m$,
- $v_j = w_{1,j}w_{2,j}\cdots w_{m,j}$ for every $1 \leq j \leq n$, and
- $(w_{i,j}, w_{k,\ell}) \in I$ if $1 \leq i < k \leq m$ and $n \geq j > \ell \geq 1$.

Vn	<i>w</i> _{1,<i>n</i>}	W _{2,n}	W3,n		W _{m,n}
÷	÷	÷	÷	:	÷
V3	W _{1,3}	W _{2,3}	W3,3		W _{m,3}
<i>v</i> ₂	<i>w</i> _{1,2}	W _{2,2}	W3,2		<i>W</i> _{<i>m</i>,2}
<i>v</i> ₁	w _{1,1}	<i>W</i> _{2,1}	W _{3,1}		<i>w</i> _{<i>m</i>,1}
	<i>u</i> ₁	<i>u</i> ₂	U3		u _m

Levi's Lemma

Lemma

Let $u_1, \ldots, u_m, v_1, \ldots, v_n \in \mathbb{M}(A, I)$. Then $u_1u_2 \cdots u_m = v_1v_2 \cdots v_n$ if and only if there exist $w_{i,j} \in \mathbb{M}(A, I)$ $(1 \leq i \leq m, 1 \leq j \leq n)$ such that

- $u_i = w_{i,1}w_{i,2}\cdots w_{i,n}$ for every $1 \leq i \leq m$,
- $v_j = w_{1,j}w_{2,j}\cdots w_{m,j}$ for every $1 \leq j \leq n$, and
- $(w_{i,j}, w_{k,\ell}) \in I$ if $1 \leq i < k \leq m$ and $n \geq j > \ell \geq 1$.

Vn	W _{1,n}	W _{2,n}	W3,n		W _{m,n}
÷	÷	÷	÷	:	÷
V3	<i>w</i> _{1,3}	W _{2,3}	W3,3		W _{m,3}
<i>v</i> ₂	<i>w</i> _{1,2}	W _{2,2}	W3,2		<i>W</i> _{<i>m</i>,2}
<i>v</i> ₁	w _{1,1}	<i>w</i> _{2,1}	W _{3,1}		$w_{m,1}$
	<i>u</i> ₁	<i>u</i> ₂	U3		u _m

Let $u_1, u_2, \ldots, u_n \in \text{IRR}(A^{\pm 1}, I)$ be irreducible traces. The sequence u_1, u_2, \ldots, u_n is *I-freely reducible* if it can be reduced to the empty sequence ε by the following rules:

•
$$u_i, u_j \rightarrow u_j, u_i$$
 if $u_i l u_j$
• $u_i, u_j \rightarrow \varepsilon$ if $u_i = u_j^{-1}$ in $\mathbb{G}(A, I)$
• $u_i \rightarrow \varepsilon$ if $u_i = \varepsilon$.

Let $u_1, u_2, \ldots, u_n \in \mathsf{IRR}(A^{\pm 1}, I)$ be irreducible traces.

The sequence u_1, u_2, \ldots, u_n is *I*-freely reducible if it can be reduced to the empty sequence ε by the following rules:

•
$$u_i, u_j \rightarrow u_j, u_i \text{ if } u_i | u_j$$

• $u_i, u_j \rightarrow \varepsilon \text{ if } u_i = u_j^{-1} \text{ in } \mathbb{G}(A, I)$
• $u_i \rightarrow \varepsilon \text{ if } u_i = \varepsilon.$

Lemma

Let $n \ge 2$ and $u_1, u_2, \ldots, u_n \in \text{IRR}(A^{\pm 1}, I)$. If $u_1 u_2 \cdots u_n = 1$ in $\mathbb{G}(A, I)$, then there exist factorizations $u_i = u_{i,1} \cdots u_{i,k_i}$ such that the sequence

$$u_{1,1}, \ldots, u_{1,k_1}, u_{2,1}, \ldots, u_{2,k_2}, \ldots, u_{n,1}, \ldots, u_{n,k_n}$$

is I-freely reducible. Moreover, $\sum_{i=1}^{n} k_i \leq 2^n - 2$.

Lemma

Let $u^x = y_1 \cdots y_m$ be an equation where u is a concrete connected trace. It is equivalent to a disjunction of statements

$$\exists x_i > 0 \ (i \in K) : x = \sum_{i \in K} x_i + c \land \bigwedge_{i \in K} y_i = p_i u^{x_i} s_i \land \bigwedge_{i \in [1,m] \setminus K} y_i = p_i s_i,$$

where

- $K \subseteq [1, m]$
- p_i, s_i are concrete traces of length polynomial in m and |u|
- c is a concrete number, polynomial in m

Theorem

Let $u_1, u_2, \ldots, u_n \in \mathbb{G}(A, I) \setminus \{1\}$, $v_0, v_1, \ldots, v_n \in \mathbb{G}(A, I)$ and let x_1, \ldots, x_n be variables ranging over \mathbb{N} . Then, the set of solutions of the exponent equation

$$v_0 u_1^{x_1} v_1 u_2^{x_2} v_2 \cdots u_n^{x_n} v_n = 1$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_i are exponential in n and $|u_1|, |u_2|, \ldots, |u_n|, |v_0|, |v_1|, \ldots, |v_n|$.

Theorem

Let $u_1, u_2, \ldots, u_n \in \mathbb{G}(A, I) \setminus \{1\}$, $v_0, v_1, \ldots, v_n \in \mathbb{G}(A, I)$ and let x_1, \ldots, x_n be variables ranging over \mathbb{N} . Then, the set of solutions of the exponent equation

$$v_0 u_1^{x_1} v_1 u_2^{x_2} v_2 \cdots u_n^{x_n} v_n = 1$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_i are exponential in n and $|u_1|, |u_2|, \ldots, |u_n|, |v_0|, |v_1|, \ldots, |v_n|$.

Preprocessing:

- Make sure $u_i^{x_i}$ is reduced: "cyclically reduce" each u_i .
- If u_i not connected with $u_i = u_{i,1}u_{i,2}$, $u_{i,1}lu_{i,2}$, then replace $u_i^{x_i}$ with $u_{i,1}^{x_i}u_{i,2}^{x_i}$.

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \ldots, u_n^{x_n}, v_0, \ldots, v_n$ are irreducible

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \ldots, u_n^{x_n}, v_0, \ldots, v_n$ are irreducible
- Apply exponential refinement to obtain *I*-freely reducible sequence.

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \ldots, u_n^{x_n}, v_0, \ldots, v_n$ are irreducible
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \ldots, u_n^{x_n}, v_0, \ldots, v_n$ are irreducible
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
 - **(a)** $u_i^{x_i} = y_{i,1} \cdots y_{i,k_i} \ (1 \le i \le n)$ (e) $z_{i,j} | z_{k,l} \text{ for all } (i,j,k,l) \in J_3$
 - (b) $v_i = z_{i,1} \cdots z_{i,l_i} \ (0 \le i \le n)$ (f) $y_{i,j} = y_{k,l}^{-1}$ for all $(i,j,k,l) \in M_1$
 - **(a)** $y_{i,j}Iy_{k,l}$ for all $(i,j,k,l) \in J_1$ (g) $y_{i,j} = z_{k,l}^{-1}$ for all $(i,j,k,l) \in M_2$

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \ldots, u_n^{x_n}, v_0, \ldots, v_n$ are irreducible
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
 - **(a)** $u_i^{x_i} = y_{i,1} \cdots y_{i,k_i} \ (1 \le i \le n)$ (e) $z_{i,j} | z_{k,l} \text{ for all } (i,j,k,l) \in J_3$
 - (b) $v_i = z_{i,1} \cdots z_{i,l_i} \ (0 \le i \le n)$ (f) $y_{i,j} = y_{k,l}^{-1}$ for all $(i,j,k,l) \in M_1$
 - **(a)** $y_{i,j}Iy_{k,l}$ for all $(i,j,k,l) \in J_1$ (g) $y_{i,j} = z_{k,l}^{-1}$ for all $(i,j,k,l) \in M_2$

(a) $y_{i,j}Iz_{k,l}$ for all $(i,j,k,l) \in J_2$ (b) $z_{i,j} = z_{k,l}^{-1}$ for all $(i,j,k,l) \in M_3$

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \ldots, u_n^{x_n}, v_0, \ldots, v_n$ are irreducible
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

 - (b) $v_i = z_{i,1} \cdots z_{i,l_i} \ (0 \le i \le n)$ (f) $y_{i,j} = y_{k,l}^{-1}$ for all $(i,j,k,l) \in M_1$
 - **(a)** $y_{i,j}Iy_{k,l}$ for all $(i,j,k,l) \in J_1$ (g) $y_{i,j} = z_{k,l}^{-1}$ for all $(i,j,k,l) \in M_2$

(a) $y_{i,j}Iz_{k,l}$ for all $(i,j,k,l) \in J_2$ (b) $z_{i,j} = z_{k,l}^{-1}$ for all $(i,j,k,l) \in M_3$

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \ldots, u_n^{x_n}, v_0, \ldots, v_n$ are irreducible
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

 - (b) $v_i = z_{i,1} \cdots z_{i,l_i} \ (0 \le i \le n)$ (f) $y_{i,j} = y_{k,l}^{-1}$ for all $(i,j,k,l) \in M_1$

() $y_{i,j}Iz_{k,l}$ for all $(i,j,k,l) \in J_2$ (h) $z_{i,j} = z_{k,l}^{-1}$ for all $(i,j,k,l) \in M_3$

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \ldots, u_n^{x_n}, v_0, \ldots, v_n$ are irreducible
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

(a)
$$u_i^{x_i} = y_{i,1} \cdots y_{i,k_i} \ (1 \le i \le n)$$

(f) $y_{i,j} = y_{k,l}^{-1}$ for all $(i, j, k, l) \in M_1$

$$(y_{i,j} I y_{k,l} \text{ for all } (i,j,k,l) \in J_1$$

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \ldots, u_n^{x_n}, v_0, \ldots, v_n$ are irreducible
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

(a)
$$u_i^{X_i} = y_{i,1} \cdots y_{i,k_i} \ (1 \leq i \leq n)$$

(f)
$$y_{i,j} = y_{k,l}^{-1}$$
 for all $(i,j,k,l) \in M_1$

$$y_{i,j}Iy_{k,l} \text{ for all } (i,j,k,l) \in J_1$$

• Replace
$$u_i^{x_i} = y_{i,1} \cdots y_{i,k_i}$$
. For some $x_{i,j} > 0$:
• $x_i = c_i + \sum_{j \in K_i} x_{i,j}$ for all $1 \le i \le n$,
• $y_{i,j} = p_{i,j} u_i^{x_{i,j}} s_{i,j}$ for all $1 \le i \le n, j \in K_i$,
• $y_{i,j} = p_{i,j} s_{i,j}$ for all $1 \le i \le n, j \in [1, k_i] \setminus K_i$.

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \ldots, u_n^{x_n}, v_0, \ldots, v_n$ are irreducible
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

(f)
$$y_{i,j} = y_{k,l}^{-1}$$
 for all $(i,j,k,l) \in M_1$

- (a) $y_{i,j}Iy_{k,l}$ for all $(i,j,k,l) \in J_1$
- Replace $z_{k,l}$ by concrete traces.

• Replace
$$u_i^{x_i} = y_{i,1} \cdots y_{i,k_i}$$
. For some $x_{i,j} > 0$:
• $x_i = c_i + \sum_{j \in K_i} x_{i,j}$ for all $1 \le i \le n$,
• $y_{i,j} = p_{i,j} u_i^{x_{i,j}} s_{i,j}$ for all $1 \le i \le n, j \in K_i$,
• $y_{i,j} = p_{i,j} s_{i,j}$ for all $1 \le i \le n, j \in [1, k_i] \setminus K_i$.

• Now we know alphabet of $y_{i,j}$

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \ldots, u_n^{x_n}, v_0, \ldots, v_n$ are irreducible
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

(f)
$$y_{i,j} = y_{k,l}^{-1}$$
 for all $(i, j, k, l) \in M_1$

• Replace $z_{k,l}$ by concrete traces.

• Replace
$$u_i^{x_i} = y_{i,1} \cdots y_{i,k_i}$$
. For some $x_{i,j} > 0$:
• $x_i = c_i + \sum_{j \in K_i} x_{i,j}$ for all $1 \le i \le n$,
• $y_{i,j} = p_{i,j} u_i^{x_{i,j}} s_{i,j}$ for all $1 \le i \le n, j \in K_i$,
• $y_{i,j} = p_{i,j} s_{i,j}$ for all $1 \le i \le n, j \in [1, k_i] \setminus K_i$.

Now we know alphabet of y_{i,j}

()
$$x_i = c_i + \sum_{j \in K'_i} x_{i,j}$$
 for all $1 \leqslant i \leqslant n$, and

$$\ \, \bullet \ \, \mathbf{x}_i = \mathbf{c}_i + \sum_{j \in K'_i} \mathbf{x}_{i,j} \ \, \text{for all} \ \, 1 \leqslant i \leqslant n, \ \, \text{and} \ \,$$

$$p_{i,j}u_i^{x_{i,j}}s_{i,j} = s_{k,l}^{-1}(u_k^{-1})^{x_{k,l}}p_{k,l}^{-1} \text{ for all } (i,j,k,l) \in M.$$

• Now we apply the fact that sets

(

$$L(p, u, s, q, v, t) := \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid pu^{x}s = qv^{y}t\}$$

are semilinear (with small representations).

$$p_{i,j}u_i^{x_{i,j}}s_{i,j} = s_{k,l}^{-1}(u_k^{-1})^{x_{k,l}}p_{k,l}^{-1} \text{ for all } (i,j,k,l) \in M.$$

Now we apply the fact that sets

$$L(p, u, s, q, v, t) := \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid pu^{x}s = qv^{y}t\}$$

are semilinear (with small representations).

• Replace equations (a') by linear diophantine equations.

$$x_i = c_i + \sum_{j \in K'_i} x_{i,j} \text{ for all } 1 \leq i \leq n, \text{ and }$$

$$p_{i,j}u_i^{x_{i,j}}s_{i,j} = s_{k,l}^{-1}(u_k^{-1})^{x_{k,l}}p_{k,l}^{-1} \text{ for all } (i,j,k,l) \in M.$$

Now we apply the fact that sets

$$L(p, u, s, q, v, t) := \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid pu^{x}s = qv^{y}t\}$$

are semilinear (with small representations).

- Replace equations (a') by linear diophantine equations.
- Coefficients are linear in the length of $p_{i,j}, s_{i,j}$, hence exponential in n.

$$x_i = c_i + \sum_{i \in K'} x_{i,j} \text{ for all } 1 \leq i \leq n, \text{ and }$$

$$p_{i,j}u_i^{x_{i,j}}s_{i,j} = s_{k,l}^{-1}(u_k^{-1})^{x_{k,l}}p_{k,l}^{-1} \text{ for all } (i,j,k,l) \in M.$$

Now we apply the fact that sets

$$L(p, u, s, q, v, t) := \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid pu^{x}s = qv^{y}t\}$$

are semilinear (with small representations).

- Replace equations (a') by linear diophantine equations.
- Coefficients are linear in the length of $p_{i,j}, s_{i,j}$, hence exponential in n.
- This yields small enough linear equation system for the x_i.
- Well-known result of von zur Gathen and Sieveking yields a small solution.

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

• Guess cosets of $v_0 u_1^{x_1} v_1 \cdots u_i^{x_i} v_i$ for all $i \in [1, n]$

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Guess cosets of $v_0 u_1^{x_1} v_1 \cdots u_i^{x_i} v_i$ for all $i \in [1, n]$
- Create modified instance that has solution iff instance has solution with these cosets

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Guess cosets of $v_0 u_1^{x_1} v_1 \cdots u_i^{x_i} v_i$ for all $i \in [1, n]$
- Create modified instance that has solution iff instance has solution with these cosets

For other transformations:

• Saturation procedure that successively adds transitions to automaton

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Guess cosets of $v_0 u_1^{x_1} v_1 \cdots u_i^{x_i} v_i$ for all $i \in [1, n]$
- Create modified instance that has solution iff instance has solution with these cosets

For other transformations:

- Saturation procedure that successively adds transitions to automaton
- Choose suitable class of automata such that adding transitions still leads to knapsack instances: knapsack automata.