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System Observer

Downward closures

u ď v : u is a subsequence of v

LÓ “ tu P X ˚ | Dv P L : u ď vu

Observer sees precisely LÓ
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Downward closures

Theorem (Higman/Haines)

For every language L Ď X ˚, LÓ is regular.

Applications

Given an automaton for LÓ, many things are decidable:

Inclusion of behavior under lossy observation (KÓ Ď LÓ)
Ordinary inclusion almost always undecidable!

Which actions occur arbitrarily often? (a˚ Ď LÓ)

Is a ever executed after b? (ab P LÓ)

Can the system run arbitrarily long? (LÓ infinite)

Problem

Finite automaton for LÓ exists for every L.

How can we compute it?
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State of the art

Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting
systems/0L-systems.

Context-free rules AÑ w

Applied as: Au ñ uw

Theorem (Habermehl, Meyer, Wimmel 2010)

Downward closures are computable for Petri net languages.
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Stacked counter automata

A storage mechanism M consists of:

States: set S of states

Operations: partial functions α1, . . . , αn : S Ñ S

Initial state: s0 P S

Final states: F Ď S

Counter

States: N
Operations: increment, decrement, zero test

Initial and final state: 0

Trivial mechanism

Consists of one state and no operations.
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C pMq: Adding a blind counter

States: ps, zq, s an old state, z P Z.

Operations: old operations; increment, decrement for counter

Initial state: ps0, 0q

Final states: pf , 0q, f final in old mechanism

SpMq: Building stacks

States: sequences lc1lc2l ¨ ¨ ¨lcn, ci old states

Operations: push separator, pop if empty, manipulate topmost entry

Initial and final state: Empty sequence

Stacked counters

Mechanisms obtained from the trivial one by

adding blind counters,

building stacks.
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Modeling capabilities

Generalize both pushdown automata and blind counter automata

Recursive programs with access to private/shared counters

Connections to group theory

Theorem (Main result)

Downward closures are computable for stacked counter automata.
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Expressiveness

Algebraic extensions

Let C be a language class. A C-grammar G consists of

Nonterminals N, terminals T , start symbol S P N

Productions AÑ L with L Ď pN Y T q˚, L P C

uAv ñ uwv whenever w P L.

Generated language: tw P T ˚ | S ñ˚ wu.

Such languages are algebraic over C, class denoted AlgpCq.

Example

AlgpFINq “ AlgpREGq “ CF
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Definition

Let X be an alphabet.

X‘ “ tµ | µ : X Ñ Nu, multisets.

Ψ: X ˚ Ñ X‘, Ψpwqpxq “ |w |x is the Parikh map.

For F “ tµ1, . . . , µnu Ď X‘, let F‘ “ t
řn

i“1 aiµi | a1, . . . , an P Nu
Sets of the form µ0 ` F‘ are called linear.

Finite unions of linear sets are called semilinear.

Semilinear constraints

Let C be a language class. SLIpCq denotes the class of languages

hpLXΨ´1pSqq

for some L P C, a homomorphism h and a semilinear set S .

Example

hpa˚bc˚ XΨ´1pb ` pa` cq‘qq “ tanban | n ě 0u, h : a, c ÞÑ a, b ÞÑ b.
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A hierarchy of language classes

Hierarchy

F0 “ finite languages,

Gi “ AlgpFi q, Fi`1 “ SLIpGi q, F “
ď

iě0

Fi .

In particular: G0 “ CF.

F0 Ď G0 Ď F1 Ď G1 Ď ¨ ¨ ¨ Ď F

Theorem

LpSpSpMqqq “ AlgpLpMqq

,
Ť

iě0 LpC i pMqq “ SLIpLpMqq.

Corollary

Stacked counter automata accept precisely the languages in F.
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Ingredient I

van Leeuwen proved a stronger statement:

Theorem (van Leeuwen 1978)

If C is closed under regular intersections:
Downward closures computable for C ùñ computable for AlgpCq.

Consequence

Algorithm for Fi ùñ Algorithm for Gi “ AlgpFi q.
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Ingredient II
F0 Ď G0 Ď F1 Ď G1 Ď ¨ ¨ ¨ Ď F

Problem

Computability preserved by Algp¨q

No preservation for SLIp¨q

Idea

Given L P Fi`1 “ SLIpGi q, construct L1 P Gi with L1Ó “ LÓ.

Wlog L “ K XΨ´1pSq, K P Gi , S semilinear

Construct K 1 P Gi with K XΨ´1pSq Ď K 1 Ď pK XΨ´1pSqqÓ

Plan: Use finite state transductions to stay within Gi

Annotate words with additional information

Theorem (Parikh)

For context-free L,
ΨpLq is semilinear.

ΨpLq “
n

ď

i“1

µi ` F‘i

µi : constant vector

Fi : set of period
vectors
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Task

Use transducer to pick all words whose Parikh decomposition avoids a
certain period vector.

Parikh annotation I

L “ tanbm | m “ n or m “ 2nu, ΨpLq “ pa`

Ò
σ

bq‘ Y pa`

Ò
τ

2bq‘.

K “ tpσaqnbn | n ě 0u Y tpτaqnp2bqn | n ě 0u

Parikh annotation II

L “ pabq˚pca˚ Y db˚q, ΨpLq “ c

Ò
α

` ta`

Ò
µ

b, a

Ò
ν

u‘ Y d

Ò

β

` ta`

Ò
σ

b, b

Ò
τ

u‘.

K “ αpµabq˚cpνaq˚ Y βpσabq˚dpτbq˚
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Parikh annotations

New language in the same class

Additional symbols encode decomposition of Parikh image into
constant and period vectors

Adding period vectors by inserting words
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Theorem

For each level of the hierarchy, one can construct Parikh annotations.

Corollary

Given L P Gi and semilinear S, one can construct L1 P Gi with
LXΨ´1pSq Ď L1 Ď pLXΨ´1pSqqÓ.

Select all words where adding period vectors leads into S

Downward closed set of multisets of period vectors

§ Finitely many forbidden sub-multisets
§ Presburger-definable, hence computable

Recognizable by finite automaton
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Conclusion

Downward closure: promising abstraction of languages

Computability known for few language classes

Computable for stacked counter automata

Future work

Applications of downward closures

Downward closures for other WQOs

Further classes of systems

Thank you for your attention!
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