Computing downward closures for stacked counter automata

Georg Zetzsche

Technische Universität Kaiserslautern

STACS 2015

Georg Zetzsche (TU KL)

Downward closures

STACS 2015 1 / 17

★ Ξ ► 4

<ロト <問ト < 目と < 目と

<ロト <問ト < 目と < 目と

<u>aabcbbacbbaaab</u>

イロト イボト イヨト イヨト

<u>aabcbbacbbaaab</u>

Downward closures

- $u \leq v$: *u* is a subsequence of *v*
- $L \downarrow = \{ u \in X^* \mid \exists v \in L \colon u \leq v \}$
- Observer sees precisely $L\downarrow$

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

(日) (四) (日) (日) (日)

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

• • = • • = •

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!

.

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$

(4) (5) (4) (5)

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$

• Is a ever executed after b? $(ab \in L\downarrow)$

A B A A B A

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$
- Is a ever executed after b? $(ab \in L\downarrow)$
- Can the system run arbitrarily long? ($L\downarrow$ infinite)

A B A A B A

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$
- Is a ever executed after b? $(ab \in L\downarrow)$
- Can the system run arbitrarily long? ($L\downarrow$ infinite)

Problem

- Finite automaton for $L\downarrow$ exists for every L.
- How can we compute it?

Very few known techniques.

< □ > < □ > < □ > < □ > < □ >

Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

• • = • • =

Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

• • = • • =

Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

- Context-free rules $A \rightarrow w$
- Applied as: $Au \Rightarrow uw$

A B A A B A

Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

- Context-free rules $A \rightarrow w$
- Applied as: $Au \Rightarrow uw$

Theorem (Habermehl, Meyer, Wimmel 2010)

Downward closures are computable for Petri net languages.

Georg Zetzsche (TU KL)

A D N A B N A B N A B N

Stacked counter automata

A storage mechanism M consists of:

- States: set S of states
- Operations: partial functions $\alpha_1, \ldots, \alpha_n \colon S \to S$
- Initial state: $s_0 \in S$
- Final states: $F \subseteq S$

★ ∃ ► ★

Stacked counter automata

A storage mechanism M consists of:

- States: set S of states
- Operations: partial functions $\alpha_1, \ldots, \alpha_n \colon S \to S$
- Initial state: $s_0 \in S$
- Final states: $F \subseteq S$

Counter

- States: ℕ
- Operations: increment, decrement, zero test
- Initial and final state: 0

Stacked counter automata

A storage mechanism M consists of:

- States: set S of states
- Operations: partial functions $\alpha_1, \ldots, \alpha_n \colon S \to S$
- Initial state: $s_0 \in S$
- Final states: $F \subseteq S$

Counter

- States: ℕ
- Operations: increment, decrement, zero test
- Initial and final state: 0

Trivial mechanism

Consists of one state and no operations.

C(M): Adding a blind counter

- States: (s, z), s an old state, $z \in \mathbb{Z}$.
- Operations: old operations; increment, decrement for counter
- Initial state: $(s_0, 0)$
- Final states: (f, 0), f final in old mechanism

A B b A B b

C(M): Adding a blind counter

- States: (s, z), s an old state, $z \in \mathbb{Z}$.
- Operations: old operations; increment, decrement for counter
- Initial state: (*s*₀, 0)
- Final states: (f, 0), f final in old mechanism

S(M): Building stacks

- States: sequences $\Box c_1 \Box c_2 \Box \cdots \Box c_n$, c_i old states
- Operations: push separator, pop if empty, manipulate topmost entry
- Initial and final state: Empty sequence

• • = • • = •

C(M): Adding a blind counter

- States: (s, z), s an old state, $z \in \mathbb{Z}$.
- Operations: old operations; increment, decrement for counter
- Initial state: (s₀, 0)
- Final states: (f, 0), f final in old mechanism

S(M): Building stacks

- States: sequences $\Box c_1 \Box c_2 \Box \cdots \Box c_n$, c_i old states
- Operations: push separator, pop if empty, manipulate topmost entry
- Initial and final state: Empty sequence

Stacked counters

Mechanisms obtained from the trivial one by

- adding blind counters,
- building stacks.

୬୯୯

・ロト ・四ト ・ヨト ・ヨト 三臣

・ロト ・四ト ・ヨト ・ヨト 三臣

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Georg Zetzsche (TU KL)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Georg	Zetzsche	(TU K	L,

▲口> ▲圖> ▲注> ▲注> 三注

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Generalize both pushdown automata and blind counter automata

• • = • • =

- Generalize both pushdown automata and blind counter automata
- Recursive programs with access to private/shared counters

→ Ξ →

- Generalize both pushdown automata and blind counter automata
- Recursive programs with access to private/shared counters
- Connections to group theory

★ ∃ ► ★

- Generalize both pushdown automata and blind counter automata
- Recursive programs with access to private/shared counters
- Connections to group theory

Theorem (Main result)

Downward closures are computable for stacked counter automata.

Expressiveness

Algebraic extensions

Let \mathcal{C} be a language class. A \mathcal{C} -grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

→ Ξ →

Expressiveness

Algebraic extensions

Let C be a language class. A C-grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

(4) (3) (4) (4) (4)

Expressiveness

Algebraic extensions

Let ${\mathcal C}$ be a language class. A ${\mathcal C}\text{-}grammar\ G$ consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

• Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.

• • = • • = •
Expressiveness

Algebraic extensions

Let ${\mathcal C}$ be a language class. A ${\mathcal C}\text{-}grammar\;G$ consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

- Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.
- Such languages are *algebraic over* C, class denoted Alg(C).

A B A A B A

Expressiveness

Algebraic extensions

Let ${\mathcal C}$ be a language class. A ${\mathcal C}\text{-}grammar\ G$ consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

- Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.
- Such languages are *algebraic over* C, class denoted Alg(C).

Example

Alg(FIN) = Alg(REG) = CF

< □ > < □ > < □ > < □ > < □ > < □ >

Let X be an alphabet.

•
$$X^{\oplus} = {\mu \mid \mu \colon X \to \mathbb{N}}, \text{ multisets.}$$

Georg Zetzsche (TU KL)

<ロト <問ト < 目と < 目と

Let X be an alphabet.

•
$$X^{\oplus} = {\mu \mid \mu \colon X \to \mathbb{N}}, \text{ multisets.}$$

• $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let X be an alphabet.

•
$$X^{\oplus} = {\mu \mid \mu \colon X \to \mathbb{N}}, \text{ multisets.}$$

- $\Psi: X^* \to X^{\oplus}, \Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$

イロト イポト イヨト イヨト 二日

Let X be an alphabet.

•
$$X^{\oplus} = {\mu \mid \mu \colon X \to \mathbb{N}}, \text{ multisets.}$$

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.

イロト イポト イヨト イヨト 二日

Let X be an alphabet.

- $X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$
- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called semilinear.

(日) (四) (日) (日) (日)

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called *semilinear*.

Semilinear constraints

Let ${\mathcal C}$ be a language class. ${\sf SLI}({\mathcal C})$ denotes the class of languages

```
h(L \cap \Psi^{-1}(S))
```

for some $L \in C$, a homomorphism *h* and a semilinear set *S*.

イロト 不得 トイヨト イヨト 二日

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called *semilinear*.

Semilinear constraints

Let ${\mathcal C}$ be a language class. ${\sf SLI}({\mathcal C})$ denotes the class of languages

```
h(L \cap \Psi^{-1}(S))
```

for some $L \in C$, a homomorphism *h* and a semilinear set *S*.

Example

$$b + (a + c)^{\oplus}$$

Georg Zetzsche (TU KL)

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called *semilinear*.

Semilinear constraints

Let ${\mathcal C}$ be a language class. ${\sf SLI}({\mathcal C})$ denotes the class of languages

```
h(L \cap \Psi^{-1}(S))
```

for some $L \in C$, a homomorphism *h* and a semilinear set *S*.

$$\Psi^{-1}(b + (a + c)^{\oplus})$$

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called *semilinear*.

Semilinear constraints

Let ${\mathcal C}$ be a language class. ${\sf SLI}({\mathcal C})$ denotes the class of languages

```
h(L \cap \Psi^{-1}(S))
```

for some $L \in C$, a homomorphism *h* and a semilinear set *S*.

$$a^*bc^* \cap \Psi^{-1}(b + (a + c)^{\oplus})$$

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called *semilinear*.

Semilinear constraints

Let ${\mathcal C}$ be a language class. ${\sf SLI}({\mathcal C})$ denotes the class of languages

```
h(L \cap \Psi^{-1}(S))
```

for some $L \in C$, a homomorphism *h* and a semilinear set *S*.

$$h(a^*bc^* \cap \Psi^{-1}(b + (a + c)^{\oplus})))$$

$$h: a, c \mapsto a, b \mapsto b.$$

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called *semilinear*.

Semilinear constraints

Let ${\mathcal C}$ be a language class. ${\sf SLI}({\mathcal C})$ denotes the class of languages

```
h(L \cap \Psi^{-1}(S))
```

for some $L \in C$, a homomorphism h and a semilinear set S.

$$h(a^*bc^* \cap \Psi^{-1}(b + (a + c)^{\oplus})) = \{a^n ba^n \mid n \ge 0\}, \ h: a, c \mapsto a, \ b \mapsto b.$$

Hierarchy

 $F_0 = finite \ languages,$

$$G_i = Alg(F_i),$$
 $F_{i+1} = SLI(G_i),$ $F = \bigcup_{i \ge 0} F_i.$

A D N A B N A B N A B N

Hierarchy

 $F_0 = finite \ languages,$

 $G_i = Alg(F_i),$ $F_{i+1} = SLI(G_i),$ $F = \bigcup_{i \ge 0} F_i.$

In particular: $G_0 = CF$.

イロト イポト イヨト イヨト 二日

Hierarchy

 $F_0 = finite \ languages,$

 $G_i = Alg(F_i),$ $F_{i+1} = SLI(G_i),$ $F = \bigcup_{i \ge 0} F_i.$

In particular: $G_0 = CF$.

 $F_0\subseteq G_0\subseteq F_1\subseteq G_1\subseteq \cdots\subseteq F$

Georg Zetzsche (TU KL)

イロト イポト イヨト イヨト 二日

Hierarchy

 $F_0 = finite \ languages,$

$$G_i = Alg(F_i),$$
 $F_{i+1} = SLI(G_i),$ $F = \bigcup F_i.$

In particular: $G_0 = CF$.

 $F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \dots \subseteq F$

Theorem

 $\mathcal{L}(S(S(M))) = \mathsf{Alg}(\mathcal{L}(M))$

i≥0

イロト 不得下 イヨト イヨト 二日

Hierarchy

 $F_0 = finite \ languages,$

 $G_i = Alg(F_i),$ $F_{i+1} = SLI(G_i),$ $F = \bigcup_{i=1}^{n} F_i.$

In particular: $G_0 = CF$.

 $F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \dots \subseteq F$

Theorem

$$\mathcal{L}(S(S(M))) = \mathsf{Alg}(\mathcal{L}(M)), \qquad \bigcup_{i \ge 0} \mathcal{L}(C^{i}(M)) = \mathsf{SLI}(\mathcal{L}(M)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Hierarchy

 $F_0 = finite \ languages,$

 $G_i = Alg(F_i),$ $F_{i+1} = SLI(G_i),$ $F = \bigcup F_i.$

In particular: $G_0 = CF$.

 $F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \dots \subseteq F$

Theorem

$$\mathcal{L}(S(S(M))) = \operatorname{Alg}(\mathcal{L}(M)), \qquad \bigcup_{i \ge 0} \mathcal{L}(C^{i}(M)) = \operatorname{SLI}(\mathcal{L}(M)).$$

Corollary

Stacked counter automata accept precisely the languages in F.

Georg Zetzsche (TU KL)

Downward closures

van Leeuwen proved a stronger statement:

Theorem (van Leeuwen 1978)

If C is closed under regular intersections: Downward closures computable for $C \implies$ computable for Alg(C).

• • = • • =

van Leeuwen proved a stronger statement:

Theorem (van Leeuwen 1978)

If C is closed under regular intersections: Downward closures computable for $C \implies$ computable for Alg(C).

Consequence

Algorithm for $F_i \implies Algorithm$ for $G_i = Alg(F_i)$.

<日

<</p>

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

 \bullet Computability preserved by $\mathsf{Alg}(\cdot)$

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- $\bullet~\mbox{No}~\mbox{preservation}$ for $\mbox{SLI}(\cdot)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- $\bullet~\mbox{No}$ preservation for $\mbox{SLI}(\cdot)$

Idea

• Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.

< □ > < 同 > < 回 > < 回 > < 回 >

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- No preservation for $\mathsf{SLI}(\cdot)$

Idea

- Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.
- Wlog $L = K \cap \Psi^{-1}(S)$, $K \in G_i$, S semilinear

< □ > < 同 > < 回 > < 回 > < 回 >

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- No preservation for $\mathsf{SLI}(\cdot)$

Idea

- Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.
- Wlog $L = K \cap \Psi^{-1}(S)$, $K \in G_i$, S semilinear
- Construct $K' \in G_i$ with $K \cap \Psi^{-1}(S) \subseteq K' \subseteq (K \cap \Psi^{-1}(S)) \downarrow$

イロト イポト イヨト イヨト

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- No preservation for $\mathsf{SLI}(\cdot)$

Idea

- Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.
- Wlog $L = K \cap \Psi^{-1}(S)$, $K \in G_i$, S semilinear
- Construct $K' \in G_i$ with $K \cap \Psi^{-1}(S) \subseteq K' \subseteq (K \cap \Psi^{-1}(S)) \downarrow$
- Plan: Use finite state transductions to stay within G_i

< □ > < □ > < □ > < □ > < □ > < □ >

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- No preservation for $\mathsf{SLI}(\cdot)$

Idea

- Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.
- Wlog $L = K \cap \Psi^{-1}(S)$, $K \in G_i$, S semilinear
- Construct $K' \in G_i$ with $K \cap \Psi^{-1}(S) \subseteq K' \subseteq (K \cap \Psi^{-1}(S)) \downarrow$
- Plan: Use finite state transductions to stay within G_i
- Annotate words with additional information

< □ > < □ > < □ > < □ > < □ > < □ >

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- No preservation for $\mathsf{SLI}(\cdot)$

Idea

- Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.
- Wlog $L = K \cap \Psi^{-1}(S)$, $K \in G_i$, S semilinear
- Construct $K' \in G_i$ with $K \cap \Psi^{-1}(S) \subseteq K' \subseteq (K \cap \Psi^{-1}(S)) \downarrow$
- Plan: Use finite state transductions to stay within G_i
- Annotate words with additional information

Theorem (Parikh)

For context-free L, $\Psi(L)$ is semilinear.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- No preservation for $\mathsf{SLI}(\cdot)$

Idea

- Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.
- Wlog $L = K \cap \Psi^{-1}(S)$, $K \in G_i$, S semilinear
- Construct $K' \in \mathsf{G}_i$ with $K \cap \Psi^{-1}(S) \subseteq K' \subseteq (K \cap \Psi^{-1}(S)) \downarrow$
- Plan: Use finite state transductions to stay within G_i
- Annotate words with additional information

Use transducer to pick all words whose Parikh decomposition avoids a certain period vector.

(日)

Use transducer to pick all words whose Parikh decomposition avoids a certain period vector.

Parikh annotation I

 $L = \{a^n b^m \mid m = n \text{ or } m = 2n\}, \quad \Psi(L) = (a+b)^{\oplus} \quad \cup \quad (a+2b)^{\oplus}.$

(4個) (4回) (4回) (日)

Use transducer to pick all words whose Parikh decomposition avoids a certain period vector.

Parikh annotation I

$$L = \{a^n b^m \mid m = n \text{ or } m = 2n\}, \quad \Psi(L) = (a + b)^{\oplus} \cup (a + 2b)^{\oplus}.$$

• • = • • =

Use transducer to pick all words whose Parikh decomposition avoids a certain period vector.

Parikh annotation I

$$L = \{a^n b^m \mid m = n \text{ or } m = 2n\}, \quad \Psi(L) = (a + b)^{\oplus} \quad \cup \quad (a + 2b)^{\oplus}.$$

$$\mathcal{K} = \{(\sigma a)^n b^n \mid n \ge 0\} \cup \{(\tau a)^n (2b)^n \mid n \ge 0\}$$

► < Ξ >

Use transducer to pick all words whose Parikh decomposition avoids a certain period vector.

Parikh annotation I

$$L = \{a^n b^m \mid m = n \text{ or } m = 2n\}, \quad \Psi(L) = (a+b)^{\oplus} \quad \cup \quad (a+2b)^{\oplus}.$$
$$K = \{(\sigma a)^n b^n \mid n \ge 0\} \cup \{(\tau a)^n (2b)^n \mid n \ge 0\}$$

Parikh annotation II

$$L = (ab)^*(ca^* \cup db^*), \quad \Psi(L) = c + \{a+b,a\}^{\oplus} \quad \cup \quad d + \{a+b,b\}^{\oplus}.$$

A D N A B N A B N A B N

Use transducer to pick all words whose Parikh decomposition avoids a certain period vector.

Parikh annotation I

$$L = \{a^n b^m \mid m = n \text{ or } m = 2n\}, \quad \Psi(L) = (a+b)^{\oplus} \quad \cup \quad (a+2b)^{\oplus}.$$
$$K = \{(\sigma a)^n b^n \mid n \ge 0\} \cup \{(\tau a)^n (2b)^n \mid n \ge 0\}$$

Parikh annotation II

$$L = (ab)^* (ca^* \cup db^*), \quad \Psi(L) = c + \{a + b, a\}^{\oplus} \cup d + \{a + b, b\}^{\oplus}.$$

A D N A B N A B N A B N
Task

Use transducer to pick all words whose Parikh decomposition avoids a certain period vector.

Parikh annotation I

$$L = \{a^n b^m \mid m = n \text{ or } m = 2n\}, \quad \Psi(L) = (a+b)^{\oplus} \quad \cup \quad (a+2b)^{\oplus}.$$
$$\overset{\uparrow}{\mathcal{F}} K = \{(\sigma a)^n b^n \mid n \ge 0\} \cup \{(\tau a)^n (2b)^n \mid n \ge 0\}$$

Parikh annotation II

 $L = (ab)^* (ca^* \cup db^*), \quad \Psi(L) = \underset{\uparrow}{c} + \{a + b, a\}^{\oplus} \quad \cup \quad d + \{a + b, b\}^{\oplus}.$ $K = \alpha(\mu ab)^* c(\nu a)^* \quad \cup \quad \beta(\sigma ab)^* d(\tau b)^*$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - ヨー のへの

Parikh annotations

- New language in the same class
- Additional symbols encode decomposition of Parikh image into constant and period vectors
- Adding period vectors by inserting words

→ Ξ →

For each level of the hierarchy, one can construct Parikh annotations.

A D N A B N A B N A B N

For each level of the hierarchy, one can construct Parikh annotations.

Corollary

Given $L \in G_i$ and semilinear S, one can construct $L' \in G_i$ with $L \cap \Psi^{-1}(S) \subseteq L' \subseteq (L \cap \Psi^{-1}(S)) \downarrow$.

- 4 回 ト 4 三 ト 4 三 ト

For each level of the hierarchy, one can construct Parikh annotations.

Corollary

Given $L \in G_i$ and semilinear S, one can construct $L' \in G_i$ with $L \cap \Psi^{-1}(S) \subseteq L' \subseteq (L \cap \Psi^{-1}(S)) \downarrow$.

• Select all words where adding period vectors leads into S

• • = • • =

For each level of the hierarchy, one can construct Parikh annotations.

Corollary

Given $L \in G_i$ and semilinear S, one can construct $L' \in G_i$ with $L \cap \Psi^{-1}(S) \subseteq L' \subseteq (L \cap \Psi^{-1}(S)) \downarrow$.

- Select all words where adding period vectors leads into S
- Downward closed set of multisets of period vectors

• • = • • =

For each level of the hierarchy, one can construct Parikh annotations.

Corollary

Given $L \in G_i$ and semilinear S, one can construct $L' \in G_i$ with $L \cap \Psi^{-1}(S) \subseteq L' \subseteq (L \cap \Psi^{-1}(S)) \downarrow$.

- Select all words where adding period vectors leads into S
- Downward closed set of multisets of period vectors
 - Finitely many forbidden sub-multisets

• • = • • =

For each level of the hierarchy, one can construct Parikh annotations.

Corollary

Given $L \in G_i$ and semilinear S, one can construct $L' \in G_i$ with $L \cap \Psi^{-1}(S) \subseteq L' \subseteq (L \cap \Psi^{-1}(S)) \downarrow$.

- Select all words where adding period vectors leads into S
- Downward closed set of multisets of period vectors
 - Finitely many forbidden sub-multisets
 - Presburger-definable, hence computable

→ 3 → 4 3

For each level of the hierarchy, one can construct Parikh annotations.

Corollary

Given $L \in G_i$ and semilinear S, one can construct $L' \in G_i$ with $L \cap \Psi^{-1}(S) \subseteq L' \subseteq (L \cap \Psi^{-1}(S)) \downarrow$.

- Select all words where adding period vectors leads into S
- Downward closed set of multisets of period vectors
 - Finitely many forbidden sub-multisets
 - Presburger-definable, hence computable
- Recognizable by finite automaton

→ 3 → 4 3

Conclusion

- Downward closure: promising abstraction of languages
- Computability known for few language classes
- Computable for stacked counter automata

• = • •

Conclusion

- Downward closure: promising abstraction of languages
- Computability known for few language classes
- Computable for stacked counter automata

Future work

- Applications of downward closures
- Downward closures for other WQOs
- Further classes of systems

★ ∃ ► ★

Conclusion

- Downward closure: promising abstraction of languages
- Computability known for few language classes
- Computable for stacked counter automata

Future work

- Applications of downward closures
- Downward closures for other WQOs
- Further classes of systems

Thank you for your attention!

★ Ξ →