On Boolean closed full trios and rational Kripke frames

Markus Lohrey ${ }^{1}$ Georg Zetzsche ${ }^{2}$
${ }^{1}$ Department für Elektrotechnik und Informatik
Universität Siegen
${ }^{2}$ Fachbereich Informatik
Technische Universität Kaiserslautern

$$
\text { STACS } 2014
$$

Closure properties

Common closure properties

- Homomorphism: $h: \Sigma^{*} \rightarrow \Gamma^{*}$, replaces letters by words
- Inverse homomorphism: $\left\{w \in \Sigma^{*} \mid h(w) \in L\right\}$
- Intersection with regular sets.
- Boolean operations: union, intersection, complementation.

Closure properties

Common closure properties

- Homomorphism: $h: \Sigma^{*} \rightarrow \Gamma^{*}$, replaces letters by words
- Inverse homomorphism: $\left\{w \in \Sigma^{*} \mid h(w) \in L\right\}$
- Intersection with regular sets.
- Boolean operations: union, intersection, complementation.

Definition

Language class \mathcal{C} is a full trio, if it is closed under the first three above.

Closure properties

Common closure properties

- Homomorphism: $h: \Sigma^{*} \rightarrow \Gamma^{*}$, replaces letters by words
- Inverse homomorphism: $\left\{w \in \Sigma^{*} \mid h(w) \in L\right\}$
- Intersection with regular sets.
- Boolean operations: union, intersection, complementation.

Definition

Language class \mathcal{C} is a full trio, if it is closed under the first three above.

Examples

REG, CF, LIN, Petri net languages, blind multicounter languages, classes of various grammar types, etc.

Observation
The regular languages constitute a Boolean closed full trio.

Observation
The regular languages constitute a Boolean closed full trio.

Boolean closed full trios
Are there Boolean closed full trios beyond REG?

Observation

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios
Are there Boolean closed full trios beyond REG?

- Automatic structures beyond regular languages

Observation

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios
Are there Boolean closed full trios beyond REG?

- Automatic structures beyond regular languages
- Complementation closure for union closed full trios
$\operatorname{RE}(\mathcal{C})$: Accepted by Turing machine with oracle $L \in \mathcal{C}$.

Definition

Arithmetical hierarchy:

$$
\Sigma_{0}=\operatorname{REC}, \quad \Sigma_{n+1}=\operatorname{RE}\left(\Sigma_{n}\right) \text { for } n \geqslant 0, \quad \mathrm{AH}=\bigcup_{n \geqslant 0} \Sigma_{n} \text {. }
$$

$\operatorname{RE}(\mathcal{C})$: Accepted by Turing machine with oracle $L \in \mathcal{C}$.

Definition

Arithmetical hierarchy:

$$
\Sigma_{0}=\operatorname{REC}, \quad \Sigma_{n+1}=\operatorname{RE}\left(\Sigma_{n}\right) \text { for } n \geqslant 0, \quad \mathrm{AH}=\bigcup_{n \geqslant 0} \Sigma_{n} .
$$

Relative arithmetical hierarchy:

$$
\Sigma_{0}(L)=\operatorname{REC}(L), \quad \Sigma_{n+1}(L)=\operatorname{RE}\left(\Sigma_{n}(L)\right) \text { for } n \geqslant 0, \quad \mathrm{AH}(L)=\bigcup_{n \geqslant 0} \Sigma_{n}(L) .
$$

$\operatorname{RE}(\mathcal{C})$: Accepted by Turing machine with oracle $L \in \mathcal{C}$.

Definition

Arithmetical hierarchy:

$$
\Sigma_{0}=\operatorname{REC}, \quad \Sigma_{n+1}=\operatorname{RE}\left(\Sigma_{n}\right) \text { for } n \geqslant 0, \quad \mathrm{AH}=\bigcup_{n \geqslant 0} \Sigma_{n} .
$$

Relative arithmetical hierarchy:
$\Sigma_{0}(L)=\operatorname{REC}(L), \quad \Sigma_{n+1}(L)=\operatorname{RE}\left(\Sigma_{n}(L)\right)$ for $n \geqslant 0, \quad \mathrm{AH}(L)=\bigcup_{n \geqslant 0} \Sigma_{n}(L)$.

Theorem
Let \mathcal{T} be a Boolean closed full trio. If \mathcal{T} contains any non-regular language L, then \mathcal{T} includes $\mathrm{AH}(L)$.

Example (Transducer)

Example (Transducer)

$T(A)=\left\{(x, u \# v \# w) \mid u, v, w, x \in\{0,1\}^{*}, v \leq x\right\}$

Example (Transducer)

$$
\begin{array}{ccc}
\lambda|0, \lambda| 1 & 0|0,1| 1 & \lambda|0, \lambda| 1 \\
q_{0} & \lambda \mid \# & \left(q_{1}\right) \\
0|\lambda, 1| \lambda
\end{array}
$$

$$
T(A)=\left\{(x, u \# v \# w) \mid u, v, w, x \in\{0,1\}^{*}, v \leq x\right\}
$$

Definition

- Rational transduction: set of pairs given by a finite state transducer.
- For rational transduction $T \subseteq X^{*} \times Y^{*}$ and language $L \subseteq Y^{*}$, let

$$
T L=\left\{y \in X^{*} \mid \exists x \in L:(x, y) \in T\right\}
$$

Theorem (Nivat 1968)
A language class is a full trio iff it is closed under rational transductions.

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:
(1) if $\delta_{i}=+$, then $x_{i}=x_{i-1}+1$,

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:
(1) if $\delta_{i}=+$, then $x_{i}=x_{i-1}+1$,
(2) if $\delta_{i}=-$, then $x_{i}=x_{i-1}-1$, and

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:
(1) if $\delta_{i}=+$, then $x_{i}=x_{i-1}+1$,
(2) if $\delta_{i}=-$, then $x_{i}=x_{i-1}-1$, and
(3) if $\delta_{i}=z$, then $x_{i}=x_{i-1}=0$.

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:
(1) if $\delta_{i}=+$, then $x_{i}=x_{i-1}+1$,
(2) if $\delta_{i}=-$, then $x_{i}=x_{i-1}-1$, and
(3) if $\delta_{i}=z$, then $x_{i}=x_{i-1}=0$.

Crucial step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:
(1) if $\delta_{i}=+$, then $x_{i}=x_{i-1}+1$,
(2) if $\delta_{i}=-$, then $x_{i}=x_{i-1}-1$, and
(3) if $\delta_{i}=z$, then $x_{i}=x_{i-1}=0$.

Crucial step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

Definition
 $u \equiv{ }_{L} v$: for each $w \in X^{*}, u w \in L$ iff $v w \in L$.

Proof I

Let $\Delta=\{+,-, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^{*}$ be the set of words $\delta_{1} \cdots \delta_{m}, \delta_{1}, \ldots, \delta_{m} \in \Delta$, for which there are numbers $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that for $1 \leqslant i \leqslant m$:
(1) if $\delta_{i}=+$, then $x_{i}=x_{i-1}+1$,
(2) if $\delta_{i}=-$, then $x_{i}=x_{i-1}-1$, and
(3) if $\delta_{i}=z$, then $x_{i}=x_{i-1}=0$.

Crucial step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

```
Definition
u\equivLv: for each w \in X*,uw \inL iff vw \inL.
```

Theorem (Myhill-Nerode)
L is regular if and only if \equiv_{L} has finite index.

Proof II

Idea: In order to obtain C, construct \hat{C}_{L} :

Definition

Let \hat{C}_{L} be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$

Proof II

Idea: In order to obtain C, construct \hat{C}_{L} :

Definition

Let \hat{C}_{L} be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$, such that $u_{k} \not \equiv L u_{\ell}(k \neq \ell)$

Proof II

Idea: In order to obtain C, construct \hat{C}_{L} :

Definition

Let \hat{C}_{L} be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$, such that $u_{k} \neq \mathcal{L}_{L} u_{\ell}(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

Proof II

Idea: In order to obtain C, construct \hat{C}_{L} :

Definition

Let \hat{C}_{L} be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$, such that $u_{k} \neq \mathcal{L}_{L} u_{\ell}(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

- if $\delta_{i}=+$, then $v_{i-1} \equiv \iota u_{j-1}, v_{i} \equiv \iota u_{j}$

Proof II

Idea: In order to obtain C, construct \hat{C}_{L} :

Definition

Let \hat{C}_{L} be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$, such that $u_{k} \neq \sum_{L} u_{\ell}(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

- if $\delta_{i}=+$, then $v_{i-1} \equiv \iota u_{j-1}, v_{i} \equiv \iota u_{j}$
- if $\delta_{i}=-$, then $v_{i-1} \equiv_{L} u_{j}, v_{i} \equiv_{L} u_{j-1}$

Proof II

Idea: In order to obtain C, construct \hat{C}_{L} :

Definition

Let \hat{C}_{L} be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$, such that $u_{k} \not \equiv \mathcal{L}_{L} u_{\ell}(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

- if $\delta_{i}=+$, then $v_{i-1} \equiv{ }_{L} u_{j-1}, v_{i} \equiv_{L} u_{j}$
- if $\delta_{i}=-$, then $v_{i-1} \equiv_{L} u_{j}, v_{i} \equiv \equiv_{L} u_{j-1}$
- if $\delta_{i}=z$, then $v_{i-1} \equiv \sum_{L} v_{i} u_{j} \equiv L u_{0}$.

Proof II

Idea: In order to obtain C, construct \hat{C}_{L} :

Definition

Let \hat{C}_{L} be the set of all words

$$
v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#
$$

with $\delta_{i} \in \Delta, v_{i} \in X^{*}, u_{j} \in X^{*}$, such that $u_{k} \not \equiv \mathcal{L}_{L} u_{\ell}(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

- if $\delta_{i}=+$, then $v_{i-1} \equiv_{L} u_{j-1}, v_{i} \equiv_{L} u_{j}$
- if $\delta_{i}=-$, then $v_{i-1} \equiv_{L} u_{j}, v_{i} \equiv_{L} u_{j-1}$
- if $\delta_{i}=z$, then $v_{i-1} \equiv\left\llcorner v_{i} \equiv\left\llcorner u_{j} \equiv\left\llcorner u_{0}\right.\right.\right.$.

Observation

If L is non-regular, C can be obtained from \hat{C}_{L}.

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, u w \in L\right\}, \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, v w \in L\right\} .
\end{aligned}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, u w \in L\right\}, \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, v w \in L\right\} .
\end{aligned}
$$

$$
W^{\prime}=\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad u w \in L\right\}, \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, v w \in L\right\} .
\end{aligned}
$$

$$
\begin{aligned}
W^{\prime} & =\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right)
\end{aligned}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad u w \in L\right\}, \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, v w \in L\right\} .
\end{aligned}
$$

$$
\begin{aligned}
W^{\prime} & =\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right) \\
W= & \left\{u \# v \mid u, v \in X^{*}, u \neq L v\right\}
\end{aligned}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, u w \in L\right\} \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad v w \in L\right\}
\end{aligned}
$$

$$
\begin{aligned}
W^{\prime} & =\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right)
\end{aligned}
$$

$$
W=\left\{u \# v \mid u, v \in X^{*}, u \not \equiv L v\right\}=\left\{u \# v \mid u \# v \# w \in W^{\prime} \text { for some } w \in X^{*}\right\}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, u w \in L\right\} \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad v w \in L\right\}
\end{aligned}
$$

$$
\begin{aligned}
W^{\prime} & =\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right)
\end{aligned}
$$

$$
W=\left\{u \# v \mid u, v \in X^{*}, u \not \equiv L v\right\}=\left\{u \# v \mid u \# v \# w \in W^{\prime} \text { for some } w \in X^{*}\right\}
$$

$$
P=\{u \# v \mid u \equiv \iota v\}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, u w \in L\right\} \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad v w \in L\right\}
\end{aligned}
$$

$$
\begin{aligned}
W^{\prime} & =\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right)
\end{aligned}
$$

$$
W=\left\{u \# v \mid u, v \in X^{*}, u \not \equiv L v\right\}=\left\{u \# v \mid u \# v \# w \in W^{\prime} \text { for some } w \in X^{*}\right\}
$$

$$
P=\{u \# v \mid u \equiv L v\}=X^{*} \# X^{*} \backslash W
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, u w \in L\right\}, \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, v w \in L\right\} .
\end{aligned}
$$

$$
\begin{aligned}
W^{\prime} & =\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right)
\end{aligned}
$$

$$
W=\left\{u \# v \mid u, v \in X^{*}, u \not \equiv L v\right\}=\left\{u \# v \mid u \# v \# w \in W^{\prime} \text { for some } w \in X^{*}\right\}
$$

$$
P=\left\{u \# v \mid u \equiv\llcorner v\}=X^{*} \# X^{*} \backslash W\right.
$$

$$
S=\left\{u_{0} \# u_{1} \# \cdots u_{n} \# \mid u_{i} \not \equiv L u_{j} \text { for all } i \neq j\right\}
$$

Proof III

$$
\begin{aligned}
& W_{1}=\left\{u \# v \# w \mid u, v, w \in X^{*}, u w \in L\right\} \\
& W_{2}=\left\{u \# v \# w \mid u, v, w \in X^{*}, \quad v w \in L\right\}
\end{aligned}
$$

$$
\begin{aligned}
& W^{\prime}=\left\{u \# v \# w \mid u, v, w \in X^{*},(u w \in L, v w \notin L) \text { or }(u w \notin L, v w \in L)\right\} \\
& =\left(W_{1} \cap \overline{W_{2}}\right) \cup\left(\overline{W_{1}} \cap W_{2}\right) \\
& W=\left\{u \# v \mid u, v \in X^{*}, u \not \equiv L v\right\}=\left\{u \# v \mid u \# v \# w \in W^{\prime} \text { for some } w \in X^{*}\right\} \\
& P=\left\{u \# v \mid u \equiv\llcorner v\}=X^{*} \# X^{*} \backslash W\right. \\
& S=\left\{u_{0} \# u_{1} \# \cdots u_{n} \# \mid u_{i} \not \equiv L u_{j} \text { for all } i \neq j\right\} \\
& =\left(X^{*} \#\right)^{*} \backslash\left\{r u \# s v \# t \mid r, s, t \in\left(X^{*} \#\right)^{*}, u \# v \in P\right\} \text {. }
\end{aligned}
$$

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$, $v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$, $v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv{ }_{L} u_{1}$ and $v_{2} \equiv{ }_{L} u_{2}$,

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$, $v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv{ }_{L} u_{1}$ and $v_{2} \equiv{ }_{L} u_{2}$,
- if $\delta=-$, then $v_{1} \equiv_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$, $v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv{ }_{L} u_{1}$ and $v_{2} \equiv \equiv_{L} u_{2}$,
- if $\delta=-$, then $v_{1} \equiv_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and
- if $\delta=z$, then $v_{1} \equiv L v_{2} \equiv L u_{1}$.

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$, $v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv{ }_{L} u_{1}$ and $v_{2} \equiv{ }_{L} u_{2}$,
- if $\delta=-$, then $v_{1} \equiv{ }_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and
- if $\delta=z$, then $v_{1} \equiv L v_{2} \equiv L u_{1}$.

$$
\begin{aligned}
M= & \left\{v_{1}+v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{1} \in P, v_{2} \# u_{2} \in P\right\} \\
& \cup\left\{v_{1}-v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{2} \in P, v_{2} \# u_{1} \in P\right\} \\
& \cup\left\{v_{1} z v_{2} \# u_{1} \# u_{2} \mid v_{1} \# v_{2} \in P, v_{1} \# u_{1} \in P, u_{2} \in X^{*}\right\}
\end{aligned}
$$

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$,
$v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv{ }_{L} u_{1}$ and $v_{2} \equiv{ }_{L} u_{2}$,
- if $\delta=-$, then $v_{1} \equiv{ }_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and
- if $\delta=z$, then $v_{1} \equiv L v_{2} \equiv L u_{1}$.

$$
\begin{aligned}
M= & \left\{v_{1}+v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{1} \in P, v_{2} \# u_{2} \in P\right\} \\
& \cup\left\{v_{1}-v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{2} \in P, v_{2} \# u_{1} \in P\right\} \\
& \cup\left\{v_{1} z v_{2} \# u_{1} \# u_{2} \mid v_{1} \# v_{2} \in P, v_{1} \# u_{1} \in P, u_{2} \in X^{*}\right\}
\end{aligned}
$$

Let E (error) be the set of words $v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant j \leqslant n$, we have $v_{1} \delta v_{2} \# u_{j-1} \# u_{j} \notin M$ or we have $\delta=z$ and $v_{1} \not \equiv L u_{0}$.

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$,
$v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv\left\llcorner u_{1}\right.$ and $v_{2} \equiv \sum_{L} u_{2}$,
- if $\delta=-$, then $v_{1} \equiv{ }_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and
- if $\delta=z$, then $v_{1} \equiv L v_{2} \equiv L u_{1}$.

$$
\begin{aligned}
M= & \left\{v_{1}+v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{1} \in P, v_{2} \# u_{2} \in P\right\} \\
& \cup\left\{v_{1}-v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{2} \in P, v_{2} \# u_{1} \in P\right\} \\
& \cup\left\{v_{1} z v_{2} \# u_{1} \# u_{2} \mid v_{1} \# v_{2} \in P, v_{1} \# u_{1} \in P, u_{2} \in X^{*}\right\}
\end{aligned}
$$

Let E (error) be the set of words $v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant j \leqslant n$, we have $v_{1} \delta v_{2} \# u_{j-1} \# u_{j} \notin M$ or we have $\delta=z$ and $v_{1} \not \equiv L u_{0}$.

$$
E^{\prime}=\left\{v_{1} \delta v_{2} \# r u_{1} \# u_{2} \# s \mid v_{1} \delta v_{2} \# u_{1} \# u_{2} \in M, r, s \in\left(X^{*} \#\right)^{*}\right\}
$$

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$,
$v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv L u_{1}$ and $v_{2} \equiv L u_{2}$,
- if $\delta=-$, then $v_{1} \equiv_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and
- if $\delta=z$, then $v_{1} \equiv L v_{2} \equiv L u_{1}$.

$$
\begin{aligned}
M= & \left\{v_{1}+v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{1} \in P, v_{2} \# u_{2} \in P\right\} \\
& \cup\left\{v_{1}-v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{2} \in P, v_{2} \# u_{1} \in P\right\} \\
& \cup\left\{v_{1} z v_{2} \# u_{1} \# u_{2} \mid v_{1} \# v_{2} \in P, v_{1} \# u_{1} \in P, u_{2} \in X^{*}\right\}
\end{aligned}
$$

Let E (error) be the set of words $v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant j \leqslant n$, we have $v_{1} \delta v_{2} \# u_{j-1} \# u_{j} \notin M$ or we have $\delta=z$ and $v_{1} \not \equiv L u_{0}$.

$$
E^{\prime}=\left\{v_{1} \delta v_{2} \# r u_{1} \# u_{2} \# s \mid v_{1} \delta v_{2} \# u_{1} \# u_{2} \in M, r, s \in\left(X^{*} \#\right)^{*}\right\}
$$

$$
E=\left[\left(X^{*} \Delta X^{*} \#\left(X^{*} \#\right)^{*} \backslash E^{\prime}\right]\right.
$$

Proof IV

Let M (matching) be the set of all words $v_{1} \delta v_{2} \# u_{1} \# u_{2}$,
$v_{1}, v_{2}, u_{1}, u_{2} \in X^{*}$, with

- if $\delta=+$, then $v_{1} \equiv{ }_{L} u_{1}$ and $v_{2} \equiv \equiv_{L} u_{2}$,
- if $\delta=-$, then $v_{1} \equiv_{L} u_{2}$ and $v_{2} \equiv_{L} u_{1}$, and
- if $\delta=z$, then $v_{1} \equiv L v_{2} \equiv L u_{1}$.

$$
\begin{aligned}
M= & \left\{v_{1}+v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{1} \in P, v_{2} \# u_{2} \in P\right\} \\
& \cup\left\{v_{1}-v_{2} \# u_{1} \# u_{2} \mid v_{1} \# u_{2} \in P, v_{2} \# u_{1} \in P\right\} \\
& \cup\left\{v_{1} z v_{2} \# u_{1} \# u_{2} \mid v_{1} \# v_{2} \in P, v_{1} \# u_{1} \in P, u_{2} \in X^{*}\right\}
\end{aligned}
$$

Let E (error) be the set of words $v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant j \leqslant n$, we have $v_{1} \delta v_{2} \# u_{j-1} \# u_{j} \notin M$ or we have $\delta=z$ and $v_{1} \not \equiv L u_{0}$.

$$
E^{\prime}=\left\{v_{1} \delta v_{2} \# r u_{1} \# u_{2} \# s \mid v_{1} \delta v_{2} \# u_{1} \# u_{2} \in M, r, s \in\left(X^{*} \#\right)^{*}\right\}
$$

$$
E=\left[\left(X^{*} \Delta X^{*} \#\left(X^{*} \#\right)^{*} \backslash E^{\prime}\right] \cup\left\{v_{1} z v_{2} \# u_{0} r \mid v_{1} \not \equiv L u_{0}, r \in\left(X^{*} \#\right)^{*}\right\}\right.
$$

Proof V

Let N (no error) be the set of words $v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant i \leqslant m$, there is a $1 \leqslant j \leqslant n$ with $v_{i-1} \delta_{i} v_{i} \# u_{j-1} \# u_{j} \in M$ and if $\delta_{i}=z$, then $v_{i-1} \equiv \equiv_{L} u_{0}$.

Proof V

Let N (no error) be the set of words $v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant i \leqslant m$, there is a $1 \leqslant j \leqslant n$ with $v_{i-1} \delta_{i} v_{i} \# u_{j-1} \# u_{j} \in M$ and if $\delta_{i}=z$, then $v_{i-1} \equiv \equiv_{L} u_{0}$.
$N^{\prime}=\left\{w \in\left(X^{*} \Delta\right)^{*} v_{1} \delta v_{2}\left(\Delta X^{*}\right)^{*} \# u_{0} \# \cdots u_{n} \# \mid v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \# \in E\right\}$,

Proof V

Let N (no error) be the set of words $v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant i \leqslant m$, there is a $1 \leqslant j \leqslant n$ with $v_{i-1} \delta_{i} v_{i} \# u_{j-1} \# u_{j} \in M$ and if $\delta_{i}=z$, then $v_{i-1} \equiv \equiv_{L} u_{0}$.
$N^{\prime}=\left\{w \in\left(X^{*} \Delta\right)^{*} v_{1} \delta v_{2}\left(\Delta X^{*}\right)^{*} \# u_{0} \# \cdots u_{n} \# \mid v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \# \in E\right\}$,
$N=\left(X^{*} \Delta\right)^{+} X^{*} \#\left(X^{*} \#\right)^{*} \backslash N^{\prime}$.

Proof V

Let N (no error) be the set of words $v_{0} \delta_{1} v_{1} \cdots \delta_{m} v_{m} \# u_{0} \# \cdots u_{n} \#$ such that for every $1 \leqslant i \leqslant m$, there is a $1 \leqslant j \leqslant n$ with $v_{i-1} \delta_{i} v_{i} \# u_{j-1} \# u_{j} \in M$ and if $\delta_{i}=z$, then $v_{i-1} \equiv \equiv_{L} u_{0}$.

$$
\begin{aligned}
N^{\prime} & =\left\{w \in\left(X^{*} \Delta\right)^{*} v_{1} \delta v_{2}\left(\Delta X^{*}\right)^{*} \# u_{0} \# \cdots u_{n} \# \mid v_{1} \delta v_{2} \# u_{0} \# \cdots u_{n} \# \in E\right\} \\
N & =\left(X^{*} \Delta\right)^{+} X^{*} \#\left(X^{*} \#\right)^{*} \backslash N^{\prime}
\end{aligned}
$$

Now we have

$$
\hat{C}_{L}=N \cap\left(X^{*} \Delta\right)^{*} X^{*} \# S
$$

Hence, $C \in \mathcal{T}$.

Proof VI

$\mathrm{RE} \subseteq \mathcal{T}$ follows by standard techniques:

Proof VI

$\mathrm{RE} \subseteq \mathcal{T}$ follows by standard techniques:

- Use intersection to get counter language for two counters.

Proof VI

$\mathrm{RE} \subseteq \mathcal{T}$ follows by standard techniques:

- Use intersection to get counter language for two counters.
- Use transducer to obtain language accepted by given two-counter automaton.

Proof VI

$\mathrm{RE} \subseteq \mathcal{T}$ follows by standard techniques:

- Use intersection to get counter language for two counters.
- Use transducer to obtain language accepted by given two-counter automaton.
For $\mathrm{AH}(L) \subseteq \mathcal{T}$: show that $K \in \mathcal{T}$ implies $\operatorname{RE}(K) \subseteq \mathcal{T}$ (as above).

Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathrm{AH}(L)$.

Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathrm{AH}(L)$.

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathrm{RE}$ is Boolean closed.

Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathrm{AH}(\mathrm{L})$.

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathrm{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathrm{AH}(\mathrm{L})$.

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathrm{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L.

Corollary

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathrm{AH}(\mathrm{L})$.

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathrm{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of $R L$ for rational transductions R.

```
Corollary
Let \(L\) be non-regular. The smallest Boolean closed full trio containing \(L\) is \(\mathrm{AH}(L)\).
```


Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathrm{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of $R L$ for rational transductions R. Hence, \mathcal{T} is union-closed and $\mathcal{T} \subseteq \operatorname{RE}(L) \subsetneq \mathrm{AH}(L)$.

Abstract

Corollary Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathrm{AH}(L)$.

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathrm{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of $R L$ for rational transductions R. Hence, \mathcal{T} is union-closed and $\mathcal{T} \subseteq \operatorname{RE}(L) \subsetneq \mathrm{AH}(L)$. If \mathcal{T} were complementation closed, it would contain $\mathrm{AH}(L)$, contradiction!

Application: Valence automata

Definition

A monoid is a set M together with an associative operation and a neutral element.

Application: Valence automata

Definition

A monoid is a set M together with an associative operation and a neutral element.

Valence Automata

Valence automaton over M :

- Finite automaton with edges $p \xrightarrow{w \mid m} q, w \in \Sigma^{*}, m \in M$.
- Run $q_{0} \xrightarrow{w_{1} \mid m_{1}} q_{1} \xrightarrow{w_{2} \mid m_{2}} \cdots \xrightarrow{w_{n} \mid m_{n}} q_{n}$ is accepting for $w_{1} \cdots w_{n}$ if q_{0} is the initial state,
q_{n} is a final state, and

Application: Valence automata

Definition

A monoid is a set M together with an associative operation and a neutral element.

Valence Automata

Valence automaton over M :

- Finite automaton with edges $p \xrightarrow{w \mid m} q, w \in \Sigma^{*}, m \in M$.
- Run $q_{0} \xrightarrow{w_{1} \mid m_{1}} q_{1} \xrightarrow{w_{2} \mid m_{2}} \cdots \xrightarrow{w_{n} \mid m_{n}} q_{n}$ is accepting for $w_{1} \cdots w_{n}$ if
q_{0} is the initial state,
q_{n} is a final state, and

$$
m_{1} \cdots m_{n}=1 .
$$

Application: Valence automata

Definition

A monoid is a set M together with an associative operation and a neutral element.

Valence Automata

Valence automaton over M :

- Finite automaton with edges $p \xrightarrow{w \mid m} q, w \in \Sigma^{*}, m \in M$.
- Run $q_{0} \xrightarrow{w_{1} \mid m_{1}} q_{1} \xrightarrow{w_{2} \mid m_{2}} \cdots \xrightarrow{w_{n} \mid m_{n}} q_{n}$ is accepting for $w_{1} \cdots w_{n}$ if q_{0} is the initial state, q_{n} is a final state, and $m_{1} \cdots m_{n}=1$.

Language class
$\operatorname{VA}(M)$ languages accepted by valence automata over M.

Corollary

Let M be a finitely generated monoid. The following are equivalent:
(1) $\operatorname{VA}(M)$ is complementation closed.
(2) $\operatorname{VA}(M)=$ REG .
(3) M has finitely many right-invertible elements.

Corollary

Let M be a finitely generated monoid. The following are equivalent:
(1) $\operatorname{VA}(M)$ is complementation closed.
(2) $\operatorname{VA}(M)=$ REG
(3) M has finitely many right-invertible elements.

Proof.

If M is finitely generated, $\operatorname{VA}(M)$ is a principal full trio.

Corollary

Let M be a finitely generated monoid. The following are equivalent:
(1) $\operatorname{VA}(M)$ is complementation closed.
(2) $\operatorname{VA}(M)=$ REG
(3) M has finitely many right-invertible elements.

Proof.

If M is finitely generated, $\operatorname{VA}(M)$ is a principal full trio. Equivalence of 2 and 3 has been shown by Render (2010) and Z. (2011).

Application: Rational Kripke Frames

Improvement

In order to construct languages over $\{0,1\}$, three fixed rational transductions suffice.

Application: Rational Kripke Frames

Improvement

In order to construct languages over $\{0,1\}$, three fixed rational transductions suffice.

Theorem

Let $X=\{0,1\}$. There is a Kripke frame with

- X^{*} as its set of worlds and
- rational transductions $R, S, T \subseteq X^{*} \times X^{*}$ as modalities
such that for any non-regular L, in the Kripke structure $\mathcal{K}=\left(X^{*}, R, S, T, L\right)$, for each $K \in \mathrm{AH}(L)$, there is a φ with $\llbracket \varphi \rrbracket_{\mathcal{K}}=K$.

Open problems

- Can we reduce the number of transductions?
- What about other classes of transductions?

What classes admit encoding of first-order theory and decidability of emptiness?
For what classes do we get undecidability beyond REG?

