On Boolean closed full trios and rational Kripke frames

Markus Lohrey¹ Georg Zetzsche²

¹Department für Elektrotechnik und Informatik Universität Siegen

²Fachbereich Informatik Technische Universität Kaiserslautern

STACS 2014

Closure properties

Common closure properties

- Homomorphism: $h: \Sigma^* \to \Gamma^*$, replaces letters by words
- Inverse homomorphism: $\{w \in \Sigma^* \mid h(w) \in L\}$
- Intersection with regular sets.
- Boolean operations: union, intersection, complementation.

Closure properties

Common closure properties

- Homomorphism: $h: \Sigma^* \to \Gamma^*$, replaces letters by words
- Inverse homomorphism: $\{w \in \Sigma^* \mid h(w) \in L\}$
- Intersection with regular sets.
- Boolean operations: union, intersection, complementation.

Definition

Language class C is a *full trio*, if it is closed under the first three above.

Closure properties

Common closure properties

- Homomorphism: $h: \Sigma^* \to \Gamma^*$, replaces letters by words
- Inverse homomorphism: $\{w \in \Sigma^* \mid h(w) \in L\}$
- Intersection with regular sets.
- Boolean operations: union, intersection, complementation.

Definition

Language class $\mathcal C$ is a *full trio*, if it is closed under the first three above.

Examples

REG, CF, LIN, Petri net languages, blind multicounter languages, classes of various grammar types, etc.

The regular languages constitute a Boolean closed full trio.

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios

Are there Boolean closed full trios beyond REG?

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios

Are there Boolean closed full trios beyond REG?

Automatic structures beyond regular languages

The regular languages constitute a Boolean closed full trio.

Boolean closed full trios

Are there Boolean closed full trios beyond REG?

- Automatic structures beyond regular languages
- Complementation closure for union closed full trios

RE(C): Accepted by Turing machine with oracle $L \in C$.

Definition

Arithmetical hierarchy:

$$\Sigma_0 = \mathsf{REC}, \qquad \Sigma_{n+1} = \mathsf{RE}(\Sigma_n) \ \ \text{for} \ n \geqslant 0, \qquad \mathsf{AH} = \bigcup_{n \geqslant 0} \Sigma_n.$$

RE(C): Accepted by Turing machine with oracle $L \in C$.

Definition

Arithmetical hierarchy:

$$\Sigma_0 = \mathsf{REC}, \qquad \Sigma_{n+1} = \mathsf{RE}(\Sigma_n) \; \; \mathsf{for} \; n \geqslant 0, \qquad \mathsf{AH} = \bigcup_{n \geqslant 0} \Sigma_n.$$

Relative arithmetical hierarchy:

$$\Sigma_0(L) = \mathsf{REC}(L), \quad \Sigma_{n+1}(L) = \mathsf{RE}(\Sigma_n(L)) \quad \text{for } n \geqslant 0, \quad \mathsf{AH}(L) = \bigcup_{n \geqslant 0} \Sigma_n(L).$$

RE(C): Accepted by Turing machine with oracle $L \in C$.

Definition

Arithmetical hierarchy:

$$\Sigma_0 = \mathsf{REC}, \qquad \Sigma_{n+1} = \mathsf{RE}(\Sigma_n) \ \ \mathsf{for} \ n \geqslant 0, \qquad \mathsf{AH} = \bigcup_{n \geqslant 0} \Sigma_n.$$

Relative arithmetical hierarchy:

$$\Sigma_0(L) = \mathsf{REC}(L), \quad \Sigma_{n+1}(L) = \mathsf{RE}(\Sigma_n(L)) \quad \text{for } n \geqslant 0, \quad \mathsf{AH}(L) = \bigcup_{n \geqslant 0} \Sigma_n(L).$$

Theorem

Let $\mathcal T$ be a Boolean closed full trio. If $\mathcal T$ contains any non-regular language L, then $\mathcal T$ includes $\mathsf{AH}(L)$.

Example (Transducer)

Example (Transducer)

$$T(A) = \{(x, u \# v \# w) \mid u, v, w, x \in \{0, 1\}^*, \ v \le x\}$$

Example (Transducer)

$$T(A) = \{(x, u \# v \# w) \mid u, v, w, x \in \{0, 1\}^*, v \le x\}$$

Definition

- Rational transduction: set of pairs given by a finite state transducer.
- For rational transduction $T \subseteq X^* \times Y^*$ and language $L \subseteq Y^*$, let

$$TL = \{ y \in X^* \mid \exists x \in L : (x, y) \in T \}$$

Theorem (Nivat 1968)

A language class is a full trio iff it is closed under rational transductions.

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

1 if $\delta_i = +$, then $x_i = x_{i-1} + 1$,

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

- **1** if $\delta_i = +$, then $x_i = x_{i-1} + 1$,
- ② if $\delta_i = -$, then $x_i = x_{i-1} 1$, and

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

- **1** if $\delta_i = +$, then $x_i = x_{i-1} + 1$,
- 2 if $\delta_i = -$, then $x_i = x_{i-1} 1$, and
- **3** if $\delta_i = z$, then $x_i = x_{i-1} = 0$.

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

- **1** if $\delta_i = +$, then $x_i = x_{i-1} + 1$,
- ② if $\delta_i = -$, then $x_i = x_{i-1} 1$, and
- **3** if $\delta_i = z$, then $x_i = x_{i-1} = 0$.

Crucial step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

- **1** if $\delta_i = +$, then $x_i = x_{i-1} + 1$,
- ② if $\delta_i = -$, then $x_i = x_{i-1} 1$, and
- **3** if $\delta_i = z$, then $x_i = x_{i-1} = 0$.

Crucial step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

Definition

 $u \equiv_L v$: for each $w \in X^*$, $uw \in L$ iff $vw \in L$.

Let $\Delta = \{+, -, z\}$: increment, decrement, and zero test.

Definition

Let $C \subseteq \Delta^*$ be the set of words $\delta_1 \cdots \delta_m$, $\delta_1, \ldots, \delta_m \in \Delta$, for which there are numbers $x_0, \ldots, x_m \in \mathbb{N}$ such that for $1 \leq i \leq m$:

- **1** if $\delta_i = +$, then $x_i = x_{i-1} + 1$,
- ② if $\delta_i = -$, then $x_i = x_{i-1} 1$, and
- **3** if $\delta_i = z$, then $x_i = x_{i-1} = 0$.

Crucial step: If \mathcal{T} contains non-regular L, then \mathcal{T} contains C.

Definition

 $u \equiv_L v$: for each $w \in X^*$, $uw \in L$ iff $vw \in L$.

Theorem (Myhill-Nerode)

L is regular if and only if \equiv_L has finite index.

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \not\equiv_L u_\ell \ (k \neq \ell)$

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \not\equiv_L u_\ell$ $(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \not\equiv_L u_\ell$ $(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

• if $\delta_i = +$, then $v_{i-1} \equiv_L u_{j-1}$, $v_i \equiv_L u_j$

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \not\equiv_L u_\ell$ $(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

- if $\delta_i = +$, then $v_{i-1} \equiv_L u_{j-1}$, $v_i \equiv_L u_j$
- if $\delta_i = -$, then $v_{i-1} \equiv_L u_j$, $v_i \equiv_L u_{j-1}$

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \not\equiv_L u_\ell$ $(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

- if $\delta_i = +$, then $v_{i-1} \equiv_L u_{j-1}$, $v_i \equiv_L u_j$
- if $\delta_i = -$, then $v_{i-1} \equiv_L u_j$, $v_i \equiv_L u_{j-1}$
- if $\delta_i = z$, then $v_{i-1} \equiv_L v_i \equiv_L u_j \equiv_L u_0$.

Idea: In order to obtain C, construct \hat{C}_L :

Definition

Let \hat{C}_L be the set of all words

$$v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$$

with $\delta_i \in \Delta$, $v_i \in X^*$, $u_j \in X^*$, such that $u_k \not\equiv_L u_\ell$ $(k \neq \ell)$ and for each $1 \leqslant i \leqslant m$ there is a $1 \leqslant j \leqslant n$ with

- if $\delta_i = +$, then $v_{i-1} \equiv_L u_{j-1}$, $v_i \equiv_L u_j$
- if $\delta_i = -$, then $v_{i-1} \equiv_L u_j$, $v_i \equiv_L u_{j-1}$
- if $\delta_i = z$, then $v_{i-1} \equiv_L v_i \equiv_L u_j \equiv_L u_0$.

Observation

If L is non-regular, C can be obtained from \hat{C}_L .

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \},$$

$$W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \},$$

$$W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{u\#v\#w \mid u,v,w \in X^*, (uw \in L,vw \notin L) \text{ or } (uw \notin L,vw \in L)\}$$

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \},$$

$$W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \},$$

$$W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W=\{u\#v\mid u,v\in X^*,u\not\equiv_L v\}$$

$$W_1 = \{u \# v \# w \mid u, v, w \in X^*, uw \in L\},\$$

 $W_2 = \{u \# v \# w \mid u, v, w \in X^*, vw \in L\}.$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W = \{u \# v \mid u, v \in X^*, u \not\equiv_L v\} = \{u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^*\}$$

$$W_1 = \{u \# v \# w \mid u, v, w \in X^*, uw \in L\},\$$

 $W_2 = \{u \# v \# w \mid u, v, w \in X^*, vw \in L\}.$

$$W' = \{u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L)\}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W = \{u \# v \mid u, v \in X^*, u \not\equiv_L v\} = \{u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^*\}$$

$$P = \{u \# v \mid u \equiv_L v\}$$

Proof III

$$W_1 = \{ u \# v \# w \mid u, v, w \in X^*, uw \in L \},$$

 $W_2 = \{ u \# v \# w \mid u, v, w \in X^*, vw \in L \}.$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W = \{u \# v \mid u, v \in X^*, u \not\equiv_L v\} = \{u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^*\}$$

$$P = \{u \# v \mid u \equiv_L v\} = X^* \# X^* \backslash W$$

Proof III

$$W_1 = \{u \# v \# w \mid u, v, w \in X^*, uw \in L\},\$$

 $W_2 = \{u \# v \# w \mid u, v, w \in X^*, vw \in L\}.$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W = \{u \# v \mid u, v \in X^*, u \not\equiv_L v\} = \{u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^*\}$$

$$P = \{u \# v \mid u \equiv_L v\} = X^* \# X^* \backslash W$$

$$S = \{u_0 \# u_1 \# \cdots u_n \# \mid u_i \not\equiv_L u_j \text{ for all } i \neq j\}$$

Proof III

$$W_1 = \{u \# v \# w \mid u, v, w \in X^*, uw \in L\},\$$

 $W_2 = \{u \# v \# w \mid u, v, w \in X^*, vw \in L\}.$

$$W' = \{ u \# v \# w \mid u, v, w \in X^*, (uw \in L, vw \notin L) \text{ or } (uw \notin L, vw \in L) \}$$
$$= (W_1 \cap \overline{W_2}) \cup (\overline{W_1} \cap W_2)$$

$$W = \{u \# v \mid u, v \in X^*, u \not\equiv_L v\} = \{u \# v \mid u \# v \# w \in W' \text{ for some } w \in X^*\}$$

$$P = \{u \# v \mid u \equiv_L v\} = X^* \# X^* \backslash W$$

$$S = \{u_0 \# u_1 \# \cdots u_n \# \mid u_i \not\equiv_L u_j \text{ for all } i \neq j\}$$

= $(X^* \#)^* \setminus \{ru \# sv \# t \mid r, s, t \in (X^* \#)^*, u \# v \in P\}.$

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

Let M (matching) be the set of all words $v_1\delta v_2\#u_1\#u_2$, $v_1,v_2,u_1,u_2\in X^*$, with

• if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$,

 $v_1, v_2, u_1, u_2 \in X^*$, with

- if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,
- if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$,

 $v_1, v_2, u_1, u_2 \in X^*$, with

- if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,
- if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and
- if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$.

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

- if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,
- if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and
- if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$.

$$M = \{v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P\}$$

$$\cup \{v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P\}$$

$$\cup \{v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^*\}$$

Let M (matching) be the set of all words $v_1 \delta v_2 \# u_1 \# u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

- if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,
- if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and
- if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$.

$$M = \{v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P\}$$

$$\cup \{v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P\}$$

$$\cup \{v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^*\}$$

Let M (matching) be the set of all words $v_1\delta v_2\#u_1\#u_2$, $v_1,v_2,u_1,u_2\in X^*$, with

- if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,
- if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and
- if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$.

$$M = \{v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P\}$$

$$\cup \{v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P\}$$

$$\cup \{v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^*\}$$

$$E' = \{v_1 \delta v_2 \# r u_1 \# u_2 \# s \mid v_1 \delta v_2 \# u_1 \# u_2 \in M, r, s \in (X^* \#)^*\}$$

Let M (matching) be the set of all words $v_1\delta v_2\#u_1\#u_2$, $v_1,v_2,u_1,u_2\in X^*$, with

- if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,
- if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and
- if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$.

$$M = \{v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P\}$$

$$\cup \{v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P\}$$

$$\cup \{v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^*\}$$

$$E' = \{v_1 \delta v_2 \# r u_1 \# u_2 \# s \mid v_1 \delta v_2 \# u_1 \# u_2 \in M, r, s \in (X^* \#)^*\}$$

$$E = \left[(X^* \Delta X^* \# (X^* \#)^* \backslash E' \right]$$

Let M (matching) be the set of all words $v_1\delta v_2\#u_1\#u_2$, $v_1, v_2, u_1, u_2 \in X^*$, with

- if $\delta = +$, then $v_1 \equiv_L u_1$ and $v_2 \equiv_L u_2$,
- if $\delta = -$, then $v_1 \equiv_L u_2$ and $v_2 \equiv_L u_1$, and
- if $\delta = z$, then $v_1 \equiv_L v_2 \equiv_L u_1$.

$$M = \{v_1 + v_2 \# u_1 \# u_2 \mid v_1 \# u_1 \in P, v_2 \# u_2 \in P\}$$

$$\cup \{v_1 - v_2 \# u_1 \# u_2 \mid v_1 \# u_2 \in P, v_2 \# u_1 \in P\}$$

$$\cup \{v_1 z v_2 \# u_1 \# u_2 \mid v_1 \# v_2 \in P, v_1 \# u_1 \in P, u_2 \in X^*\}$$

$$E' = \{v_1 \delta v_2 \# r u_1 \# u_2 \# s \mid v_1 \delta v_2 \# u_1 \# u_2 \in M, r, s \in (X^* \#)^*\}$$

$$E = \left[(X^* \Delta X^* \# (X^* \#)^* \backslash E' \right] \ \cup \ \{ v_1 z v_2 \# u_0 r \mid v_1 \not\equiv_L u_0, \ r \in (X^* \#)^* \}.$$

Let N (no error) be the set of words $v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$ such that for every $1\leqslant i\leqslant m$, there is a $1\leqslant j\leqslant n$ with $v_{i-1}\delta_iv_i\#u_{j-1}\#u_j\in M$ and if $\delta_i=z$, then $v_{i-1}\equiv_I u_0$.

Let N (no error) be the set of words $v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$ such that for every $1\leqslant i\leqslant m$, there is a $1\leqslant j\leqslant n$ with $v_{i-1}\delta_iv_i\#u_{j-1}\#u_j\in M$ and if $\delta_i=z$, then $v_{i-1}\equiv_L u_0$.

$$\textit{N}' = \{ w \in (X^*\Delta)^* v_1 \delta v_2 (\Delta X^*)^* \# u_0 \# \cdots u_n \# \mid v_1 \delta v_2 \# u_0 \# \cdots u_n \# \in E \},$$

Let N (no error) be the set of words $v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$ such that for every $1\leqslant i\leqslant m$, there is a $1\leqslant j\leqslant n$ with $v_{i-1}\delta_iv_i\#u_{j-1}\#u_j\in M$ and if $\delta_i=z$, then $v_{i-1}\equiv_L u_0$.

$$N' = \{ w \in (X^*\Delta)^* v_1 \delta v_2 (\Delta X^*)^* \# u_0 \# \cdots u_n \# \mid v_1 \delta v_2 \# u_0 \# \cdots u_n \# \in E \},$$

$$N = (X^*\Delta)^+ X^* \# (X^*\#)^* \setminus N'.$$

Let N (no error) be the set of words $v_0\delta_1v_1\cdots\delta_mv_m\#u_0\#\cdots u_n\#$ such that for every $1\leqslant i\leqslant m$, there is a $1\leqslant j\leqslant n$ with $v_{i-1}\delta_iv_i\#u_{j-1}\#u_j\in M$ and if $\delta_i=z$, then $v_{i-1}\equiv_L u_0$.

$$N' = \{ w \in (X^*\Delta)^* v_1 \delta v_2 (\Delta X^*)^* \# u_0 \# \cdots u_n \# \mid v_1 \delta v_2 \# u_0 \# \cdots u_n \# \in E \},$$

$$N = (X^*\Delta)^+ X^* \# (X^*\#)^* \setminus N'.$$

Now we have

$$\hat{C}_L = N \cap (X^*\Delta)^*X^*\#S.$$

Hence, $C \in \mathcal{T}$.

 $RE \subseteq \mathcal{T}$ follows by standard techniques:

 $\mathsf{RE} \subseteq \mathcal{T}$ follows by standard techniques:

• Use intersection to get counter language for two counters.

$RE \subseteq \mathcal{T}$ follows by standard techniques:

- Use intersection to get counter language for two counters.
- Use transducer to obtain language accepted by given two-counter automaton.

 $\mathsf{RE} \subseteq \mathcal{T}$ follows by standard techniques:

- Use intersection to get counter language for two counters.
- Use transducer to obtain language accepted by given two-counter automaton.

For $AH(L) \subseteq \mathcal{T}$: show that $K \in \mathcal{T}$ implies $RE(K) \subseteq \mathcal{T}$ (as above).

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathsf{AH}(L)$.

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathsf{AH}(L)$.

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq RE$ is Boolean closed.

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathsf{AH}(L)$.

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathsf{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathsf{AH}(L)$.

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathsf{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L.

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathsf{AH}(L)$.

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathsf{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of RL for rational transductions R.

Let L be non-regular. The smallest Boolean closed full trio containing L is AH(L).

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathsf{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of RL for rational transductions R. Hence, \mathcal{T} is union-closed and $\mathcal{T} \subseteq RE(L) \subsetneq AH(L)$.

Let L be non-regular. The smallest Boolean closed full trio containing L is $\mathsf{AH}(L)$.

Corollary

Other than the regular languages, no full trio $\mathcal{T} \subseteq \mathsf{RE}$ is Boolean closed.

Corollary

Other than the regular languages, no principal full trio is complementation closed.

Proof.

Let \mathcal{T} be generated by L. It consists of RL for rational transductions R. Hence, \mathcal{T} is union-closed and $\mathcal{T} \subseteq \mathsf{RE}(L) \subsetneq \mathsf{AH}(L)$. If \mathcal{T} were complementation closed, it would contain $\mathsf{AH}(L)$, contradiction!

Definition

A monoid is a set M together with an associative operation and a neutral element.

Definition

A monoid is a set M together with an associative operation and a neutral element.

Valence Automata

Valence automaton over M:

- Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.
- Run $q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$ is accepting for $w_1 \cdots w_n$ if
 - $p = q_0$ is the initial state,
 - $primeq q_n$ is a final state, and

Definition

A monoid is a set M together with an associative operation and a neutral element.

Valence Automata

Valence automaton over M:

- Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.
- Run $q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$ is accepting for $w_1 \cdots w_n$ if
 - $p = q_0$ is the initial state,
 - p q_n is a final state, and
 - $m_1 \cdots m_n = 1$.

Definition

A monoid is a set M together with an associative operation and a neutral element.

Valence Automata

Valence automaton over M:

- Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.
- Run $q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$ is accepting for $w_1 \cdots w_n$ if
 - $prop q_0$ is the initial state,
 - $p q_n$ is a final state, and
 - $m_1 \cdots m_n = 1.$

Language class

VA(M) languages accepted by valence automata over M.

Let M be a finitely generated monoid. The following are equivalent:

- **1** VA(M) is complementation closed.
- extstyle VA(M) = REG.
- M has finitely many right-invertible elements.

Let M be a finitely generated monoid. The following are equivalent:

- VA(M) is complementation closed.
- extstyle VA(M) = REG.
- M has finitely many right-invertible elements.

Proof.

If M is finitely generated, VA(M) is a principal full trio.

Let M be a finitely generated monoid. The following are equivalent:

- VA(M) is complementation closed.
- extstyle VA(M) = REG.
- M has finitely many right-invertible elements.

Proof.

If M is finitely generated, VA(M) is a principal full trio. Equivalence of 2 and 3 has been shown by Render (2010) and Z. (2011).

Application: Rational Kripke Frames

Improvement

In order to construct languages over $\{0,1\}$, three fixed rational transductions suffice.

Application: Rational Kripke Frames

Improvement

In order to construct languages over $\{0,1\}$, three fixed rational transductions suffice.

Theorem

Let $X = \{0, 1\}$. There is a Kripke frame with

- X* as its set of worlds and
- rational transductions $R, S, T \subseteq X^* \times X^*$ as modalities

such that for any non-regular L, in the Kripke structure $\mathcal{K}=(X^*,R,S,T,L)$, for each $K\in\mathsf{AH}(L)$, there is a φ with $[\![\varphi]\!]_\mathcal{K}=K$.

 $\mathcal{K} = (\mathcal{K}_1, \mathcal{K}, \mathcal{S}, \mathcal{K}, \mathcal{L})$, for each $\mathcal{K} \in \mathsf{AH}(\mathcal{L})$, there is a φ with $[\![\varphi]\!]\chi = \mathcal{K}$

Open problems

- Can we reduce the number of transductions?
- What about other classes of transductions?
 - What classes admit encoding of first-order theory and decidability of emptiness?
 - For what classes do we get undecidability beyond REG?