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Example (Pushdown automaton)

q0 q1

a, ε,A

b, ε,B

ε, ε, ε

a,A, ε

b,B, ε

L “ tww rev | w P ta, bu˚u

Example (Blind counter automaton)

q0 q1 q2
ε, 0, 0 ε, 0, 0

a, 1, 0 b,´1,´1 c , 0, 1

L “ tanbncn | n ě 0u
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Example (Partially blind counter automaton)

q0 q1

a, 1

b,´1

ε, 0

ε,´1

L “ tw P ta, bu˚ | |p|a ě |p|b for each prefix p of wu
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Storage mechanisms

Automata models that extend finite automata by some storage
mechanism:

Pushdown automata

Blind counter automata

Partially blind counter automata

Turing machines

Goal: General insights

Structure of storage ô computational properties

Framework

Abstract model with storage as parameter
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Valence automata

Definition

A monoid is a set M with

an associative binary operation ¨ : M ˆM Ñ M and

a neutral element 1 P M (a1 “ 1a “ a for any a P M).

Common generalization: Valence Automata

Valence automaton over M:

Finite automaton with edges p
w |m
ÝÝÑq, w P Σ˚, m P M.

Run q0
w1|m1
ÝÝÝÑq1

w2|m2
ÝÝÝÑ¨ ¨ ¨

wn|mn
ÝÝÝÝÑqn is accepting for w1 ¨ ¨ ¨wn if

§ q0 is the initial state,
§ qn is a final state, and

§ m1 ¨ ¨ ¨mn “ 1.

Language class

VApMq languages accepted by valence automata over M.
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Classical results can now be generalized:

Questions

For which storage mechanisms can we decide emptiness?

For which do we have a particular closure property?

How is the complexity of decision problems affected?

For which can we compute abstractions?
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Monoids defined by graphs
By graphs, we mean undirected graphs with loops allowed.

Let Γ “ pV ,E q be a graph. Let

XΓ “ tav , āv | v P V u

RΓ “ tav āv “ ε | v P V u

Y txy “ yx | x P tau, āuu, y P tav , āvu, tu, vu P Eu

MΓ “ X ˚Γ {RΓ

Intuition

B: bicyclic monoid, B “ ta, āu˚{taā “ εu.

Z: group of integers

For each unlooped vertex, we have a copy of B
For each looped vertex, we have a copy of Z
MΓ consists of sequences of such elements

An edge between vertices means that elements can commute
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RΓ “ tav āv “ ε | v P V u
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XΓ “ tav , āv | v P V u
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Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters

Georg Zetzsche (TU KL) Emptiness for Valence Automata RP 2015 8 / 19



The emptiness problem

The emptiness problem

Given a valence automaton over M, does it accept any word?

Important problem

Type of reachability problem

Necessary for many other decision problems.

Question

For which storage mechanisms is the emptiness problem decidable?

Obstacle

Pushdown + partially blind counters

Decidability a long-standing open problem
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Simplest graphs for pushdown + counters

One can show: These can simulate pushdown + one counter

We call these PPN-graphs (for “pushdown Petri net”).

Without them as induced subgraphs: PPN-free.

Theorem

Let Γ be PPN-free. Then the following are equivalent:

Emptiness is decidable for valence automata over MΓ.

Γ, minus loops, is a transitive forest.
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Intuition

Decidable mechanisms, SC˘:

Start with partially blind counters

Build stacks

Add blind counters

ñ Reduction to priority counter
automata of Reinhardt

Left open, SC`:

Start with partially blind counters

Build stacks

Add partially blind counters

ñ Generalize pushdown Petri nets and
priority counter automata

ñ New open problem
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Poof: Undecidability

Theorem (Wolk 1965)

An undirected graph is a transitive forest iff it avoids as induced subgraphs:

C4 : P4 :

ñ Show Turing completeness for C4 and P4
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Poof: Decidability

Decidability

Combinatorial argument shows: equivalent to SC˘.

Definition of SC˘

Smallest class with

Bn P SC˘

if M P SC˘, then B ˚M, ZˆM P SC˘

Reduction

ΨpVApMqq Ď Prio for every M P SC˘.
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Priority counter machines

Automaton with n counters

counters stay ě 0

instructions:
§ inci : increment counter i
§ deci : decrement counter i
§ zeroi : test all the counters 1, . . . , i for zero

Language class: Prio

Theorem (Reinhardt)

Reachability is decidable for priority counter machines.
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Expressiveness

Algebraic extensions

Let C be a language class. A C-grammar G consists of

Nonterminals N, terminals T , start symbol S P N

Productions AÑ L with L Ď pN Y T q˚, L P C

uAv ñ uwv whenever w P L.

Generated language: tw P T ˚ | S ñ˚ wu.

Such languages are algebraic over C, class denoted AlgpCq.

Theorem (Z. 2015)

VApB ˚ B ˚Mq “ AlgpVApMqq.

Theorem (van Leeuwen 1974)

If C is closed under rational transductions and Kleene star, then
ΨpAlgpCqq Ď ΨpCq.
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Contribution

In absence of PPN: Characterization of decidable emptiness problem

New decidable model (SC˘)

New powerful model that might be decidable (SC`)

Thank you!
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