The Emptiness Problem for Valence Automata or: Another Decidable Extension of Petri Nets

Georg Zetzsche

Technische Universität Kaiserslautern

Reachability Problems 2015

Georg Zetzsche (TU KL)

Emptiness for Valence Automata

RP 2015 1 / 19

■ ► ■ つへへ RP 2015 2/19

$$L = \{ww^{\mathsf{rev}} \mid w \in \{a, b\}^*\}$$

< □ > < □ > < □ > < □ > < □ >

Georg Zetzsche (TU KL)

Emptiness for Valence Automata

■ ► ■ つへへ RP 2015 2/19

$$L = \{ww^{\mathsf{rev}} \mid w \in \{a, b\}^*\}$$

< □ > < □ > < □ > < □ > < □ >

Example (Blind counter automaton)

■ ► ■ つへへ RP 2015 2/19

$$L = \{ww^{\mathsf{rev}} \mid w \in \{a, b\}^*\}$$

< □ > < □ > < □ > < □ > < □ >

Example (Blind counter automaton)

 $L = \{a^n b^n c^n \mid n \ge 0\}$

Example (Partially blind counter automaton)

Georg Zetzsche (TU KL)

Emptiness for Valence Automata

E ● E ● Q @ RP 2015 3/19

Example (Partially blind counter automaton)

 $L = \{w \in \{a, b\}^* \mid |p|_a \ge |p|_b \text{ for each prefix } p \text{ of } w\}$

Georg Zetzsche (TU KL)

Emptiness for Valence Automata

E ● E ● Q @ RP 2015 3/19

イロト イポト イヨト イヨト

Storage mechanisms

Automata models that extend finite automata by some storage mechanism:

- Pushdown automata
- Blind counter automata
- Partially blind counter automata
- Turing machines

Goal: General insights

Structure of storage \Leftrightarrow computational properties

∃ ► < ∃ ►

Storage mechanisms

Automata models that extend finite automata by some storage mechanism:

- Pushdown automata
- Blind counter automata
- Partially blind counter automata
- Turing machines

Goal: General insights

Structure of storage ⇔ computational properties

Framework

Abstract model with storage as parameter

(B)

Definition

A monoid is a set M with

- an associative binary operation $\cdot: M \times M \to M$ and
- a neutral element $1 \in M$ (a1 = 1a = a for any $a \in M$).

★ ∃ ► < ∃ ►</p>

Definition

A monoid is a set M with

- an associative binary operation $\cdot: M \times M \to M$ and
- a neutral element $1 \in M$ (a1 = 1a = a for any $a \in M$).

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• • = • • = •

Definition

A monoid is a set M with

- an associative binary operation $\cdot: M \times M \to M$ and
- a neutral element $1 \in M$ (a1 = 1a = a for any $a \in M$).

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• Run
$$q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$$
 is accepting for $w_1 \cdots w_n$ if

- q_0 is the initial state,
- q_n is a final state, and

<日

<</p>

Definition

A monoid is a set M with

- an associative binary operation $\cdot: M \times M \to M$ and
- a neutral element $1 \in M$ (a1 = 1a = a for any $a \in M$).

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• Run
$$q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$$
 is accepting for $w_1 \cdots w_n$ if

$$q_0$$
 is the initial state,

 q_n is a final state, and

$$m_1 \cdots m_n = 1$$

< 同 ト < 三 ト < 三 ト

Definition

A monoid is a set M with

- an associative binary operation $\cdot: M \times M \to M$ and
- a neutral element $1 \in M$ (a1 = 1a = a for any $a \in M$).

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• Run
$$q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$$
 is accepting for $w_1 \cdots w_n$ if q_0 is the initial state,

$$q_n$$
 is a final state, and

$$m_1\cdots m_n=1.$$

Language class

VA(M) languages accepted by valence automata over M.

Georg Zetzsche (TU KL)

Emptiness for Valence Automata

Questions

• For which storage mechanisms can we decide emptiness?

3 1 4 3

Questions

- For which storage mechanisms can we decide emptiness?
- For which do we have a particular closure property?

Questions

- For which storage mechanisms can we decide emptiness?
- For which do we have a particular closure property?
- How is the complexity of decision problems affected?

Questions

- For which storage mechanisms can we decide emptiness?
- For which do we have a particular closure property?
- How is the complexity of decision problems affected?
- For which can we compute abstractions?

By graphs, we mean undirected graphs with loops allowed.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{\nu}, \bar{a}_{\nu} \mid \nu \in V\}$$

< □ > < 同 > < 回 > < 回 > < 回 >

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{v}, \bar{a}_{v} \mid v \in V\}$$
$$R_{\Gamma} = \{a_{v}\bar{a}_{v} = \varepsilon \mid v \in V\}$$

< □ > < 同 > < 回 > < 回 > < 回 >

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{v}, \bar{a}_{v} \mid v \in V\}$$
$$R_{\Gamma} = \{a_{v}\bar{a}_{v} = \varepsilon \mid v \in V\}$$
$$\cup \{xy = yx \mid x \in \{a_{u}, \bar{a}_{u}\}, y \in \{a_{v}, \bar{a}_{v}\}, \{u, v\} \in E\}$$

< □ > < 同 > < 回 > < 回 > < 回 >

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{v}, \bar{a}_{v} \mid v \in V\}$$

$$R_{\Gamma} = \{a_{v}\bar{a}_{v} = \varepsilon \mid v \in V\}$$

$$\cup \{xy = yx \mid x \in \{a_{u}, \bar{a}_{u}\}, y \in \{a_{v}, \bar{a}_{v}\}, \{u, v\} \in E\}$$

$$\mathbb{M}\Gamma = X_{\Gamma}^{*}/R_{\Gamma}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{v}, \bar{a}_{v} \mid v \in V\}$$

$$R_{\Gamma} = \{a_{v}\bar{a}_{v} = \varepsilon \mid v \in V\}$$

$$\cup \{xy = yx \mid x \in \{a_{u}, \bar{a}_{u}\}, y \in \{a_{v}, \bar{a}_{v}\}, \{u, v\} \in E\}$$

$$\mathbb{M}\Gamma = X_{\Gamma}^{*}/R_{\Gamma}$$

Intuition

- \mathbb{B} : bicyclic monoid, $\mathbb{B} = \{a, \bar{a}\}^* / \{a\bar{a} = \varepsilon\}$.
- \mathbb{Z} : group of integers
- $\bullet\,$ For each unlooped vertex, we have a copy of $\mathbb B$
- \bullet For each looped vertex, we have a copy of $\mathbb Z$
- $\bullet~\ensuremath{\mathbb{M}\Gamma}$ consists of sequences of such elements
- An edge between vertices means that elements can commute

■ ► ■ つへへ RP 2015 8/19

メロト メポト メヨト メヨト

< □ > < □ > < □ > < □ > < □ >

Georg Zetzsche (TU KL)

Blind counter

Blind counter

 $\mathbb{B} * \mathbb{B} * \mathbb{B}$

< □ > < □ > < □ > < □ > < □ >

Blind counter

Blind counter

Pushdown

Blind counter

Pushdown

Blind counter

Blind counter

Pushdown

Partially blind counter

(日) (四) (日) (日) (日)

Blind counter

Partially blind counter

(日) (四) (日) (日) (日)

Blind counter

Partially blind counter

Georg Zetzsche (TU KL)

Emptiness for Valence Automata

■ト ■ つへへ RP 2015 8/19

A D N A B N A B N A B N

Blind counter

< 17 ▶

Partially blind counter

Blind counter

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Partially blind counter

Infinite tape (TM)

Georg Zetzsche (TU KL)

Emptiness for Valence Automata

RP 2015 8 / 19

< □ > < @ >

(4) (5) (4) (5)

Blind counter

Georg Zetzsche (TU KL)

Emptiness for Valence Automata

RP 2015 8 / 19

8/19

8/19

8/19

Georg Zetzsche (TU KL)

Emptiness for Valence Automata

RP 2015 8 / 19

The emptiness problem

Given a valence automaton over M, does it accept any word?

3 🕨 🖌 3

The emptiness problem

Given a valence automaton over M, does it accept any word?

Important problem

- Type of reachability problem
- Necessary for many other decision problems.

3 🕨 🖌 3

The emptiness problem

Given a valence automaton over M, does it accept any word?

Important problem

- Type of reachability problem
- Necessary for many other decision problems.

Question

For which storage mechanisms is the emptiness problem decidable?

< ∃ > < ∃

The emptiness problem

Given a valence automaton over M, does it accept any word?

Important problem

- Type of reachability problem
- Necessary for many other decision problems.

Question

For which storage mechanisms is the emptiness problem decidable?

The emptiness problem

Given a valence automaton over M, does it accept any word?

Important problem

- Type of reachability problem
- Necessary for many other decision problems.

Question

For which storage mechanisms is the emptiness problem decidable?

Obstacle

Pushdown + partially blind counters Decidability a long-standing open problem

• One can show: These can simulate pushdown + one counter

∃ >

• One can show: These can simulate pushdown + one counter

• We call these *PPN-graphs* (for "pushdown Petri net").

- One can show: These can simulate pushdown + one counter
- We call these *PPN-graphs* (for "pushdown Petri net").
- Without them as induced subgraphs: PPN-free.

- We call these *PPN-graphs* (for "pushdown Petri net").
- Without them as induced subgraphs: PPN-free.

Theorem

Let Γ be PPN-free. Then the following are equivalent:

- Emptiness is decidable for valence automata over MΓ.
- Γ, minus loops, is a transitive forest.

< ∃ ▶

- We call these *PPN-graphs* (for "pushdown Petri net").
- Without them as induced subgraphs: PPN-free.

Theorem

Let Γ be PPN-free. Then the following are equivalent:

- Emptiness is decidable for valence automata over MΓ.
- Γ, minus loops, is a transitive forest.

Georg Zetzsche (TU KL)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘

Georg Zetzsche (TU KL)

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Georg Zetzsche (TU KL)

Decidable mechanisms, SC $^{\pm}$:

- Start with partially blind counters
- Build stacks
- Add blind counters

イロト イポト イヨト イヨ

Decidable mechanisms, SC $^{\pm}$:

- Start with partially blind counters
- Build stacks
- Add blind counters
- $\Rightarrow \mbox{ Reduction to priority counter} \\ \mbox{ automata of Reinhardt}$

A D F A B F A B F A B

Decidable mechanisms, SC $^{\pm}$:

- Start with partially blind counters
- Build stacks
- Add blind counters
- $\Rightarrow \mbox{ Reduction to priority counter} \\ \mbox{ automata of Reinhardt}$

Left open, SC^+ :

- Start with partially blind counters
- Build stacks
- Add partially blind counters

< (日) × (日) × (4)

Decidable mechanisms, SC $^{\pm}$:

- Start with partially blind counters
- Build stacks
- Add blind counters
- $\Rightarrow \mbox{ Reduction to priority counter} \\ \mbox{ automata of Reinhardt}$

Left open, SC⁺:

- Start with partially blind counters
- Build stacks
- Add partially blind counters
- ⇒ Generalize pushdown Petri nets and priority counter automata

 \Rightarrow New open problem

Georg Zetzsche (TU KL)

Emptiness for Valence Automata

<ロト < 四ト < 三ト < 三ト

Georg Zetzsche (TU KL)

Emptiness for Valence Automata

< □ > < □ > < □ > < □ > < □ >

Poof: Undecidability

Theorem (Wolk 1965)

An undirected graph is a transitive forest iff it avoids as induced subgraphs:

 \Rightarrow Show Turing completeness for C_4 and P_4

< ∃ ▶

Poof: Decidability

Decidability

Combinatorial argument shows: equivalent to SC^{\pm} .

▲ □ ▶ ▲ □ ▶ ▲ □

Poof: Decidability

Decidability

Combinatorial argument shows: equivalent to SC^{\pm} .

Definition of SC^{\pm}

Smallest class with

- $\mathbb{B}^n \in \mathsf{SC}^{\pm}$
- if $M \in SC^{\pm}$, then $\mathbb{B} * M$, $\mathbb{Z} \times M \in SC^{\pm}$

• • = • • = •

Poof: Decidability

Decidability

Combinatorial argument shows: equivalent to SC^{\pm} .

Definition of SC^{\pm}

Smallest class with

- $\mathbb{B}^n \in \mathsf{SC}^{\pm}$
- if $M \in SC^{\pm}$, then $\mathbb{B} * M$, $\mathbb{Z} \times M \in SC^{\pm}$

Reduction

 $\Psi(VA(M)) \subseteq Prio \text{ for every } M \in SC^{\pm}.$

<日

<</p>

• Automaton with *n* counters

イロト イヨト イヨト イヨト

- Automaton with *n* counters
- counters stay ≥ 0

< □ > < 同 > < 回 > < 回 > < 回 >

- Automaton with n counters
- counters stay ≥ 0
- instructions:
 - inc_i: increment counter i
 - dec_i: decrement counter i
 - zero_i: test all the counters $1, \ldots, i$ for zero

- Automaton with n counters
- counters stay ≥ 0
- instructions:
 - inc_i: increment counter i
 - dec_i: decrement counter i
 - $zero_i$: test all the counters $1, \ldots, i$ for zero
- Language class: Prio
Priority counter machines

- Automaton with n counters
- counters stay ≥ 0
- instructions:
 - inc_i: increment counter i
 - dec_i: decrement counter i
 - $zero_i$: test all the counters $1, \ldots, i$ for zero
- Language class: Prio

Theorem (Reinhardt)

Reachability is decidable for priority counter machines.

A B A A B A

Definition of SC^{\pm}

Smallest class with

- $\mathbb{B}^n \in \mathsf{SC}^{\pm}$
- if $M \in SC^{\pm}$, then $\mathbb{B} * M$, $\mathbb{Z} \times M \in SC^{\pm}$

Observations

• $VA(\mathbb{B}^n) \subseteq Prio$, hence $\Psi(VA(\mathbb{B}^n)) \subseteq \Psi(Prio)$.

Definition of SC^{\pm}

Smallest class with

- $\mathbb{B}^n \in \mathsf{SC}^{\pm}$
- if $M \in SC^{\pm}$, then $\mathbb{B} * M$, $\mathbb{Z} \times M \in SC^{\pm}$

Observations

- $VA(\mathbb{B}^n) \subseteq Prio$, hence $\Psi(VA(\mathbb{B}^n)) \subseteq \Psi(Prio)$.
- If $\Psi(VA(M)) \subseteq Prio$, then $\Psi(VA(M \times \mathbb{Z})) \subseteq \Psi(Prio)$.

Definition of SC^{\pm}

Smallest class with

- $\mathbb{B}^n \in \mathsf{SC}^{\pm}$
- if $M \in SC^{\pm}$, then $\mathbb{B} * M$, $\mathbb{Z} \times M \in SC^{\pm}$

Observations

- $VA(\mathbb{B}^n) \subseteq Prio$, hence $\Psi(VA(\mathbb{B}^n)) \subseteq \Psi(Prio)$.
- If $\Psi(VA(M)) \subseteq Prio$, then $\Psi(VA(M \times \mathbb{Z})) \subseteq \Psi(Prio)$.
- What about VA($\mathbb{B} * M$)?

Algebraic extensions

Let ${\mathcal C}$ be a language class. A ${\mathcal C}\text{-}grammar\ G$ consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

< ∃ ►

Algebraic extensions

Let ${\mathcal C}$ be a language class. A ${\mathcal C}\text{-}grammar\ G$ consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

< ∃ > < ∃

Algebraic extensions

Let ${\mathcal C}$ be a language class. A ${\mathcal C}\text{-}grammar\ G$ consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

• Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.

< ∃ > < ∃

Algebraic extensions

Let ${\mathcal C}$ be a language class. A ${\mathcal C}\text{-}grammar\ G$ consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

- Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.
- Such languages are *algebraic over* C, class denoted Alg(C).

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Algebraic extensions

Let \mathcal{C} be a language class. A \mathcal{C} -grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \to L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

- Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.
- Such languages are *algebraic over* C, class denoted Alg(C).

Theorem (Z. 2015) VA($\mathbb{B} * \mathbb{B} * M$) = Alg(VA(M)).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Algebraic extensions

Let \mathcal{C} be a language class. A \mathcal{C} -grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

- Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.
- Such languages are *algebraic over* C, class denoted Alg(C).

Theorem (Z. 2015) VA($\mathbb{B} * \mathbb{B} * M$) = Alg(VA(M)).

Theorem (van Leeuwen 1974)

If C is closed under rational transductions and Kleene star, then $\Psi(Alg(C)) \subseteq \Psi(C)$.

Georg Zetzsche (TU KL)

Emptiness for Valence Automata

RP 2015 18 / 19

Contribution

Georg Zetzsche (TU KL)

Emptiness for Valence Automata

Contribution

• In absence of PPN: Characterization of decidable emptiness problem

Contribution

• In absence of PPN: Characterization of decidable emptiness problem

• New decidable model (SC[±])

Contribution

- In absence of PPN: Characterization of decidable emptiness problem
- New decidable model (SC[±])
- New powerful model that might be decidable (SC⁺)

Contribution

- In absence of PPN: Characterization of decidable emptiness problem
- New decidable model (SC[±])
- New powerful model that might be decidable (SC⁺)