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Example (Pushdown automaton)

q0 q1

a, λ,A

b, λ,B

λ, λ, λ

a,A, λ

b,B, λ

L “ tww rev | w P ta, bu˚u

Example (Blind counter automaton)

q0 q1 q2
λ, 0, 0 λ, 0, 0

a, 1, 0 b, 0, 1 c ,´1,´1

L “ tanbncn | n ě 0u
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Example (Partially blind counter automaton)

q0 q1

a, 1

b,´1

λ, 0

λ,´1

L “ tw P ta, bu˚ | |p|a ě |p|b for any prefix p of wu
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Example (Partially blind counter automaton)

q0 q1
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b,´1

λ, 0
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Automata models that extend finite automata by some storage
mechanism:

Pushdown automata

Blind counter automata

Partially blind counter automata

Turing machines

Each storage mechanism consists of:

States: set S of states

Operations: partial maps α1, . . . , αn : S Ñ S
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Model States Operations

Pushdown
automata

S “ Γ˚
pusha :w ÞÑ wa, a P Γ

popa :wa ÞÑ w , a P Γ

Blind
counter
automata

S “ Zn
inci :px1, . . . , xnq ÞÑ px1, . . . , xi ` 1, . . . , xnq

deci :px1, . . . , xnq ÞÑ px1, . . . , xi ´ 1, . . . , xnq

Partially
blind
counter
automata

S “ Nn
inci :px1, . . . , xnq ÞÑ px1, . . . , xi ` 1, . . . , xnq

deci :px1, . . . , xnq ÞÑ px1, . . . , xi ´ 1, . . . , xnq

Observation

Here, a sequence β1, . . . , βk of operations is valid if and only if

β1 ˝ ¨ ¨ ¨ ˝ βk “ id
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Definition

A monoid is

a set M together with

an associative binary operation ¨ : M ˆM Ñ M and

a neutral element 1 P M (a1 “ 1a “ a for any a P M).

Storage mechanisms as monoids

Let S be a set of states and α1, . . . , αn : S Ñ S partial maps.

The set of all compositions of α1, . . . , αn is a monoid M.

The identity map is the neutral element of M.

M is a decription of the storage mechanism.
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Valence automata

Common generalization: Valence Automata

Valence automaton over M:

Finite automaton with edges p
w |m
ÝÝÑq, w P Σ˚, m P M.

Run q0
w1|m1
ÝÝÝÑq1

w2|m2
ÝÝÝÑ¨ ¨ ¨

wn|mn
ÝÝÝÝÑqn is accepting for w1 ¨ ¨ ¨wn if

§ q0 is the initial state,
§ qn is a final state, and

§ m1 ¨ ¨ ¨mn “ 1.

Language class

VApMq languages accepted by valence automata over M.

Buckheister, Zetzsche (TU KL) Valence Automata MFCS 2013 7 / 18



Valence automata

Common generalization: Valence Automata

Valence automaton over M:

Finite automaton with edges p
w |m
ÝÝÑq, w P Σ˚, m P M.

Run q0
w1|m1
ÝÝÝÑq1

w2|m2
ÝÝÝÑ¨ ¨ ¨

wn|mn
ÝÝÝÝÑqn is accepting for w1 ¨ ¨ ¨wn if

§ q0 is the initial state,
§ qn is a final state, and

§ m1 ¨ ¨ ¨mn “ 1.

Language class

VApMq languages accepted by valence automata over M.

Buckheister, Zetzsche (TU KL) Valence Automata MFCS 2013 7 / 18



Valence automata

Common generalization: Valence Automata

Valence automaton over M:

Finite automaton with edges p
w |m
ÝÝÑq, w P Σ˚, m P M.

Run q0
w1|m1
ÝÝÝÑq1

w2|m2
ÝÝÝÑ¨ ¨ ¨

wn|mn
ÝÝÝÝÑqn is accepting for w1 ¨ ¨ ¨wn if

§ q0 is the initial state,
§ qn is a final state, and
§ m1 ¨ ¨ ¨mn “ 1.

Language class

VApMq languages accepted by valence automata over M.

Buckheister, Zetzsche (TU KL) Valence Automata MFCS 2013 7 / 18



Valence automata

Common generalization: Valence Automata

Valence automaton over M:

Finite automaton with edges p
w |m
ÝÝÑq, w P Σ˚, m P M.

Run q0
w1|m1
ÝÝÝÑq1

w2|m2
ÝÝÝÑ¨ ¨ ¨

wn|mn
ÝÝÝÝÑqn is accepting for w1 ¨ ¨ ¨wn if

§ q0 is the initial state,
§ qn is a final state, and
§ m1 ¨ ¨ ¨mn “ 1.

Language class

VApMq languages accepted by valence automata over M.

Buckheister, Zetzsche (TU KL) Valence Automata MFCS 2013 7 / 18



Classical results can now be generalized:

Questions

Which storage mechanisms increase the expressive power?

For which are all languages context-free?

For which do we have semilinearity of all languages?

For which can we avoid silent transitions?

For which can we decide, for example, emptiness?

Which language classes can be obtained this way?
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Definition (Graph products)

Let Γ “ pV ,E q be a simple graph and Mv a monoid for each v P V with a
presentation pAv ,Rv q. Then the graph product MpΓ, pMv qvPV q is given by

A “
ď

vPV

Av , R “
ď

vPV

Rv

Y txy “ yx | x P Mv , y P Mw , tv ,wu P Eu

.

Intuition:

M “MpΓ, pMv qvPV q consists of sequences of elements in
Ť

v Mv

elements in the same monoid Mv are multiplied as defined in Mv

an edge between v and w means elements from Mv and Mw commute
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Specialization: Monoids defined by graphs

Notation

B: monoid for partially blind counter, B “ ta, āu˚{taā “ 1u.

Z: monoid for blind counter, i.e. the group of integers

Monoids MΓ

To each graph Γ, we associate the monoid MΓ:

For each unlooped vertex, we have a copy of B
For each looped vertex, we have a copy of Z
MΓ is the corresponding graph product
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Examples

Z3

Blind multicounter

B ˚ B ˚ B

Pushdown

B3

Partially blind multicounter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters
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Semilinearity I

For which monoids M are all languages in VApMq semilinear?

Parikh’s Theorem: Pushdown automata

Ibarra + Greibach: Blind counter automata

Theorem

All languages in VApMΓq are semilinear if and only if

1 Γ contains neither nor as an induced subgraph and

2 Γ, minus loops, is a transitive forest.

For 4 forbidden induced subgraphs, non-semilinear languages from
Petri net and trace theory

VApBq Ď CF

M ÞÑ M ˆ Z, pM,M 1q ÞÑ M ˚M 1 preserve semilinearity
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Semilinearity II
A group G is called a torsion group if for every g P G , there is a k P Nzt0u
with gk “ 1.

Theorem (Render 2010)

For every monoid M, at least one of the following holds:

VApMq “ REG

VApMq “ VApG q for a torsion group G

VApMq contains the blind one-counter languages

VApMq contains the partially blind one-counter languages

Theorem

For every torsion group G, all languages in VApG q are semilinear.

Non-effective construction!

(Cannot be made effective.)

Decompose computations into loops (and rest of bounded length).

Set of vectors counting loops is upward-closed w.r.t. some WQO.
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Semilinearity II

Theorem

For every monoid M, at least one of the following holds:

All languages in VApMq are semilinear.

VApMq contains the blind one-counter languages.

VApMq contains the partially blind one-counter languages.

Observation

VApMq always full semi-AFL (closed under rational transductions, union).

Consequence

Let S “ tan | n is a squareu. Let T be the smallest full semi-AFL
containing S . Then T does not arise as VApMq from a monoid M.

S is not semilinear

T does not contain tanbn | n ě 0u.
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Context-Freeness

For which monoids M is VApMq Ď CF?

Theorem (Muller, Schupp, Dunwoody)

For finitely generated groups G, VApG q Ď CF iff G is virtually free.

Theorem (Lohrey, Sénizergues 2007)

Let Γ “ pV ,E q and let Gv ‰ t1u be a f.g. group for any v P V .
G “MpΓ, pGv qvPV q is virtually free iff

1 for each v P V , Gv is virtually free,

2 if Gv and Gw are infinite and v ‰ w, then tv ,wu R E,

3 if Gv is infinite, Gu and Gw are finite and tv , uu, tv ,wu P E, then
tu,wu P E, and

4 the graph Γ is chordal (no induced cycle of length ě 4).
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Theorem (Anisimov & Seifert 1975)

For a group G, VApG q “ REG if and only if G is finite.

Theorem (Render 2010, Z. 2011)

For any monoid M, the following statements are equivalent:

1 VApMq “ REG.

2 Every finitely generated submonoid of M possesses only finitely many
right-invertible elements.

Definition

A monoid with the above property is called FRI-monoid.
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Context-Freeness

JpMq “ tm P M | Da, b P M : amb “ 1u

Theorem

Let Γ “ pV ,E q with JpMv q ‰ t1u for any v P V . M “MpΓ, pMv qvPV q is
context-free iff

1 for each v P V , Mv is context-free,

2 if Mv and Mw are not FRI-monoids and v ‰ w, then tv ,wu R E,

3 if Mv is not an FRI-monoid, Mu and Mw are FRI-monoids and
tv , uu, tv ,wu P E, then tu,wu P E, and

4 the graph Γ is chordal.

M ˆM 1 context-free iff one factor is FRI and one is context-free.
Context-freeness is preserved by products M ˚F M 1, F a finite
subgroup with 1 P F .
For induced cycles of finite groups, relied on Lohrey and Sénizergues’
result.
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Conclusion

Semilinearity for graph products of B and Z

Semilinearity for torsion groups

Context-freeness for arbitrary graph products

Language classes arising as VApMq

More classical results can be generalized:

Ongoing work

Computability of the downward closure (scattered subwords)?

Decidability of questions for Büchi variants.

Boolean closure
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