Semilinearity and Context-Freeness of Languages Accepted by Valence Automata

P. Buckheister Georg Zetzsche

Technische Universität Kaiserslautern

MFCS 2013

Buckheister, Zetzsche (TU KL)

Valence Automata

MFCS 2013 1 / 18

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

$$L = \{ww^{\mathsf{rev}} \mid w \in \{a, b\}^*\}$$

< □ > < □ > < □ > < □ > < □ >

Buckheister, Zetzsche (TU KL)

Valence Automata

▲ ■ ▶ ■ つへへ MFCS 2013 2/18

$$L = \{ww^{\mathsf{rev}} \mid w \in \{a, b\}^*\}$$

< □ > < □ > < □ > < □ > < □ >

Example (Blind counter automaton)

$$L = \{ww^{\mathsf{rev}} \mid w \in \{a, b\}^*\}$$

< □ > < □ > < □ > < □ > < □ >

Example (Blind counter automaton)

 $L = \{a^n b^n c^n \mid n \ge 0\}$

Example (Partially blind counter automaton)

Buckheister, Zetzsche (TU KL)

Example (Partially blind counter automaton)

 $L = \{w \in \{a, b\}^* \mid |p|_a \ge |p|_b \text{ for any prefix } p \text{ of } w\}$

Buckheister, Zetzsche (TU KL)

Automata models that extend finite automata by some storage mechanism:

- Pushdown automata
- Blind counter automata
- Partially blind counter automata
- Turing machines

• = • •

Automata models that extend finite automata by some storage mechanism:

- Pushdown automata
- Blind counter automata
- Partially blind counter automata
- Turing machines

Each storage mechanism consists of:

- States: set S of states
- Operations: partial maps $\alpha_1, \ldots, \alpha_n : S \to S$

Model	States	Operations
Pushdown automata	<i>S</i> = Γ*	$push_a : w \mapsto wa, a \in \Gamma$ $pop_a : wa \mapsto w, a \in \Gamma$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Model	States	Operations
Pushdown automata	<i>S</i> = Γ*	$push_a : w \mapsto wa, a \in \Gamma$ $pop_a : wa \mapsto w, a \in \Gamma$
Blind counter automata	$S = \mathbb{Z}^n$	$inc_i : (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i + 1, \dots, x_n)$ $dec_i : (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i - 1, \dots, x_n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Model	States	Operations
Pushdown automata	<i>S</i> = Γ*	push _a : $w \mapsto wa, a \in \Gamma$ pop _a : $wa \mapsto w, a \in \Gamma$
Blind counter automata	$S = \mathbb{Z}^n$	$inc_i : (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i + 1, \dots, x_n)$ $dec_i : (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i - 1, \dots, x_n)$
Partially blind counter automata	$S = \mathbb{N}^n$	$\operatorname{inc}_{i} : (x_{1}, \ldots, x_{n}) \mapsto (x_{1}, \ldots, x_{i} + 1, \ldots, x_{n})$ $\operatorname{dec}_{i} : (x_{1}, \ldots, x_{n}) \mapsto (x_{1}, \ldots, x_{i} - 1, \ldots, x_{n})$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

Model	States	Operations
Pushdown automata	<i>S</i> = Γ*	$push_a : w \mapsto wa, a \in \Gamma$ $pop_a : wa \mapsto w, a \in \Gamma$
Blind counter automata	$S = \mathbb{Z}^n$	$inc_i : (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i + 1, \dots, x_n)$ $dec_i : (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i - 1, \dots, x_n)$
Partially blind counter automata	$S = \mathbb{N}^n$	$inc_i : (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i + 1, \dots, x_n)$ $dec_i : (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i - 1, \dots, x_n)$

Observation

Here, a sequence β_1, \ldots, β_k of operations is valid if and only if

$$\beta_1 \circ \cdots \circ \beta_k = \mathsf{id}$$

Buckheister, Zetzsche (TU KL)

Definition

A monoid is

- a set *M* together with
- an associative binary operation $\cdot: M \times M \to M$ and
- a neutral element $1 \in M$ (a1 = 1a = a for any $a \in M$).

(4) (3) (4) (4) (4)

Definition

A monoid is

- a set *M* together with
- an associative binary operation $\cdot : M \times M \to M$ and
- a neutral element $1 \in M$ (a1 = 1a = a for any $a \in M$).

Storage mechanisms as monoids

- Let S be a set of states and $\alpha_1, \ldots, \alpha_n : S \to S$ partial maps.
- The set of all compositions of $\alpha_1, \ldots, \alpha_n$ is a monoid M.
- The identity map is the neutral element of *M*.
- *M* is a decription of the storage mechanism.

(4) (3) (4) (4) (4)

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

.

Common generalization: Valence Automata

Valence automaton over M:

- Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.
- Run $q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$ is accepting for $w_1 \cdots w_n$ if
 - q_0 is the initial state,
 - q_n is a final state, and

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• Run
$$q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$$
 is accepting for $w_1 \cdots w_n$ if

- q_0 is the initial state,
- *q_n* is a final state, and

$$m_1\cdots m_n=1.$$

• • = • • =

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges
$$p \xrightarrow{w|m} q$$
, $w \in \Sigma^*$, $m \in M$.

• Run
$$q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$$
 is accepting for $w_1 \cdots w_n$ if

$$q_0$$
 is the initial state,

$$q_n$$
 is a final state, and

$$m_1\cdots m_n=1.$$

Language class

VA(M) languages accepted by valence automata over M.

< □ > < 同 > < 回 > < 回 > < 回 >

Questions

• Which storage mechanisms increase the expressive power?

(4) (3) (4) (4) (4)

Questions

- Which storage mechanisms increase the expressive power?
- For which are all languages context-free?

★ ∃ ►

- Which storage mechanisms increase the expressive power?
- For which are all languages context-free?
- For which do we have semilinearity of all languages?

- Which storage mechanisms increase the expressive power?
- For which are all languages context-free?
- For which do we have semilinearity of all languages?
- For which can we avoid silent transitions?

- Which storage mechanisms increase the expressive power?
- For which are all languages context-free?
- For which do we have semilinearity of all languages?
- For which can we avoid silent transitions?
- For which can we decide, for example, emptiness?

- Which storage mechanisms increase the expressive power?
- For which are all languages context-free?
- For which do we have semilinearity of all languages?
- For which can we avoid silent transitions?
- For which can we decide, for example, emptiness?
- Which language classes can be obtained this way?

- Which storage mechanisms increase the expressive power?
- For which are all languages context-free?
- For which do we have semilinearity of all languages?
- For which can we avoid silent transitions?
- For which can we decide, for example, emptiness?
- Which language classes can be obtained this way?

Definition (Graph products)

Let $\Gamma = (V, E)$ be a simple graph and M_v a monoid for each $v \in V$ with a presentation (A_v, R_v) . Then the graph product $\mathbb{M}(\Gamma, (M_v)_{v \in V})$ is given by

$$A = \bigcup_{v \in V} A_v, \qquad R = \bigcup_{v \in V} R_v$$

< □ > < 同 > < 回 > < 回 > < 回 >

Definition (Graph products)

Let $\Gamma = (V, E)$ be a simple graph and M_v a monoid for each $v \in V$ with a presentation (A_v, R_v) . Then the graph product $\mathbb{M}(\Gamma, (M_v)_{v \in V})$ is given by

$$A = \bigcup_{v \in V} A_v, \quad R = \bigcup_{v \in V} R_v \cup \{xy = yx \mid x \in M_v, y \in M_w, \{v, w\} \in E\}.$$

イロト イポト イヨト イヨト

Definition (Graph products)

Let $\Gamma = (V, E)$ be a simple graph and M_v a monoid for each $v \in V$ with a presentation (A_v, R_v) . Then the graph product $\mathbb{M}(\Gamma, (M_v)_{v \in V})$ is given by

$$A = \bigcup_{v \in V} A_v, \quad R = \bigcup_{v \in V} R_v \cup \{xy = yx \mid x \in M_v, y \in M_w, \{v, w\} \in E\}.$$

Intuition:

- $M = \mathbb{M}(\Gamma, (M_v)_{v \in V})$ consists of sequences of elements in $\bigcup_v M_v$
- elements in the same monoid M_{ν} are multiplied as defined in M_{ν}
- an edge between v and w means elements from M_v and M_w commute

イロト イヨト イヨト

Specialization: Monoids defined by graphs

Notation

- \mathbb{B} : monoid for partially blind counter, $\mathbb{B} = \{a, \bar{a}\}^* / \{a\bar{a} = 1\}$.
- \mathbb{Z} : monoid for blind counter, i.e. the group of integers

→ ∃ →

Specialization: Monoids defined by graphs

Notation

- \mathbb{B} : monoid for partially blind counter, $\mathbb{B} = \{a, \bar{a}\}^* / \{a\bar{a} = 1\}$.
- $\bullet~\mathbb{Z}$: monoid for blind counter, i.e. the group of integers

Monoids $\mathbb{M}\Gamma$

To each graph $\Gamma,$ we associate the monoid $\mathbb{M}\Gamma:$

- $\bullet\,$ For each unlooped vertex, we have a copy of $\mathbb B$
- \bullet For each looped vertex, we have a copy of $\mathbb Z$
- $\bullet~\ensuremath{\mathbb{M}\Gamma}$ is the corresponding graph product

★ ∃ ► ★

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

Blind multicounter

Blind multicounter

Blind multicounter

Blind multicounter

Buckheister, Zetzsche (TU KL)

Valence Automata

< □ > < □ > < □ > < □ > < □ >

Blind multicounter

Buckheister, Zetzsche (TU KL)

Valence Automata

▶ < ≧ ▶ ≧ ∽ < < MFCS 2013 11/18

< □ > < □ > < □ > < □ > < □ >

Blind multicounter

Buckheister, Zetzsche (TU KL)

Valence Automata

▶ < ≧ > ≧ MFCS 2013 11/18

< □ > < □ > < □ > < □ > < □ >

Blind multicounter

Partially blind multicounter

Buckheister, Zetzsche (TU KL)

э **MFCS 2013** 11/18

→ Ξ → -

- (日)

Blind multicounter

Partially blind multicounter

Blind multicounter

Partially blind multicounter

Buckheister, Zetzsche (TU KL)

э **MFCS 2013** 11/18

-

Blind multicounter

 $(\mathbb{B} * \mathbb{B}) \times (\mathbb{B} * \mathbb{B})$

► < Ξ >

Partially blind multicounter

Buckheister, Zetzsche (TU KL)

э **MFCS 2013** 11/18

-

Blind multicounter

(日)

Partially blind multicounter

Infinite tape (TM)

Buckheister, Zetzsche (TU KL)

Valence Automata

▶ ▲ Ē ▶ Ē ∽ � < ♂ MFCS 2013 11/18

Blind multicounter

Partially blind multicounter

Infinite tape (TM)

(日)

Buckheister, Zetzsche (TU KL)

11/18

Buckheister, Zetzsche (TU KL)

MFCS 2013 11/18

For which monoids M are all languages in VA(M) semilinear?

- Parikh's Theorem: Pushdown automata
- Ibarra + Greibach: Blind counter automata

• • = • •

For which monoids M are all languages in VA(M) semilinear?

- Parikh's Theorem: Pushdown automata
- Ibarra + Greibach: Blind counter automata

Theorem

All languages in $\mathsf{VA}(\mathbb{M}\Gamma)$ are semilinear if and only if

- **(**) Γ contains neither \bullet nor \bullet \bullet \bullet as an induced subgraph and
- **2** Γ , minus loops, is a transitive forest.

.

For which monoids M are all languages in VA(M) semilinear?

- Parikh's Theorem: Pushdown automata
- Ibarra + Greibach: Blind counter automata

Theorem

All languages in $\mathsf{VA}(\mathbb{M}\Gamma)$ are semilinear if and only if

- Ø Γ, minus loops, is a transitive forest.
 - For 4 forbidden induced subgraphs, non-semilinear languages from Petri net and trace theory

• • = • • = •

For which monoids M are all languages in VA(M) semilinear?

- Parikh's Theorem: Pushdown automata
- Ibarra + Greibach: Blind counter automata

Theorem

All languages in $\mathsf{VA}(\mathbb{M}\Gamma)$ are semilinear if and only if

- Ø Γ, minus loops, is a transitive forest.
 - For 4 forbidden induced subgraphs, non-semilinear languages from Petri net and trace theory
 - $VA(\mathbb{B}) \subseteq CF$
 - $M \mapsto M \times \mathbb{Z}$, $(M, M') \mapsto M * M'$ preserve semilinearity

- 本間 と く ヨ と く ヨ と 二 ヨ

A group G is called a *torsion group* if for every $g \in G$, there is a $k \in \mathbb{N} \setminus \{0\}$ with $g^k = 1$.

(日) (四) (日) (日) (日)

A group G is called a *torsion group* if for every $g \in G$, there is a $k \in \mathbb{N} \setminus \{0\}$ with $g^k = 1$.

Theorem (Render 2010)

For every monoid M, at least one of the following holds:

- VA(*M*) = REG
- VA(M) = VA(G) for a torsion group G
- VA(M) contains the blind one-counter languages
- VA(M) contains the partially blind one-counter languages

.

A group G is called a *torsion group* if for every $g \in G$, there is a $k \in \mathbb{N} \setminus \{0\}$ with $g^k = 1$.

Theorem (Render 2010)

For every monoid M, at least one of the following holds:

- VA(*M*) = REG
- VA(M) = VA(G) for a torsion group G
- VA(M) contains the blind one-counter languages
- VA(M) contains the partially blind one-counter languages

Theorem

For every torsion group G, all languages in VA(G) are semilinear.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A group G is called a *torsion group* if for every $g \in G$, there is a $k \in \mathbb{N} \setminus \{0\}$ with $g^k = 1$.

Theorem (Render 2010)

For every monoid M, at least one of the following holds:

- VA(*M*) = REG
- VA(M) = VA(G) for a torsion group G
- VA(M) contains the blind one-counter languages
- VA(M) contains the partially blind one-counter languages

Theorem

For every torsion group G, all languages in VA(G) are semilinear.

Non-effective construction!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A group G is called a *torsion group* if for every $g \in G$, there is a $k \in \mathbb{N} \setminus \{0\}$ with $g^k = 1$.

Theorem (Render 2010)

For every monoid M, at least one of the following holds:

- VA(*M*) = REG
- VA(M) = VA(G) for a torsion group G
- VA(M) contains the blind one-counter languages
- VA(M) contains the partially blind one-counter languages

Theorem

For every torsion group G, all languages in VA(G) are semilinear.

• Non-effective construction! (Cannot be made effective.)

A group G is called a *torsion group* if for every $g \in G$, there is a $k \in \mathbb{N} \setminus \{0\}$ with $g^k = 1$.

Theorem (Render 2010)

For every monoid M, at least one of the following holds:

- VA(*M*) = REG
- VA(M) = VA(G) for a torsion group G
- VA(M) contains the blind one-counter languages
- VA(M) contains the partially blind one-counter languages

Theorem

For every torsion group G, all languages in VA(G) are semilinear.

- Non-effective construction! (Cannot be made effective.)
- Decompose computations into loops (and rest of bounded length).

イロト イポト イヨト イヨト 二日

A group G is called a *torsion group* if for every $g \in G$, there is a $k \in \mathbb{N} \setminus \{0\}$ with $g^k = 1$.

Theorem (Render 2010)

For every monoid M, at least one of the following holds:

- VA(*M*) = REG
- VA(M) = VA(G) for a torsion group G
- VA(M) contains the blind one-counter languages
- VA(M) contains the partially blind one-counter languages

Theorem

For every torsion group G, all languages in VA(G) are semilinear.

- Non-effective construction! (Cannot be made effective.)
- Decompose computations into loops (and rest of bounded length).
- Set of vectors counting loops is upward-closed w.r.t. some WQO.

Theorem

For every monoid M, at least one of the following holds:

- All languages in VA(M) are semilinear.
- VA(M) contains the blind one-counter languages.
- VA(M) contains the partially blind one-counter languages.

→ ∃ →

Theorem

For every monoid M, at least one of the following holds:

- All languages in VA(M) are semilinear.
- VA(M) contains the blind one-counter languages.
- VA(M) contains the partially blind one-counter languages.

Observation

VA(M) always full semi-AFL (closed under rational transductions, union).

→ ∃ →

Theorem

For every monoid M, at least one of the following holds:

- All languages in VA(M) are semilinear.
- VA(M) contains the blind one-counter languages.
- VA(M) contains the partially blind one-counter languages.

Observation

VA(M) always full semi-AFL (closed under rational transductions, union).

Consequence

Let $S = \{a^n \mid n \text{ is a square}\}$. Let \mathcal{T} be the smallest full semi-AFL containing S. Then \mathcal{T} does not arise as VA(M) from a monoid M.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

For every monoid M, at least one of the following holds:

- All languages in VA(M) are semilinear.
- VA(M) contains the blind one-counter languages.
- VA(M) contains the partially blind one-counter languages.

Observation

VA(M) always full semi-AFL (closed under rational transductions, union).

Consequence

Let $S = \{a^n \mid n \text{ is a square}\}$. Let \mathcal{T} be the smallest full semi-AFL containing S. Then \mathcal{T} does not arise as VA(M) from a monoid M.

- S is not semilinear
- \mathcal{T} does not contain $\{a^n b^n \mid n \ge 0\}$.

Image: A math the second se

For which monoids *M* is $VA(M) \subseteq CF$?

(日) (四) (日) (日) (日)

For which monoids *M* is $VA(M) \subseteq CF$?

Theorem (Muller, Schupp, Dunwoody)

For finitely generated groups G, $VA(G) \subseteq CF$ iff G is virtually free.

• • = • • =

For which monoids *M* is $VA(M) \subseteq CF$?

Theorem (Muller, Schupp, Dunwoody)

For finitely generated groups G, $VA(G) \subseteq CF$ iff G is virtually free.

Theorem (Lohrey, Sénizergues 2007)

Let $\Gamma = (V, E)$ and let $G_v \neq \{1\}$ be a f.g. group for any $v \in V$. $G = \mathbb{M}(\Gamma, (G_v)_{v \in V})$ is virtually free iff

• for each $v \in V$, G_v is virtually free,

・ 何 ト ・ ヨ ト ・ ヨ ト

For which monoids *M* is $VA(M) \subseteq CF$?

Theorem (Muller, Schupp, Dunwoody)

For finitely generated groups G, $VA(G) \subseteq CF$ iff G is virtually free.

Theorem (Lohrey, Sénizergues 2007)

Let $\Gamma = (V, E)$ and let $G_v \neq \{1\}$ be a f.g. group for any $v \in V$. $G = \mathbb{M}(\Gamma, (G_v)_{v \in V})$ is virtually free iff

• for each $v \in V$, G_v is virtually free,

2) if G_v and G_w are infinite and $v \neq w$, then $\{v, w\} \notin E$,

(4) (日本)

For which monoids M is $VA(M) \subseteq CF$?

Theorem (Muller, Schupp, Dunwoody)

For finitely generated groups G, $VA(G) \subseteq CF$ iff G is virtually free.

Theorem (Lohrey, Sénizergues 2007)

Let $\Gamma = (V, E)$ and let $G_v \neq \{1\}$ be a f.g. group for any $v \in V$. $G = \mathbb{M}(\Gamma, (G_v)_{v \in V})$ is virtually free iff

• for each $v \in V$, G_v is virtually free,

- 2) if G_v and G_w are infinite and $v \neq w$, then $\{v, w\} \notin E$,
- ◎ if G_v is infinite, G_u and G_w are finite and $\{v, u\}, \{v, w\} \in E$, then $\{u, w\} \in E$, and

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For which monoids M is $VA(M) \subseteq CF$?

Theorem (Muller, Schupp, Dunwoody)

For finitely generated groups G, $VA(G) \subseteq CF$ iff G is virtually free.

Theorem (Lohrey, Sénizergues 2007)

Let $\Gamma = (V, E)$ and let $G_v \neq \{1\}$ be a f.g. group for any $v \in V$. $G = \mathbb{M}(\Gamma, (G_v)_{v \in V})$ is virtually free iff

• for each $v \in V$, G_v is virtually free,

- 2) if G_v and G_w are infinite and $v \neq w$, then $\{v, w\} \notin E$,
- ◎ if G_v is infinite, G_u and G_w are finite and $\{v, u\}, \{v, w\} \in E$, then $\{u, w\} \in E$, and
- **(**) the graph Γ is chordal (no induced cycle of length ≥ 4).

イロト イポト イヨト イヨト 二日

Theorem (Anisimov & Seifert 1975)

For a group G, VA(G) = REG if and only if G is finite.

< □ > < 同 > < 回 > < Ξ > < Ξ

Theorem (Anisimov & Seifert 1975)

For a group G, VA(G) = REG if and only if G is finite.

Theorem (Render 2010, Z. 2011)

For any monoid M, the following statements are equivalent:

- VA(M) = REG.
- Every finitely generated submonoid of M possesses only finitely many right-invertible elements.

.
Theorem (Anisimov & Seifert 1975)

For a group G, VA(G) = REG if and only if G is finite.

Theorem (Render 2010, Z. 2011)

For any monoid M, the following statements are equivalent:

- VA(M) = REG.
- Every finitely generated submonoid of M possesses only finitely many right-invertible elements.

Definition

A monoid with the above property is called *FRI-monoid*.

• • = • • = •

$$\mathsf{J}(M) = \{m \in M \mid \exists a, b \in M : amb = 1\}$$

Theorem

Let $\Gamma = (V, E)$ with $J(M_v) \neq \{1\}$ for any $v \in V$. $M = \mathbb{M}(\Gamma, (M_v)_{v \in V})$ is context-free iff

1 for each $v \in V$, M_v is context-free,

イロト 不得下 イヨト イヨト

$$\mathsf{J}(M) = \{ m \in M \mid \exists a, b \in M : amb = 1 \}$$

Theorem

Let $\Gamma = (V, E)$ with $J(M_v) \neq \{1\}$ for any $v \in V$. $M = \mathbb{M}(\Gamma, (M_v)_{v \in V})$ is context-free iff

- **1** for each $v \in V$, M_v is context-free,
- 2) if M_v and M_w are not FRI-monoids and $v \neq w$, then $\{v, w\} \notin E$,

(4) (日本)

$$\mathsf{J}(M) = \{ m \in M \mid \exists a, b \in M : amb = 1 \}$$

Theorem

Let $\Gamma = (V, E)$ with $J(M_v) \neq \{1\}$ for any $v \in V$. $M = \mathbb{M}(\Gamma, (M_v)_{v \in V})$ is context-free iff

- **1** for each $v \in V$, M_v is context-free,
- ② if M_v and M_w are not FRI-monoids and $v \neq w$, then $\{v, w\} \notin E$,
- ◎ if M_v is not an FRI-monoid, M_u and M_w are FRI-monoids and $\{v, u\}, \{v, w\} \in E$, then $\{u, w\} \in E$, and

イロト 不得 トイヨト イヨト 二日

$$\mathsf{J}(M) = \{ m \in M \mid \exists a, b \in M : amb = 1 \}$$

Theorem

Let $\Gamma = (V, E)$ with $J(M_v) \neq \{1\}$ for any $v \in V$. $M = \mathbb{M}(\Gamma, (M_v)_{v \in V})$ is context-free iff

- **1** for each $v \in V$, M_v is context-free,
- 2) if M_v and M_w are not FRI-monoids and $v \neq w$, then $\{v, w\} \notin E$,
- if M_v is not an FRI-monoid, M_u and M_w are FRI-monoids and {v, u}, {v, w} ∈ E, then {u, w} ∈ E, and
- the graph Γ is chordal.

イロト 不得 トイヨト イヨト 二日

$$\mathsf{J}(M) = \{ m \in M \mid \exists a, b \in M : amb = 1 \}$$

Theorem

Let $\Gamma = (V, E)$ with $J(M_v) \neq \{1\}$ for any $v \in V$. $M = \mathbb{M}(\Gamma, (M_v)_{v \in V})$ is context-free iff

- **1** for each $v \in V$, M_v is context-free,
- 2) if M_v and M_w are not FRI-monoids and $v \neq w$, then $\{v, w\} \notin E$,
- ◎ if M_v is not an FRI-monoid, M_u and M_w are FRI-monoids and $\{v, u\}, \{v, w\} \in E$, then $\{u, w\} \in E$, and
- the graph Γ is chordal.

• $M \times M'$ context-free iff one factor is FRI and one is context-free.

• • = • • = • =

$$\mathsf{J}(M) = \{ m \in M \mid \exists a, b \in M : amb = 1 \}$$

Theorem

Let $\Gamma = (V, E)$ with $J(M_v) \neq \{1\}$ for any $v \in V$. $M = \mathbb{M}(\Gamma, (M_v)_{v \in V})$ is context-free iff

- **1** for each $v \in V$, M_v is context-free,
- 2) if M_v and M_w are not FRI-monoids and $v \neq w$, then $\{v, w\} \notin E$,
- ◎ if M_v is not an FRI-monoid, M_u and M_w are FRI-monoids and $\{v, u\}, \{v, w\} \in E$, then $\{u, w\} \in E$, and
- the graph Γ is chordal.
 - $M \times M'$ context-free iff one factor is FRI and one is context-free.
 - Context-freeness is preserved by products M *_F M', F a finite subgroup with 1 ∈ F.

イロト 不得 トイヨト イヨト 二日

$$\mathsf{J}(M) = \{ m \in M \mid \exists a, b \in M : amb = 1 \}$$

Theorem

Let $\Gamma = (V, E)$ with $J(M_v) \neq \{1\}$ for any $v \in V$. $M = \mathbb{M}(\Gamma, (M_v)_{v \in V})$ is context-free iff

- **1** for each $v \in V$, M_v is context-free,
- 2) if M_v and M_w are not FRI-monoids and $v \neq w$, then $\{v, w\} \notin E$,
- ◎ if M_v is not an FRI-monoid, M_u and M_w are FRI-monoids and $\{v, u\}, \{v, w\} \in E$, then $\{u, w\} \in E$, and
- the graph Γ is chordal.
 - $M \times M'$ context-free iff one factor is FRI and one is context-free.
 - Context-freeness is preserved by products M *_F M', F a finite subgroup with 1 ∈ F.
- For induced cycles of finite groups, relied on Lohrey and Sénizergues' result.

Buckheister, Zetzsche (TU KL)

\bullet Semilinearity for graph products of ${\mathbb B}$ and ${\mathbb Z}$

• • = • •

- \bullet Semilinearity for graph products of $\mathbb B$ and $\mathbb Z$
- Semilinearity for torsion groups

• = • •

- \bullet Semilinearity for graph products of ${\mathbb B}$ and ${\mathbb Z}$
- Semilinearity for torsion groups
- Context-freeness for arbitrary graph products

★ ∃ ►

- \bullet Semilinearity for graph products of ${\mathbb B}$ and ${\mathbb Z}$
- Semilinearity for torsion groups
- Context-freeness for arbitrary graph products
- Language classes arising as VA(M)

★ ∃ ►

- \bullet Semilinearity for graph products of ${\mathbb B}$ and ${\mathbb Z}$
- Semilinearity for torsion groups
- Context-freeness for arbitrary graph products
- Language classes arising as VA(M)

More classical results can be generalized:

Ongoing work

• Computability of the downward closure (scattered subwords)?

- \bullet Semilinearity for graph products of ${\mathbb B}$ and ${\mathbb Z}$
- Semilinearity for torsion groups
- Context-freeness for arbitrary graph products
- Language classes arising as VA(M)

More classical results can be generalized:

Ongoing work

- Computability of the downward closure (scattered subwords)?
- Decidability of questions for Büchi variants.

- \bullet Semilinearity for graph products of ${\mathbb B}$ and ${\mathbb Z}$
- Semilinearity for torsion groups
- Context-freeness for arbitrary graph products
- Language classes arising as VA(M)

More classical results can be generalized:

Ongoing work

- Computability of the downward closure (scattered subwords)?
- Decidability of questions for Büchi variants.
- Boolean closure