
Noname manuscript No.
(will be inserted by the editor)

Knapsack in Graph Groups

Markus Lohrey · Georg Zetzsche

Abstract It is shown that the knapsack problem, which was introduced by
Myasnikov et al. for arbitrary finitely generated groups, can be solved in NP for
every graph group. This result even holds if the group elements are represented
in a compressed form by so called straight-line programs, which generalizes
the classical NP-completeness result of the integer knapsack problem. If group
elements are represented explicitly by words over the generators, then knapsack
for a graph group belongs the class LogCFL (a subclass of P) if the graph group
can be built up from the trivial group using the operations of free product
and direct product with Z. In all other cases, the knapsack problem is NP-
complete.

Contents

1 Introduction . 2
2 Basic concepts . 6

2.1 Complexity classes . 6
2.2 Finite automata . 8
2.3 Vectors and semilinear sets . 8
2.4 Words and straight-line programs . 9
2.5 Groups . 9
2.6 Knapsack and exponent equations . 10
2.7 Traces and graph groups . 11

3 Compressed knapsack and exponent equations . 13

Georg Zetzsche is supported by a fellowship within the Postdoc-Program of the German
Academic Exchange Service (DAAD) and by Labex Digicosme, Univ. Paris-Saclay, project
VERICONISS.

M. Lohrey
Universität Siegen, Germany
E-mail: lohrey@eti.uni-siegen.de

G. Zetzsche
LSV, CNRS & ENS Paris-Saclay, France
E-mail: zetzsche@lsv.fr

c5726439 2017-08-12 22:18:40 +0200

2 Markus Lohrey, Georg Zetzsche

3.1 Factorizations of powers . 14

3.2 Automata for partially commutative closures 17

3.3 Linear Diophantine equations . 22

3.4 Reduction from graph groups to trace monoids 23

3.5 Semilinearity, exponential bounds, and NP-membership 24

3.6 Solvability of compressed exponent equation for a variable graph group 29

4 Uncompressed knapsack and subset sum . 31

4.1 NP-completeness . 31

4.2 Membership in LogCFL . 36

4.3 LogCFL-completeness . 50

4.4 TC0-completeness . 53

5 Open problems . 54

1 Introduction

In their paper [44], Myasnikov, Nikolaev, and Ushakov started the investiga-
tion of classical discrete optimization problems, which are formulated over the
integers, for arbitrary (possibly non-commutative) groups. The general goal
of this line of research is to study to what extent results from the commuta-
tive setting can be transferred to the non-commutative setting. Among other
problems, Myasnikov et al. introduced for a finitely generated group G the
knapsack problem and the subset sum problem. The input for the knapsack
problem is a sequence of group elements g1, . . . , gk, g ∈ G (specified by finite
words over the generators of G) and it is asked whether there exists a solution
(x1, . . . , xk) ∈ Nk of the equation gx1

1 · · · g
xk

k = g. For the subset sum problem
one restricts the solution to {0, 1}k.

For the particular case G = Z (where the additive notation x1 ·g1+· · ·+xk ·
gk = g is usually preferred) these problems are NP-complete if the numbers
g1, . . . , gk, g are encoded in binary representation. For subset sum, this is a
classical result from Karp’s seminal paper [31] on NP-completeness. Knapsack
for integers is usually formulated in a more general form in the literature; NP-
completeness of the above form (for binary encoded integers) was shown in [23],
where the problem was called multisubset sum.1 Interestingly, if we consider
subset sum for the group G = Z, but encode the input numbers g1, . . . , gk, g
in unary notation, then the problem is in DLOGTIME-uniform TC0 (a small
subclass of polynomial time and even of logarithmic space that captures the
complexity of multiplication of binary encoded numbers; see e.g. the book [50]
for more details) [17], and the same holds for knapsack (see Theorem 4.29).
Related results can be found in [29].

In [44], Myasnikov et al. encode elements of the finitely generated group
G by words over the group generators and their inverses, which corresponds
to the unary encoding of integers. Among others, the following results were
shown in [44]:

1 Note that if we ask for a solution (x1, . . . , xk) in Zk, then knapsack can be solved in
polynomial time (even for binary encoded integers) by checking whether gcd(g1, . . . , gk)
divides g.

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 3

– Subset sum and knapsack can be solved in polynomial time for every hy-
perbolic group.

– Subset sum for a virtually nilpotent group (a finite extension of a nilpotent
group) can be solved in polynomial time.

– For the following groups, subset sum is NP-complete (whereas the word
problem can be solved in polynomial time): free metabelian non-abelian
groups of finite rank, the wreath product Z o Z, Thompson’s group F , and
the Baumslag-Solitar group BS(1, 2).

Further results on knapsack and subset sum have been recently obtained in
[33]:

– For a virtually nilpotent group, subset sum belongs to NL (nondeterministic
logspace).

– There is a nilpotent group of class 2 (in fact, a direct product of sufficiently
many copies of the discrete Heisenberg group H3(Z)), for which knapsack
is undecidable.

– The knapsack problem for the discrete Heisenberg group H3(Z) is decid-
able. In particular, together with the previous point it follows that decid-
ability of knapsack is not preserved under direct products.

– There is a polycyclic group with an NP-complete subset sum problem.
Recently it has been shown that subset sum is NP-complete for every poly-
cyclic group that is not virtually nilpotent [45].

– The knapsack problem is decidable for every co-context-free group.

In recent years, group-theoretic problems began to be studied in the setting
where group elements are encoded in a succinct (or compressed) way. A par-
ticularly popular succinct representation are so called straight-line programs
(SLP). These are context-free grammars that produce a single word, see [35,
36] for surveys. Over a unary alphabet, one can achieve for every word expo-
nential compression with SLPs: The word an can be produced by an SLP of
size O(log n). This shows that knapsack and subset sum for the group Z with
SLP-compressed group elements correspond to the classical knapsack and sub-
set sum problem with binary encoded numbers. To distinguish between the two
variants, we will speak in this introduction of uncompressed knapsack (resp.,
subset sum) if the input group elements are given explicitly by words over the
generators. On the other hand, if these words are represented by SLPs, we will
speak of compressed knapsack (resp., subset sum). In the main part of this
paper, the terms “knapsack” and “subset sum” will refer to the uncompressed
version.

In this paper we will study the compressed and uncompressed versions of
knapsack and subset sum for the class of graph groups. Graph groups are also
known as “right-angled Artin groups” or “free partially commutative groups”.
A graph group is specified by a finite simple graph. The vertices are the gener-
ators of the group, and two generators a and b are allowed to commute if and
only if a and b are adjacent. Graph groups can be regarded as interpolating
between free groups and free abelian groups and constitute a group counter-
part of trace monoids (free partially commutative monoids), which have been

c5726439 2017-08-12 22:18:40 +0200

4 Markus Lohrey, Georg Zetzsche

used for the specification of concurrent behavior. In combinatorial group the-
ory, graph groups are currently an active area of research, mainly because of
their rich subgroup structure (see e.g. [6,10,20]).

Since the word problem for a graph group can be solved in polynomial
time, it is clear that for each graph group, the subset sum problem belongs to
NP. This result carries over to compressed subset sum, since the compressed
word problem (the word problem where the input group element is given by
an SLP) for a graph product can be solved in polynomial time [37] (see also
[36] for more details). Our first main result states that for every graph group,
even compressed knapsack belongs to NP and is in fact NP-complete. This
generalizes the classical NP-completeness for knapsack (over Z) to a much
wider class of groups. To prove this result, we proceed in two steps:

– We show that if an instance gx1
1 · · · g

xk

k = g, where all group elements
g1, . . . , gk are given succinctly by SLPs, has a solution in a graph group,
then it has a solution where every xi is bounded exponentially in the in-
put length (the total length of all SLPs representing the group elements
g1, . . . , gk, g).

– We then guess the binary encodings of numbers n1, . . . , nk that are bounded
by the exponential bound from the previous point and verify in polyno-
mial time the identity gn1

1 · · · g
nk

k = g. The latter problem is an instance of
the compressed word problem for a graph group, which can be solved in
polynomial time [37].

In fact, our proof yields a stronger result: First, it yields an NP procedure for
solving knapsack-like equations gx1

1 · · · g
xk

k = g where some of the variables
x1, . . . , xk are allowed to be identical. We call such an equation an exponent
equation. Hence, we prove that solvability of exponent equations over a graph
group belongs to NP. A by-product of our proof is that the set of all solutions
(x1, . . . , xk) ∈ Nk of gx1

1 · · · g
xk

k = g is semilinear, and a semilinear representa-
tion can be produced effectively. This seems to be true for many groups, e.g.,
for all co-context-free groups [33]. On the other hand, the discrete Heisenberg
group H3(Z) is an example of a group for which solvability of exponent equa-
tions is decidable, but the set of all solutions of an exponent equation is not
semilinear; it is defined by a single quadratic Diophantine equation [33].

The second part of the paper is concerned with with uncompressed knap-
sack and subset sum for graph groups. In the case of knapsack, we completely
determine the complexity and for subset sum, we obtain an almost complete
picture. For a finite simple graph Γ , let G(Γ) denote the graph group specified
by Γ .

(i) Uncompressed knapsack and subset sum for G(Γ) are complete for TC0

if Γ is a complete graph (and thus G(Γ) is a free abelian group).2

(ii) Uncompressed knapsack and subset sum for G(Γ) are LogCFL-complete
if Γ is not a complete graph and neither contains an induced cycle on
four nodes (C4) nor an induced path on four nodes (P4).

2 In the following, TC0 always refers to its DLOGTIME-uniform version.

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 5

(iii) Uncompressed knapsack for G(Γ) is NP-complete if Γ contains an in-
duced C4 or an induced P4 (it is not clear whether this also holds for
subset sum).

The result (i) is a straightforward extension of the corresponding fact for Z [17].
The proofs for (ii) and (iii) are less obvious. Recall that LogCFL is the closure
of the context-free languages under logspace reductions; it is contained in the
circuit complexity class NC2.

To show the upper bound in (ii), we use the fact that the graph groups
G(Γ), where Γ neither contains an induced C4 nor an induced P4 (these graphs
are the so called transitive forests), are exactly those groups that can be built
up from Z using the operations of free product and direct product with Z. We
then construct inductively over these operations a logspace-bounded auxil-
iary pushdown automaton working in polynomial time (these machines accept
exactly the languages in LogCFL) that checks whether an acyclic finite au-
tomaton accepts a word that is trivial in the graph group. In order to apply
this result to knapsack, we finally show that every solvable knapsack instance
over a graph group G(Γ) with Γ a transitive forest has a solution with poly-
nomially bounded exponents. This is the most difficult result in the second
part of this paper and it might be of independent interest.

For the lower bound in (ii), it suffices to consider the group F2 (the free
group on two generators). Our proof is based on the fact that the context-
free languages are exactly those languages that can be accepted by valence
automata over F2. This is a reinterpretation of the classical theorem of Chom-
sky and Schützenberger. To the authors’ knowledge, the result (ii) is the first
completeness result for LogCFL in the area of combinatorial group theory.

Finally, for the result (iii) it suffices to show NP-hardness of knapsack
for the graph groups G(C4) (where C4 is a cycle on four nodes) and G(P4)
(where P4 is a cycle on four nodes). Our proof for G(C4) is based on ideas
from [44]. For G(P4), we apply a technique that was first used by Aalbersberg
and Hoogeboom [1] to show that the intersection non-emptiness problem for
regular trace languages is undecidable for P4.

This work presents all results with full proofs from the extended abstracts
in [39,40] that concern the knapsack problem and the subset sub problem for
graph groups (the paper [39] also contains transfer results on HNN-extensions
and free products with amalgamations, which do not appear here).

Related work. Implicitly, the knapsack problem was also studied by Babai
et al. [4], where it is shown that knapsack for commutative matrix groups over
algebraic number fields can be solved in polynomial time.

The knapsack problem is a special case of the more general rational subset
membership problem. A rational subset of a finitely generated monoid M is
the homomorphic image in M of a regular language over the generators of
M . In the rational subset membership problem for M the input consists of
a rational subset L ⊆ M (specified by a finite automaton) and an element
m ∈M and it is asked whether m ∈ L. It was shown in [38] that the rational

c5726439 2017-08-12 22:18:40 +0200

6 Markus Lohrey, Georg Zetzsche

subset membership problem for a graph group G is decidable if and only if
the corresponding graph has (i) no induced cycle on four nodes (C4) and
(ii) no induced path on four nodes (P4). For the decidable cases, the precise
complexity is open.

Knapsack for G can be also viewed as the question, whether a word equa-
tion z1z2 · · · zn = 1, where z1, . . . , zn are variables, together with constraints
of the form {gn | n ≥ 0} for the variables has a solution in G. Such a solution
is a mapping ϕ : {z1, . . . , zn} → G such that ϕ(z1z2 · · · zn) evaluates to 1 in
G and all constraints are satisfied. For another class of constraints (so-called
normalized rational constraints, which do not cover constraints of the form
{gn | n ≥ 0}), solvability of general word equations was shown to be decid-
able (PSPACE-complete) for graph groups by Diekert and Muscholl [14]. This
result was extended in [13] to a transfer theorem for graph products. A graph
product is specified by a finite simple graph where every node is labeled with
a group. The associated group is obtained from the free product of all vertex
groups by allowing elements from adjacent groups to commute. Note that de-
cidability of knapsack is not preserved under graph products: It is not even
preserved under direct products (see the above mentioned results from [33]).

2 Basic concepts

2.1 Complexity classes

We assume that the reader is familiar with the complexity classes P and NP,
see e.g. [3] for details. The class TC0 is a very low circuit complexity class; it
is contained for instance in NC1 and deterministic logspace. We will use this
class only in Section 4.4, and even that part can be understood without the
precise definition of TC0. Nevertheless, for completeness we include the formal
definition of TC0.

A language L ⊆ {0, 1}∗ belongs to TC0 if there exists a family (Cn)n≥0 of
Boolean circuits with the following properties:

– Cn has n distinguished input gates x1, . . . , xn and a distinguished output
gate o.

– Cn accepts exactly the words from L ∩ {0, 1}n, i.e., if the input gate xi
receives the input ai ∈ {0, 1}, then the output gate o evaluates to 1 if and
only if a1a2 · · · an ∈ L.

– Every circuit Cn is built up from input gates, and-gates, or-gates, and
majority-gates, where a majority gate evaluates to 1 if at least half of its
input wires carry 1.

– All gates have unbounded fan-in, which means that there is no bound on
the number of input wires for a gate.

– There is a polynomial p(n) such that Cn has at most p(n) many gates.
– There is a constant c such that every Cn has depth at most c, where the

depth is the length of a longest path from an input gate xi to the output
gate o.

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 7

This is in fact the definition of non-uniform TC0. Here “non-uniform” means
that the mapping n 7→ Cn is not restricted in any way. In particular, it can be
non-computable. For algorithmic purposes one usually adds some uniformity
requirement to the above definition. The most “uniform” version of TC0 is
DLOGTIME-uniform TC0. For this, one encodes the gates of each circuit Cn
by bit strings of length O(log n). Then the circuit family (Cn)n≥0 is called
DLOGTIME-uniform if (i) there exists a deterministic Turing machine that
computes for a given gate u ∈ {0, 1}∗ of Cn (|u| ∈ O(log n)) in time O(log n)
the type (of gate u, where the types are x1, . . . , xn, and, or, majority) and (ii)
there exists a deterministic Turing machine that decides for two given gate
u, v ∈ {0, 1}∗ of Cn (|u|, |v| ∈ O(log n)) in time O(log n) whether there is
a wire from gate u to gate v. In the following, we always implicitly refer to
DLOGTIME-uniform TC0.

If the language L in the above definition of TC0 is defined over a non-
binary alphabet Σ then one first has to fix a binary encoding of words over
Σ. When talking about hardness for TC0, one has to use reductions, whose
computational power are below TC0, e.g. AC0-Turing-reductions. The precise
definition of these reductions is not important for our purpose. Important
problems that are complete for TC0 are:

– The languages {w ∈ {0, 1}∗ | |w|0 ≤ |w|1} and {w ∈ {0, 1}∗ | |w|0 = |w|1},
where |w|a denotes the number of occurrences of a in w, see e.g. [50].

– The computation (of a certain bit) of the binary representation of the
product of two (or any number of) binary encoded integers [25].

– The computation (of a certain bit) of the binary representation of the
integer quotient of two binary encoded integers [25].

– The word problem for every infinite solvable linear group [32].
– The conjugacy problem for the Baumslag-Solitar group BS(1, 2) [15].

The class LogCFL consists of all problems that are logspace reducible to a
context-free language. The class LogCFL is included in the parallel complexity
class NC2 and has several alternative characterizations (see e.g. [48,50]):

– logspace bounded alternating Turing-machines with polynomial tree size,
– semi-unbounded Boolean circuits of polynomial size and logarithmic depth,

and
– logspace bounded auxiliary pushdown automata with polynomial running

time.

For our purposes, the last characterization is most suitable. An AuxPDA (for
auxiliary pushdown automaton) is a nondeterministic pushdown automaton
with a two-way input tape and an additional work tape. Here we only consider
AuxPDA with the following two restrictions:

– The length of the work tape is restricted to O(log n) for an input of length
n (logspace bounded).

– There is a polynomial p(n), such that every computation path of the Aux-
PDA on an input of length n has length at most p(n) (polynomially time
bounded).

c5726439 2017-08-12 22:18:40 +0200

8 Markus Lohrey, Georg Zetzsche

Whenever we speak of an AuxPDA in the following, we implicitly assume that
the AuxPDA is logspace bounded and polynomially time bounded. Determin-
istic AuxPDA are defined in the obvious way. The class of languages that are
accepted by AuxPDA is exactly LogCFL, whereas the class of languages ac-
cepted by deterministic AuxPDA is LogDCFL (the closure of the deterministic
context-free languages under logspace reductions) [48].

2.2 Finite automata

We will use standard notions from automata theory. We define a nondeter-
ministic finite automaton (NFA) as a tuple A = (Q,Σ,∆, q0, F), where Q is a
finite set of states, Σ is the input alphabet, q0 ∈ Q is the initial state, F ⊆ Q is
the final state, and ∆ ⊆ Q×Σ∗×Q is a finite set of transitions. Note that such
an automaton can read several (including zero) many symbols in a transition.
A spelling NFA is an NFA A = (Q,Σ,∆, q0, F), where ∆ ⊆ Q × Σ ×Q. The
language accepted by A is denoted with L(A). If we allow ε-transitions of the
form (q, ε, p), which is the case for general (non-spelling) NFA, then we can
assume that the set of final states F consists of a unique state qf , in which
case we write A = (Q,Σ,∆, q0, qf).

An acyclic NFA is a (not necessarily spelling) NFA A = (Q,Σ,∆, q0, qf)
such that the relation {(p, q) | ∃w ∈ Σ∗ : (p, w, q) ∈ ∆} is acyclic. An
acyclic loop NFA is a (not necessarily spelling) NFA A = (Q,Σ,∆, q0, qf)
such that there exists a linear order � on ∆ having the property that for all
(p, u, q), (q, v, r) ∈ ∆ it holds (p, u, q) � (q, v, r). Thus, an acyclic loop NFA
is obtained from an acyclic NFA by attaching to some of the states a unique
loop.

2.3 Vectors and semilinear sets

Vectors will be column vectors, unless we explicitly speak of row vectors. For
a vector x ∈ Zk we denote with xT the corresponding row vector. Given a
vector x = (x1, . . . , xk)T ∈ Zk, we use three different standard norms:

‖x‖∞ = max{|xi| | 1 ≤ i ≤ k}, (1)

‖x‖2 =

√ ∑
1≤i≤k

x2i , (2)

‖x‖1 =

m∑
i=1

|xi|. (3)

For a subset T ⊆ Nk, we write T⊕ for the smallest subset of Nk that contains
T ∪ {0} and is closed under addition. A subset S ⊆ Nk is called linear if
there is a vector x ∈ Nk and a finite set F ⊆ Nk such that S = x + F⊕.
Note that a set is linear if and only if it can be written as x + ANt for

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 9

some x ∈ Nk and some matrix A ∈ Nk×t. Here, ANt denotes the set of all
vectors Ay for y ∈ Nt. A semilinear set is a finite union of linear sets. If
S =

⋃n
i=1 xi + F⊕i for x1, . . . , xn ∈ Nk and finite sets F1, . . . , Fn ⊆ Nk, then

the tuple (x1, F1, . . . , xn, Fn) is a semilinear representation of S. Saying that
a set S is effectively semilinear means that a semilinear representation for S
can be computed from certain input data.

2.4 Words and straight-line programs

For a word w we denote with alph(w) the set of symbols occurring in w. The
length of the word w is |w|.

A straight-line program, briefly SLP, is basically a context-free grammar
that produces exactly one string. To ensure this, the grammar has to be acyclic
and deterministic (every variable has a unique production where it occurs on
the left-hand side). Formally, an SLP is a tuple G = (V,Σ, rhs, S), where
V is a finite set of variables (or nonterminals), Σ is the terminal alphabet,
S ∈ V is the start variable, and rhs maps every variable to a right-hand
side rhs(A) ∈ (V ∪ Σ)∗. We require that there is a linear order < on V
such that B < A whenever B ∈ N ∩ alph(rhs(A)). Every variable A ∈ V
derives to a unique string valG(A) by iteratively replacing variables by the
corresponding right-hand sides, starting with A. Finally, the string derived by
G is val(G) = valG(S).

Let G = (V,Σ, rhs, S) be an SLP. The size of G is |G| =
∑
A∈V |rhs(A)|,

i.e., the total length of all right-hand sides. A simple induction shows that
for every SLP G of size m one has |val(G)| ≤ O(3m/3) ⊆ 2O(m) [9, proof of
Lemma 1]. On the other hand, it is straightforward to define an SLP H of size
2n such that |val(H)| ≥ 2n. This justifies to see an SLP G as a compressed
representation of the string val(G), and exponential compression rates can be
achieved in this way. More details on SLPs can be found in the survey [35].

2.5 Groups

We assume that the reader has some basic knowledge concerning (finitely gen-
erated) groups (see e.g. [41] for further details). Let G be a finitely generated
group, and let A be a finite generating set for G. Then, elements of G can be
represented by finite words over the alphabet A±1 = A∪A−1. The free group
generated by A is denoted by F (A) and we also write Fn for F (A) if |A| = n.
Elements of F (A) can be identified with irreducible words over A±1, i.e., words
that do not contain a factor of the form aa−1 or a−1a for a ∈ A. The length
|g| of g ∈ F (A) is the the length of the irreducible word corresponding to g.

A group G is finitely presented if there exists a finite alphabet A and a
finite set of words R ⊆ (A±1)∗ (which we identify with a subset of F (A)) such
that G is isomorphic to F (A)/N , where N is the smallest normal subgroup of
F (A) that contains R. The group F (A)/N is usually denoted by 〈A | R〉 and

c5726439 2017-08-12 22:18:40 +0200

10 Markus Lohrey, Georg Zetzsche

the pair (A,R) is called a presentation of G. Elements of R are called relators.
With 〈A | u1 = v1, . . . , uk = vk〉 we denote the group 〈A | u1v−11 , . . . , ukv

−1
k 〉.

It is a standard fact that an element g ∈ F (A) represents the identity of
G = 〈A | R〉 if and only if g can be written in F (A) as a product

∏n
i=1 c

−1
i rici,

where ci ∈ F (A) and ri ∈ R ∪ R−1. The minimal such n is called the area
of g (with respect to the presentation (A,R)). The Dehn function of the pre-
sentation (A,R) is the function f : N → N that maps n to the maximal area
of an element g ∈ F (A) such that g = 1 in F (A) and |g| ≤ n. We say that
a finitely presented group G has a polynomial Dehn function if there exists a
presentation for G whose Dehn function is bounded by a polynomial.

2.6 Knapsack and exponent equations

Let G be a finitely generated group, and fix a generating set A for G. An
exponent equation over G is an equation of the form

v0u
x1
1 v1u

x2
2 v2 · · ·uxn

n vn = 1 (4)

where u1, u2, . . . , un, v0, v1, . . . , vn ∈ G are group elements that are given by
finite words over the alphabet A±1 and x1, x2, . . . , xn are not necessarily dis-
tinct variables. Such an exponent equation is solvable if there exists a map-

ping σ : {x1, . . . , xn} → N such that v0u
σ(x1)
1 v1u

σ(x2)
1 v2 · · ·uσ(xn)

n vn = 1 in the
group G. If there is no danger of confusion, we will simplify notation and not
distinguish between variables and solutions. Solvability of exponent equations
over G is the following computational problem:

Input: An exponent equation E over G (where elements of G are specified by
words over the alphabet A±1).

Question: Is E solvable?

It suffices to consider exponent equations of the form ux1
1 u

x2
2 · · ·uxn

n vn = 1:
using conjugation, we can replace an equation v0u

x1
1 v1u

x2
2 v2 · · ·uxn

n v = 1 by
(v0u1v

−1
0)x1(v0v1)ux2

2 v2 · · ·uxn
n vn = 1 and then continue in this way. On the

other hand, in some of our proof it is convenient to allow the group elements
v0, v1, . . . , vn−1 in (4).

The knapsack problem for the group G is the restriction of solvability of ex-
ponent equations overG to exponent equations of the form ux1

1 u
x2
2 · · ·uxn

n u−1 =
1 or, equivalently, ux1

1 u
x2
2 · · ·uxn

n = u where the exponent variables x1, . . . , xn
have to be pairwise different.

We will also study a compressed version of exponent equations over G,
where elements of G are given by SLPs over A±1. A compressed exponent
equation is an exponent equation v0u

x1
1 v1u

x2
2 v2 · · ·uxn

n vn = 1 where the group
elements u1, u2, . . . , un, v0, v1, . . . , vn ∈ G are given by SLPs over the terminal
alphabet A±1. The sum of the sizes of these SLPs is the size of the compressed
exponent equation.

Let us define solvability of compressed exponent equations over G as the
following computational problem:

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 11

Input: A compressed exponent equation E over G.

Question: Is E solvable?

The compressed knapsack problem for G is defined analogously. Note that with
this terminology, the classical knapsack problem for binary encoded integers
is the compressed knapsack problem for the group Z. The binary encoding of
an integer can be easily transformed into an SLP over the alphabet {a, a−1}
(where a is a generator of Z) and vice versa. Here, the number of bits in the
binary encoding and the size of the SLP are linearly related.

Remark 2.1 Let us comment on the difference between the knapsack problem
and solvability of exponent equations. The main concern of this work is the
knapsack problem, where all variables are distinct. However, the methods we
use in section 3 for obtaining the NP upper bound apply to general (even
compressed) exponent equations. Our proof of the LogCFL upper bound in
section 4, on the other hand, only works for the knapsack problem.

Nevertheless, all our (complexity) lower bounds are with respect to the
knapsack problem.

It is a simple observation that the decidability and complexity of solvability
of (compressed) exponent equations over G as well as the (compressed) knap-
sack problem for G does not depend on the chosen finite generating set for the
group G. Therefore, we do not have to mention the generating set explicitly
in these problems.

Remark 2.2 Since we are dealing with a group, one might also allow solution
mappings σ : {x1, . . . , xn} → Z to the integers. But this variant of solvability
of (compressed) exponent equations (knapsack, respectively) can be reduced
to the above version, where σ maps to N, by simply replacing a power uxi

i by
uxi
i (u−1i)yi , where yi is a fresh variable.

This work is concerned with decidability and complexity of solvability of ex-
ponent equations for so-called graph groups, which will be introduced in the
next section.

2.7 Traces and graph groups

Let (A, I) be a finite simple graph. In other words, the edge relation I ⊆ A×A
is irreflexive and symmetric. It is also called the independence relation, and
(A, I) is called an independence alphabet. The relation D = (A×A) \ I is also
called the associated dependence relation and (A,D) is called the associated
dependence alphabet. We consider the monoid M(A, I) = A∗/≡I , where ≡I
is the smallest congruence relation on the free monoid A∗ that contains all
pairs (ab, ba) with a, b ∈ A and (a, b) ∈ I. This monoid is called a trace
monoid or partially commutative free monoid; it is cancellative, i.e., xy = xz
or yx = zx implies y = z. Elements of M(A, I) are called Mazurkiewicz traces
or simply traces. The trace represented by the word u is denoted by [u]I , or

c5726439 2017-08-12 22:18:40 +0200

12 Markus Lohrey, Georg Zetzsche

simply u if no confusion can arise. For a language L ⊆ A∗ we denote with
[L]I = {u ∈ A∗ | ∃v ∈ L : u ≡I v} its partially commutative closure. The
length of the trace [u]I is |[u]I | = |u| and its alphabet is alph([u]I) = alph(u).
It is easy to see that these definitions do not depend on the concrete word that
represents the trace [u]I . For subsets B,C ⊆ A we write BIC for B×C ⊆ I. If
B = {a} we simply write aIC. For traces s, t we write sIt for alph(s)Ialph(t).
The empty trace [ε]I is the identity element of the monoid M(A, I) and is
denoted by 1. A trace t is connected if we cannot factorize t as t = uv with
u 6= 1 6= v and uIv.

A trace t ∈ M(A, I) can be visualized by its dependence graph Dt. To
define Dt, choose an arbitrary word w = a1a2 · · · an, ai ∈ A, with t = [w]I
and define Dt = ({1, . . . , n}, E, λ), where E = {(i, j) | i < j, (ai, aj) ∈ D} and
λ(i) = ai. If we identify isomorphic dependence graphs, then this definition is
independent of the chosen word representing t. Moreover, the mapping t 7→ Dt

is injective. As a consequence of the representation of traces by dependence
graphs, one obtains Levi’s lemma for traces (see e.g. [16, p. 74]), which is one
of the fundamental facts in trace theory. The formal statement is as follows.

Lemma 2.3 (Levi’s lemma) Let u1, . . . , um, v1, . . . , vn ∈M(A, I). Then

u1u2 · · ·um = v1v2 · · · vn

if and only if there exist wi,j ∈M(A, I) (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that

– ui = wi,1wi,2 · · ·wi,n for every 1 ≤ i ≤ m,
– vj = w1,jw2,j · · ·wm,j for every 1 ≤ j ≤ n, and
– wi,jIwk,` if 1 ≤ i < k ≤ m and n ≥ j > ` ≥ 1.

The situation in the lemma will be visualized by a diagram of the following
kind. The i–th column corresponds to ui, the j–th row corresponds to vj ,
and the intersection of the i–th column and the j–th row represents wi,j .
Furthermore wi,j and wk,` are independent if one of them is left-above the
other one.

vn w1,n w2,n w3,n . . . wm,n
...

...
...

...
...

...
v3 w1,3 w2,3 w3,3 . . . wm,3
v2 w1,2 w2,2 w3,2 . . . wm,2
v1 w1,1 w2,1 w3,1 . . . wm,1

u1 u2 u3 . . . um

A consequence of Levi’s Lemma is that trace monoids are cancellative, i.e.,
usv = utv implies s = t for all traces s, t, u, v ∈M(A, I).

Let s, t ∈M(A, I) be traces. We say that s is a prefix of t if there is a trace
r ∈ M(A, I) with sr = t. Moreover, we define ρ(t) as the number of prefixes
of t. We will use the following statement from [5].

Lemma 2.4 Let t ∈M(A, I) be a trace of length n. Then ρ(t) ∈ O(nα), where
α is the size of a largest clique of the associated dependence alphabet (A,D).

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 13

With an independence alphabet (A, I) we associate the finitely presented group

G(A, I) = 〈A | ab = ba ((a, b) ∈ I)〉.

Such a group is called a graph group, or right-angled Artin group3, or free par-
tially commutative group. Here, we use the term graph group. Graph groups
received a lot of attention in group theory during the last few years, mainly
due to their rich subgroup structure [6,10,20], and their relationship to low
dimensional topology (via so-called virtually special groups) [2,24,51]. We rep-
resent elements of G(A, I) by traces over an extended independence alphabet.
For this, let A−1 = {a−1 | a ∈ A} be a disjoint copy of the alphabet A, and let
A±1 = A ∪ A−1. We define (a−1)−1 := a and for a word w = a1a2 · · · an with
ai ∈ A±1 we define w−1 = a−1n · · · a−12 a−11 . This defines an involution (with-
out fixed points) on (A±1)∗. We extend the independence relation I to A±1

by (ax, by) ∈ I for all (a, b) ∈ I and x, y ∈ {−1, 1}. Then, there is a canon-
ical surjective morphism h : M(A±1, I) → G(A, I) that maps every symbol
a ∈ A±1 to the corresponding group element. Of course, h is not injective, but
we can easily define a subset IRR(A±1, I) ⊆ M(A±1, I) of irreducible traces
such that h restricted to IRR(A±1, I) is bijective. The set IRR(A±1, I) consists
of all traces t ∈ M(A±1, I) such that t does not contain a factor [aa−1]I with
a ∈ A±1, i.e., there do not exist u, v ∈ M(A±1, I) and a ∈ A±1 such that in
M(A±1, I) we have a factorization t = u[aa−1]Iv. For every trace t there exists
a corresponding irreducible normal form that is obtained by removing from t
factors [aa−1]I with a ∈ A±1 as long as possible. It can be shown that this
reduction process is terminating (which is trivial since it reduces the length)
and confluent (in [34] a more general confluence lemma for graph products of
monoids is shown). Hence, the irreducible normal form of t does not depend
on the concrete order of reduction steps. For a group element g ∈ G(A, I)
we denote with |g| the length of the unique trace t ∈ IRR(A±1, I) such that
h(t) = g.

For a trace t = [u]I (u ∈ (A±1)∗) we can define t−1 = [u−1]I . This is
well-defined, since u ≡I v implies u−1 ≡I v−1. The following lemma will be
important; see also [14, Lemma 23].

Lemma 2.5 Let s, t ∈ IRR(A±1, I). Then there exist unique factorizations
s = up and t = p−1v in M(A±1, I) such that uv ∈ IRR(A±1, I). Hence, uv is
the irreducible normal form of st.

3 Compressed knapsack and exponent equations

The goal of this section is to show the following result:

Theorem 3.1 Let (A, I) be a fixed independence alphabet. Solvability of com-
pressed exponent equations over the graph group G(A, I) is in NP.

3 This term comes from the fact that right-angled Artin groups are exactly the Artin
groups corresponding to right-angled Coxeter groups.

c5726439 2017-08-12 22:18:40 +0200

14 Markus Lohrey, Georg Zetzsche

As a byproduct, we will prove that the set of solutions of an exponent equation
over a fixed graph group is semilinear.

In Section 3.1 we will analyze the possible factorizations of a power ux,
where u is a connected trace and x is a natural number, into a product
y1y2 · · · ym of traces. In Section 3.2 we will describe the set of solution of a
trace equation puxs = qvyt, where u and v are connected traces and x, y ∈ N
are variables. In Section 3.3 we state an auxiliary result on linear diophantine
equations that follows easily from a result of [19]. In Section 3.4 we prove the
key lemma that allows us to reduce an exponent equations over a graph group
to a system of trace equations. Finally, in Section 3.5 we prove Theorem 3.1.
Section 3.6 deals with the compressed solvability of exponent equations in a
graph group that is also part of the input (and given by the defining indepen-
dence alphabet).

3.1 Factorizations of powers

Based on Levi’s lemma we prove in this section a factorization result for powers
of a connected trace. We start with the case that we factorize such a power
into two factors.

Lemma 3.2 Let u ∈ M(A, I) \ {1} be a connected trace. Then, for all x ∈ N
and all traces y1, y2 the following two statements are equivalent:

(i) ux = y1y2
(ii) There exist l, k, c ∈ N and traces s, p such that: y1 = uls, y2 = puk,

sp = uc, l + k + c = x, and c ≤ |A|.

Proof That (ii) implies (i) is clear. It remains to prove that (i) implies (ii).
Assume that ux = y1y2 holds. The case that x ≤ |A| is trivial. Hence, assume
that x ≥ |A|+1. We apply Levi’s lemma (Lemma 2.3) to the identity ux = y1y2:

y2 u1,2 u2,2 u3,2 u4,2 · · · ux−1,2 ux,2
y1 u1,1 u2,1 u3,1 u4,1 · · · ux−1,1 ux,1

u u u u · · · u u

Let Ai = alph(u1,2 · · ·ui,2). Then Ai ⊆ Ai+1. If A1 = ∅ then u1,2 = 1 and we
can go to Case 2 below. Otherwise, assume that A1 6= ∅. In that case there
must exist 1 ≤ i ≤ |A| such that Ai = Ai+1, which implies alph(ui+1,2) ⊆ Ai.
Since ui+1,1I(u1,2 · · ·ui,2) we also have ui+1,1Iui+1,2. Since u is connected, we
have ui+1,1 = 1 or ui+1,2 = 1. We can therefore distinguish the following two
cases:

Case 1. There exists 1 ≤ i ≤ |A|+ 1 such that ui,1 = 1. Then ui,2 = u, which
implies uj,1 = 1 for all j > i (since ui,2Iuj,1):

y2 u1,2 u2,2 · · · ui−1,2 u u · · · u u
y1 u1,1 u2,1 · · · ui−1,1 1 1 · · · 1 1

u u · · · u u u · · · u u

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 15

Let s = u1,1u2,1 · · ·ui−1,1 and p = u1,2u2,2 · · ·ui−1,2. Thus, y1 = u0s, y2 =
pux−i+1 and sp = ui−1 with i − 1 ≤ |A|, and the conclusion of the lemma
holds.

Case 2. There exists 1 ≤ i ≤ |A|+ 1 such that ui,2 = 1. Then, uj,2 = 1 for all
j < i (since ui,1 = u and uj,2Iui,1):

y2 1 1 · · · 1 1 ui+1,2 · · · ux−1,1 ux,2
y1 u u · · · u u ui+1,1 · · · ux−1,1 ux,1

u u · · · u u u · · · u u

Let y′1 = ui+1,1 · · ·ux,1. Hence, ux−i = y′1y2. We can use induction to get
factorizations y′1 = uls, y2 = puk, and sp = uc with c ≤ |A| and k+l+c = x−i.
Finally, we have y1 = uiy′1 = ui+ls, which shows the conclusion of the lemma.

ut

Now we lift Lemma 3.2 to an arbitrary number of factors.

Lemma 3.3 Let u ∈ M(A, I) \ {1} be a connected trace and m ∈ N, m ≥ 2.
Then, for all x ∈ N and traces y1, . . . , ym the following two statements are
equivalent:

(i) ux = y1y2 · · · ym.
(ii) There exist traces pi,j (1 ≤ j < i ≤ m), si (1 ≤ i ≤ m) and numbers

xi, cj ∈ N (1 ≤ i ≤ m, 1 ≤ j ≤ m− 1) such that:

– yi = (
∏i−1
j=1 pi,j)u

xisi for all 1 ≤ i ≤ m,

– pi,jIpk,l if j < l < k < i and pi,jI(uxksk) if j < k < i,4

– sm = 1 and for all 1 ≤ j < m, sj
∏m
i=j+1 pi,j = ucj ,

– cj ≤ |A| for all 1 ≤ j ≤ m− 1,

– x =
∑m
i=1 xi +

∑m−1
i=1 ci.

Proof Let us first show that (ii) implies (i). Assume that (ii) holds. Then we
get

y1y2 · · · ym =

m∏
i=1

(
(

i−1∏
j=1

pi,j)u
xisi

)
.

The independencies pi,jIpk,l for j < l < k < i and pi,jI(uxksk) for j < k < i
yield

m∏
i=1

((i−1∏
j=1

pi,j
)
uxisi

)
= ux1s1p2,1 · · · pm,1ux2s2p3,2 · · · pm,2ux3s3 · · ·uxm−1sm−1pm,m−1u

xmsm

= ux1uc1ux2uc2ux3 · · ·ucm−1uxm = ux.

We now prove that (i) implies (ii) by induction on m. So, assume that ux =
y1y2 · · · ym. The case m = 2 follows directly from Lemma 3.2. Now assume that

4 Note that since alph(pi,j) ⊆ alph(u), we must have pi,j = 1 or xk = 0 whenever
j < k < i.

c5726439 2017-08-12 22:18:40 +0200

16 Markus Lohrey, Georg Zetzsche

m ≥ 3. By Lemma 3.2 there exist factorizations y1 = ux1s1, y2 · · · ym = p1u
x′ ,

and s1p1 = uc1 with c1 ≤ |A| and x1 + x′ + c1 = x. Levi’s lemma applied to
y2 · · · ym = p1u

x′ gives the following diagram:

ym pm,1 y′m
...

...
...

y3 p3,1 y′3
y2 p2,1 y′2

p1 u u u . . . u u

There exist y′i with yi = pi,1y
′
i (2 ≤ i ≤ m), y′2 · · · y′m = ux

′
, and y′jIpi,1 for

j < i. By induction on m we get factorizations

y′i =

i−1∏
j=2

pi,ju
xisi

for 2 ≤ i ≤ m such that for all 2 ≤ j < i ≤ m:

– pi,jIpk,l if j < l < k < i and pi,jI(uxksk) if j < k < i,
– sm = 1 and for all 2 ≤ j < m, sj

∏m
i=j+1 pi,j = ucj for some cj ≤ |A|,

– x′ =
∑m
i=2 xi +

∑m−1
i=2 ci.

Since y′jIpi,1 for j < i we get pi,1Ipj,k for 1 < k < j < i and pi,1Iu
xjsj for

1 < j < i. Finally, we have

s1

m∏
i=2

pi,1 = s1p1 = uc1

and

x = x1 + c1 + x′ = x1 + c1 +

m∑
i=2

xi +

m−1∑
i=2

ci =

m∑
i=1

xi +

m−1∑
i=1

ci.

This proves the lemma. ut

Remark 3.4 In Section 3.5 we will apply Lemma 3.3 in order to replace
an equation ux = y1y2 · · · ym (where x, y1, . . . , ym are variables and u is a
concrete connected trace) by an equivalent disjunction. Note that the length
of all factors pi,j and si above is bounded by |A|·|u|. Hence, one can guess these
traces as well as the numbers cj ≤ |A| (the guess results in a disjunction). We
can also guess which of the numbers xi are zero and which are greater than
zero. After these guesses we can verify the independencies pi,jIpk,l (j < l <
k < i) and pi,jI(uxksk) (j < k < i), and the identities sm = 1, sj

∏m
i=j+1 pi,j =

ucj (1 ≤ j < m). If one of them does not hold, the specific guess does not
contribute to the disjunction. In this way, we can replace the equation ux =
y1y2 · · · ym by a disjunction of formulas of the form

∃xi > 0 (i ∈ K) : x =
∑
i∈K

xi + c ∧
∧
i∈K

yi = piu
xisi ∧

∧
i∈[1,m]\K

yi = pisi,

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 17

where K ⊆ [1,m], c ≤ |A| · (m− 1) and the pi, si are concrete traces of length
at most |A| · (m− 1) · |u|. The number of disjuncts in the disjunction will not
be important for our purpose.

3.2 Automata for partially commutative closures

In this section, we present several automata constructions that are well-known
from the theory of recognizable trace languages [11, Chapter 2]. For our pur-
pose we need upper bounds on the size (the size of an automaton is its number
of states) of the constructed automata. In our specific situation we can obtain
better bounds than those obtained from the known constructions. Therefore,
we present the constructions in detail.

Let us fix an independence alphabet (A, I) and let A = (Q,A,∆, q0, F) be
an NFA over the alphabet A. Then, A is an I-diamond NFA if for all (a, b) ∈
I and all transitions (p, a, q), (q, b, r) ∈ ∆ there exists a state q′ such that
(p, b, q′), (q′, a, r) ∈ ∆. For an I-diamond automaton we have L(A) = [L(A)]I .
The NFA A is memorizing if (i) every state is accessible from the initial state
q0 and (ii) there is a mapping α : Q→ 2A such that for every word w ∈ A∗, if

q0
w−→A q, then α(q) = alph(w).

Lemma 3.5 Let A1 and A2 be I-diamond NFA and let ni be the number of
states of Ai. Assume that A2 is memorizing. Then there exists an I-diamond
NFA for [L(A1)L(A2)]I with n1 · n2 many states.

Proof Let Ai = (Qi, A,∆i, q0,i, Fi) for i ∈ {1, 2}. Let α2 : Q2 → 2A be the
map witnessing the fact that A2 is memorizing. Then, let

A = (Q1 ×Q2, A,∆, 〈q0,1, q0,2〉, F1 × F2),

where

∆ = {(〈p1, p2〉, a, 〈q1, p2〉) | (p1, a, q1) ∈ ∆1, aIα2(p2)} ∪
{(〈p1, p2〉, a, 〈p1, q2〉) | (p2, a, q2) ∈ ∆2}.

Claim 1. A is an I-diamond NFA.
To show this claim, let us consider two consecutive transitions in A labelled

with independent letters. The following four cases can be distinguished, where
we assume (a, b) ∈ I in all four cases:

Case 1. 〈p1, p2〉
a−→A 〈q1, p2〉

b−→A 〈r1, p2〉, where p1
a−→A1

q1
b−→A1

r1 and
aIα2(p2), bIα2(q2). SinceA1 is an I-diamond NFA, there exists a state q′1 ∈ Q1

such that p1
b−→A1

q′1
a−→A1

r1. We get 〈p1, p2〉
b−→A 〈q′1, p2〉

a−→A 〈r1, p2〉.

Case 2. 〈p1, p2〉
a−→A 〈p1, q2〉

b−→A 〈p1, r2〉, where p2
a−→A2

q2
b−→A2

r2. We
can conclude as in Case 1 using the fact that A2 is an I-diamond NFA.

c5726439 2017-08-12 22:18:40 +0200

18 Markus Lohrey, Georg Zetzsche

Case 3. 〈p1, p2〉
a−→A 〈q1, p2〉

b−→A 〈q1, q2〉, where p1
a−→A1 q1, p2

b−→A2 q2,
and aIα2(p2). Since α2(q2) = α2(p2) ∪ {b} and (a, b) ∈ I we have aIα2(q2).

We get 〈p1, p2〉
b−→A 〈p1, q2〉

a−→A 〈q1, q2〉.

Case 4. 〈p1, p2〉
a−→A 〈p1, q2〉

b−→A 〈q1, q2〉, where p2
a−→A2

q2, p1
b−→A1

q1,
and bIα2(q2). Since α2(q2) = α2(p2)∪{a}, we also have bIα2(p2). This implies

〈p1, p2〉
b−→A 〈q1, p2〉

a−→A 〈q1, q2〉.

This concludes the proof of Claim 1. To show that L(A) = [L(A1)L(A2)]I it
suffices to show the following claim:

Claim 2. For all w ∈ A∗, p1 ∈ Q1, and p2 ∈ Q2, the following two statements
are equivalent :

(i) 〈q0,1, q0,2〉
w−→A 〈p1, p2〉

(ii) There are w1, w2 ∈ A∗ such that w ≡I w1w2, q0,1
w1−→A1

p1, and

q0,2
w2−→A2

p2.

Let us first prove that (i) implies (ii). The case w = ε is clear. Hence, let
w = w′a. Then there exist p′1 ∈ Q1, p′2 ∈ Q2 such that

〈q0,1, q0,2〉
w′−→A 〈p′1, p′2〉

a−→A 〈p1, p2〉.

By induction, there exists a factorization w′ ≡I w′1w′2 such that q0,1
w′1−→A1

p′1

and q0,2
w′2−→A2 p

′
2. Note that alph(w′2) = α2(p′2). There are two cases:

Case 1. p′1
a−→A1 p1, p2 = p′2, and aIα2(p′2). Thus, aIw′2. We get w = w′a ≡I

w′1w
′
2a ≡I (w′1a)w′2. Let w1 = w′1a and w2 = w′2. We get q0,1

w1−→A1 p1 and

q0,2
w2−→A2

p2.

Case 2. p′2
a−→A2

p2 and p1 = p′1. Let w1 = w′1 and w2 = w′2a. Thus, w =

w′a ≡I w′1w′2a = w1w2. Moreover, we have q0,1
w1−→A1

p1 and q0,2
w2−→A2

p2.

Let us now prove that (ii) implies (i). Assume that w ≡I w1w2, q0,1
w1−→A1

p1,

and q0,2
w2−→A2 p2. We have to show that 〈q0,1, q0,2〉

w−→A 〈p1, p2〉. But since

A is an I-diamond NFA, it suffices to show that 〈q0,1, q0,2〉
w1w2−→A 〈p1, p2〉,

which follows directly from the assumption and the definition of A (note that
α2(q0,2) = ∅). This concludes the proof of Claim 2 and hence the proof of the
lemma. ut

In general, for a regular language L ⊆ A∗, the partially commutative closure
[L]I is not regular. For instance, if A = {a, b} and aIb, then [(ab)∗]I consists
of all words with the same number of a’s as b’s. On the other hand, it is well
known that if [v]I is a connected trace, then [v∗]I is regular (in fact, there is a
more general result, known as Ochmanski’s theorem [11, Section 2.3]). For our
purpose we need an upper on the size of an I-diamond NFA for [v∗]I (with [v]I
connected). Recall that ρ(u) is the number of different prefixes of the trace u.

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 19

Lemma 3.6 Let u ∈ A∗ \ {ε} such that the trace [u]I is connected. There is
a memorizing I-diamond NFA for [u∗]I of size 2 · ρ([u]I)

|A|.

Proof The following construction can be found in [43, Proposition 5] for the
more general case of the partially commutative closure of a so-called loop-
connected automaton. We present the construction in our simplified situation,
since the NFA gets slightly smaller.

In the following, we identify u with the trace [u]I . We first define a non-
memorizing I-diamond NFA A for [u∗]I of size ρ(u)|A|. Then, we show that by
adding an additional bit to all states, we can get a memorizing I-diamond NFA
A for [u∗]I of size 2 · ρ(u)|A|. The idea for the construction of A is implicitly
contained in the proof of Lemma 3.2: Assume that the automaton wants to
read a word w ∈ [u∗]I and a prefix y1 of w is already read. Then [y1]I must
be of the form uks, where s is a prefix of uc for some c ≤ |A|. Moreover, by
choosing k maximal, we can assume that u is not a prefix of the trace s.

We define A = (Q,A,∆, q0, F), where Q is the set of all prefixes s of some
trace in u∗ such that u is not a prefix of s.

Let us estimate |Q|. Observe that if s ∈ Q, then Lemma 3.2 tells us that
s = uks′, where s′ is a prefix of uc with c ≤ |A|. Since u is not a prefix of s,
we have k = 0 and hence s = s′ is a prefix of uc. According to Levi’s lemma,
s is of the form u1u2 · · ·uc such that every trace ui is a non-empty prefix of
u. Hence |Q| ≤ ρ(u)|A|.

Note that Q is prefix closed. Moreover, if |u| = 1, then 1 is the only state.
The initial state as well as the final state is the empty trace 1. The set of
transition tuples is

∆ = {(s, a, sa) | s, sa ∈ Q, a ∈ A} ∪ {(s, a, t) | s, t ∈ Q, sa = ut in M(A, I)}.

Claim 1. A is an I-diamond NFA.

We can distinguish the following four cases, where (a, b) ∈ I in all four cases:

Case 1. (s, a, sa), (sa, b, sab) ∈ ∆. Since sab = sba ∈ Q, we must have sb ∈ Q.
Hence, we have (s, b, sb), (sb, a, sba) ∈ ∆.

Case 2. (s, a, t), (t, b, v) ∈ ∆, where sa = ut and tb = uv. From sa = ut
and the fact that u is not a prefix of s we obtain with Levi’s lemma the
factorizations s = u′t and u = u′a with aIt. From aIt and (a, b) ∈ I we get
aItb, in contradiction to tb = uv = u′av. Hence, Case 2 cannot occur.

Case 3. (s, a, t), (t, b, tb) ∈ ∆, where sa = ut. As above, we get factorizations
s = u′t and u = u′a with aIt. We claim that sb ∈ Q. First, u is not a prefix of
sb: If sb = uv for some trace v, then u′tb = sb = uv = u′av. Hence tb = av, in
contradiction to aItb.

It remains to show that sb is a prefix of a trace in u∗. Since tb ∈ Q there
exists a trace x such that tbx ∈ u∗. Hence, sbax = sabx = utbx ∈ u∗, i.e., sb
is a prefix of a trace in u∗. Thus, sb ∈ Q and hence (s, b, sb) ∈ ∆. Moreover
sba = sab = utb. Thus, (sb, a, tb) ∈ ∆.

c5726439 2017-08-12 22:18:40 +0200

20 Markus Lohrey, Georg Zetzsche

Case 4. (s, a, sa), (sa, b, t) ∈ ∆, where sab = ut. We get sa = u′t, u = u′b and
bIt for some trace u′. We distinguish two subcases. First assume that u is not
a prefix of sb. We claim that sb ∈ Q. Since t ∈ Q, there exist a trace x with
tx ∈ u∗. Hence, sbax = sabx = utx ∈ u∗. Thus, sb is a prefix of a trace in u∗

and does not have u as a prefix. Hence sb ∈ Q and (s, b, sb) ∈ ∆. Moreover,
sba = sab = ut, and thus (sb, a, t) ∈ ∆.

Now assume that u is a prefix of sb. Let sb = uv. Since u is not a prefix of
s ∈ Q, we get s = u′′v, u = u′′b and bIv for some trace u′′. Hence, u′′b = u =
u′b, i.e., u′′ = u′ and s = u′v. Thus, u′t = sa = u′va, which implies t = va.
Since t ∈ Q, we have v ∈ Q. We get (s, b, v), (v, a, t) ∈ ∆. This concludes the
proof of Claim 1.

The following claim shows that L(A) = [u∗]I :

Claim 2. For every state s ∈ Q and every w ∈ A∗ the following two statements
are equivalent:

(i) 1
w−→A s

(ii) [w]I = uks for some k ≥ 0

Let us first show by induction on |w| that (i) implies (ii). The case w = ε is
clear. So, assume that w = w′a. There must exist a state s′ ∈ Q such that

1
w′−→A s′

a−→A s.

By induction, we get [w′]I = u`s′ for some ` ≥ 0. The definition of the transi-
tions of A implies that [w]I = [w′a]I = u`s′a = uks, where k ∈ {`, `+ 1}.

For the direction from (ii) to (i) assume that [w]I = uks for some k ≥ 0. We

have to show that 1
w−→A s. Let s′ ∈ A∗ such that s = [s′]I . Hence, w ≡I uks′.

Since A is an I-diamond NFA, it suffices to show that 1
uks′−−−→A s. But this

follows directly from the definition of A.

To make A memorizing, we first keep only those states that are accessible
from the initial state 1. Then, we add an extra bit to every state that indicates
whether we have already seen a completed occurrence of u. Thus, the new set
of states is Q × {0, 1}, the initial state is the pair (1, 0), and the final states
are (1, 0) and (1, 1). The new set of transitions is

{((s, i), a, (t, i)) | (s, a, t) ∈ ∆}∪{((s, i), a, (t, 1)) | s, t ∈ Q, sa = ut, i ∈ {0, 1}}.

Then, we can define the α-mapping by α(s, i) = alph(uis). The resulting NFA
is still an I-diamond NFA. ut

A direct consequence of Lemma 3.5 and 3.6 is:

Lemma 3.7 Let p, u, s ∈ A∗ with u 6= ε and [u]I connected. There is an NFA
for [pu∗s]I of size 2 · ρ([p]I) · ρ([s]I) · ρ([u]I)

|A|.

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 21

Proof We first construct an I-diamond NFA for [p]I (which is identified here
with the set of words {w ∈ A∗ | w ≡I p}) with ρ([p]I) many states by taking
the set of all prefixes of [p]I as states. Then, we construct a memorizing I-
diamond NFA for [u∗]I with 2·ρ([u]I)

|A| states using Lemma 3.6. By Lemma 3.5
we get an I-diamond automaton for [pu∗]I with 2 · ρ([p]I) · ρ([u]I)

|A| many
states. Finally, we construct an I-diamond NFA for [s]I with ρ([s]I) many
states by taking the set of all prefixes of [s]I as states. This NFA is also
memorizing. Hence, we can apply Lemma 3.5 to get an NFA for [pu∗s]I with
2 · ρ([p]I) · ρ([s]I) · ρ([u]I)

|A| many states. ut

The main lemma from this section that will be needed later is:

Lemma 3.8 Let p, q, u, v, s, t ∈ M(A, I) with u 6= 1 and v 6= 1 connected. Let
m = max{ρ(p), ρ(q), ρ(s), ρ(t)} and n = max{ρ(u), ρ(v)}. Then the set

L(p, u, s, q, v, t) := {(x, y) ∈ N× N | puxs = qvyt}

is semilinear and is a union of O(m8 · n4|A|) many linear sets of the form
{(a+ bz, c+ dz) | z ∈ N} with a, b, c, d ∈ O(m8 · n4|A|).

Proof We identify the traces p, q, u, v, s, t with words representing these traces.
By Lemma 3.6 there exists an NFA for [pu∗s]I of size

k = 2 · ρ(p) · ρ(s) · ρ(u)|A| ≤ 2 ·m2 · n|A|

and an NFA for [qv∗t]I of size

` = 2 · ρ(q) · ρ(t) · ρ(v)|A| ≤ 2 ·m2 · n|A|.

Then, we obtain an NFA A for L = [pu∗s]I ∩ [qv∗t]I with k · ` states. We are
only interested in the length of words from L. Hence, we replace in A every
transition label by the symbol a. The resulting NFA B is defined over a unary
alphabet. Let P = {n | an ∈ L(B)}. By [49, Theorem 1], the set P can be
written as a union

P =

r⋃
i=1

{bi + ci · z | z ∈ N}

with r ∈ O(k2`2) ⊆ O(m8 · n4|A|) and bi, ci ∈ O(k2`2) ⊆ O(m8 · n4|A|). For
every 1 ≤ i ≤ r and z ∈ N there must exist a pair (x, y) ∈ N× N such that

bi + ci · z = |ps|+ |u| · x = |qt|+ |v| · y.

In particular, bi ≥ |ps|, bi ≥ |qt|, |u| divides bi − |ps| and ci, and |v| divides
bi − |qt| and ci. We get:

L(p, u, s, q, v, t) =

r⋃
i=1

{(
bi − |ps|
|u|

+
ci
|u|
· z, bi − |qt|

|v|
+

ci
|v|
· z
) ∣∣∣∣ z ∈ N

}
This shows the lemma. ut

c5726439 2017-08-12 22:18:40 +0200

22 Markus Lohrey, Georg Zetzsche

3.3 Linear Diophantine equations

We will also need a bound on the norm of a smallest vector in a certain kind
of semilinear sets. We will easily obtain this bound from a result from [19].

Lemma 3.9 Let A ∈ Zn×m, a ∈ Zn, C ∈ Nk×m, c ∈ Nk. Let β be an upper
bound for the absolute value of all entries in A, a, C, c. The set

L = {Cz + c | z ∈ Nm, Az = a} ⊆ Nk (5)

is semilinear. Moreover, if L 6= ∅ then there is y ∈ L with

‖y||∞ ≤ β + (
√
m)n ·m · (m+ 1) · βn+1.

Proof Semilinearity of L is clear since the set is Presburger-definable. For the
size bound, we use a result from [19] to bound the size of a smallest positive
solution of the system Az = a. Let A ∈ Zn×m, B ∈ Zp×m, a ∈ Zn×1, b ∈ Zp×1.

Let r = rank(A), and s = rank

(
A
B

)
. LetM be an upper bound on the absolute

values of all (s−1)×(s−1)- or (s×s)-subdeterminants of the (n+p)×(m+1)-

matrix

(
A a

B b

)
, which are formed with at least r rows from the matrix (A a).

Then by the main result of [19], the system Az = a, Bz ≥ b has an integer
solution if and only if it has an integer solution z such that the absolute value
of every entry of z is bounded by (m+ 1)M .

In our situation, we set p = m, B is the m-dimensional identity matrix,
and b is the vector with all entries equal to zero (then Bz ≥ b expresses

that all entries of z are positive). Since

(
A
B

)
is an (n + m) × m-matrix we

get s = rank

(
A
B

)
≤ m. We claim that the absolute values of all (s × s)-

subdeterminants (and also all (s−1)× (s−1)-subdeterminants) of the matrix(
A a

B b

)
are bounded by (

√
m)n · βn. To see this, select s rows and s columns

from

(
A a

B b

)
and consider the resulting submatrix D.

Let d1, . . . , ds be the row vectors of D. By Hadamard’s inequality we have

det(D) ≤
s∏
i=1

‖di‖2.

Assume that the row vectors d1, . . . , ds′ (s′ ≤ n) of D are from the n×(m+1)-
submatrix (A, a). The remaining row vectors ds′+1, . . . , ds of D are from (B, b).
Then, every di (s′ + 1 ≤ i ≤ s) is a zero vector or a unit vector and hence has
Euklidean norm 0 or 1. We therefore have

det(D) ≤
s∏
i=1

‖di‖2 ≤
s′∏
i=1

‖di‖2 ≤ (
√
m)n · βn.

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 23

It follows that if Az = a has a positive solution, then it has a positive solution
where every entry is bounded by (m+ 1) · (

√
m)n · βn.

By substituting every entry of z by (
√
m)n · βn in Cz+ c, it follows that if

the set L in (5) is non-empty, then it contains a vector with all entries bounded
by β + (

√
m)n ·m · (m+ 1) · βn+1. ut

3.4 Reduction from graph groups to trace monoids

As usual, we fix an independence alphabet (A, I). In the following we will con-
sider reduction rules on sequences of traces. For better readability we separate
the consecutive traces in such a sequence by commas. Let u1, u2, . . . , un ∈
IRR(A±1, I) be irreducible traces. The sequence u1, u2, . . . , un is I-freely re-
ducible if the sequence u1, u2, . . . , un can be reduced to the empty sequence ε
by the following rules:

– ui, uj → uj , ui if uiIuj
– ui, uj → ε if ui = u−1j in M(A±1, I)
– ui → ε if ui = ε.

A concrete sequence of these rewrite steps leading to the empty sequence is
a reduction of the sequence u1, u2, . . . , un. Such a reduction can be seen as
a witness for the fact that u1u2 · · ·un = 1 in G(A, I). On the other hand,
u1u2 · · ·un = 1 does not necessarily imply that u1, u2, . . . , un has a reduction.
For instance, the sequence a−1, ab, b−1 has no reduction. But we can show that
every sequence which multiplies to 1 in G(A, I) can be refined (by factorizing
the elements of the sequence) such that the resulting refined sequence has a
reduction. For getting an NP-algorithm, it is important to bound the length
of the refined sequence exponentially in the length of the initial sequence.

Lemma 3.10 Let n ≥ 2 and u1, u2, . . . , un ∈ IRR(A±1, I). If u1u2 · · ·un = 1
in G(A, I), then there exist factorizations ui = ui,1 · · ·ui,ki in M(A±1, I) such
that the sequence

u1,1, . . . , u1,k1 , u2,1, . . . , u2,k2 , . . . , un,1, . . . , un,kn

is I-freely reducible. Moreover,
∑n
i=1 ki ≤ 2n − 2.

Proof We prove the lemma by induction on n. The case n = 2 is trivial (we
must have u2 = u−11). If n ≥ 3 then by Lemma 2.5 we can factorize u1 and
u2 as u1 = ps and u2 = s−1t in M(A±1, I) such that v := pt is irreducible.
Hence, vu3 · · ·un = 1 in G(A, I). By induction, we obtain factorizations pt =
v = v1 · · · vk and ui = vi,1 · · · vi,ki (3 ≤ i ≤ n) in M(A±1, I) such that the
sequence

v1, . . . , vk, v3,1, . . . , v3,k3 , . . . , vn,1, . . . , vn,kn (6)

is I-freely reducible. Moreover,

k +

n∑
i=3

ki ≤ 2n−1 − 2.

c5726439 2017-08-12 22:18:40 +0200

24 Markus Lohrey, Georg Zetzsche

By applying Levi’s lemma to the trace identity pt = v1v2 · · · vk, we obtain
factorizations vi = ui,1ui,2 in M(A±1, I) such that p = u1,1 · · ·uk,1, t =
u1,2 · · ·uk,2, and ui,2Iuj,1 for 1 ≤ i < j ≤ k.

Fix a concrete reduction of the sequence (6). We now consider the following
sequence

u1,1, . . . , uk,1, s, s
−1, u1,2, . . . , uk,2, ṽ3,1, . . . , ṽ3,k3 , . . . , ṽn,1, . . . , ṽn,kn , (7)

where the subsequence ṽi,j is u−1l,2 , u
−1
l,1 if vi,j cancels against vl in our fixed

reduction of (6) (which, in particular, implies that vi,j = v−1l = u−1l,2 u
−1
l,1 in

M(A±1, I)). Otherwise (i.e., if vi,j does not cancel against any vl in our fixed
reduction), we set ṽi,j = vi,j .

Note that u1,1 · · ·uk,1s = ps = u1, s−1u1,2 · · ·uk,2 = s−1t = u2 and
the concatenation of all traces in ṽi,1, . . . , ṽi,ki is ui for 3 ≤ i ≤ n. Hence,
it remains to show that the sequence (7) is I-freely reducible. First of all,
u1,1, . . . , uk,1, s, s

−1, u1,2, . . . , uk,2 reduces to u1,1, . . . , uk,1, u1,2, . . . , uk,2, which
can be rearranged to u1,1, u1,2, u2,1, u2,2, . . . , uk,1, uk,2 using the fact that ui,2Iuj,1
for 1 ≤ i < j ≤ k. Finally, the sequence

u1,1u1,2, u2,1u2,2, . . . , uk,1uk,2, ṽ3,1, . . . , ṽ3,k3 , . . . , ṽn,1, . . . , ṽn,kn

is I-freely reducible. The definition of ṽi,j allows to basically apply the fixed
reduction of (6) to this sequence.

The number of traces in the sequence (7) can be estimated as

2k + 2 + 2 ·
n∑
i=3

ki ≤ 2 · (2n−1 − 2) + 2 = 2n − 2.

This concludes the proof of the lemma. ut

3.5 Semilinearity, exponential bounds, and NP-membership

We now come to the main technical result of Section 3. Let α ≤ |A| be the size
of a largest clique of the dependence alphabet (A,D) corresponding to (A, I).

Theorem 3.11 Let u1, u2, . . . , un ∈ G(A, I) \ {1}, v0, v1, . . . , vn ∈ G(A, I)
and let x1, . . . , xn be variables (we may have xi = xj for i 6= j) ranging over
N. Then, the set of solutions of the exponent equation

v0u
x1
1 v1u

x2
2 v2 · · ·uxn

n vn = 1

is effectively semilinear. Moreover, if there is a solution, then there is a solution
with xi ∈ O(23(αn)

2+7αn · µ8α(n+1) · ν8α|A|(n+1)), where

– µ ∈ O(|A|α · 22α2n · λα),
– ν ∈ O(λα), and
– λ = max{|u1|, |u2|, . . . , |un|, |v0|, |v1|, . . . , |vn|}.

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 25

Proof Let us choose irreducible traces for u1, u2, . . . , un, v0, v1, . . . , vn; we de-
note these traces with the same letters as the group elements. A trace u is called
cyclically reduced if there do not exist a ∈ A±1 and v such that u = ava−1.
For every trace u there exist unique traces p, w such that u = pwp−1 and w
is cyclically reduced (since the reduction relation a−1xa → x is terminating
and confluent [12, Lemma 16]). These traces p and w can be computed in
polynomial time. Note that for a cyclically reduced irreducible trace w, every
power wn is irreducible. Let ui = piwip

−1
i with wi cyclically reduced. Note

that wi cannot be the empty trace since ui 6= 1 in G(A, I). By replacing every
uxi
i by piw

xi
i p
−1
i , we can assume that all ui are cyclically reduced, irreducible,

and non-empty. In case one of the traces ui is not connected, we can write ui
as ui = ui,1ui,2 with ui,1Iui,2 and ui,1 6= 1 6= ui,2. Thus, we can replace the
power uxi

i by uxi
i,1u

xi
i,2. Note that ui,1 and ui,2 are still irreducible and cycli-

cally reduced. By doing this, the number n from the theorem multiplies by
at most α (which is the maximal number of pairwise independent letters). In
order to keep the notation simple we still use the letter n for the number of
ui, but at the end of the proof we have to multiply n by α in the derived
bound. Hence, for the further proof we can assume that all ui are connected,
irreducible and cyclically reduced. Let λ be the maximal length of one of the
traces u1, u2, . . . , un, v0, v1, . . . , vn, which does not increase by the above pre-
processing.

We now apply Lemma 3.10 to the equation

v0u
x1
1 v1u

x2
2 v2 · · ·uxn

n vn = 1, (8)

where every uxi
i is viewed as a single factor. Note that by our preprocess-

ing, all factors ux1
1 , u

x2
2 , . . . , u

xn
n , v0, . . . , vn are irreducible (for all choices of

the xi). By taking a disjunction over (i) all possible factorizations of the
2n + 1 factors ux1

1 , u
x2
2 , . . . , u

xn
n , v0, . . . , vn into totally at most 22n+1 − 2 fac-

tors and (ii) all possible reductions of the resulting refined factorization of
v0u

x1
1 v1u

x2
2 v2 · · ·uxn

n vn, it follows that (8) is equivalent to a disjunction of
statements of the following form: There exist traces yi,1, . . . , yi,ki (1 ≤ i ≤ n)
and zi,1, . . . , zi,li (0 ≤ i ≤ n) such that in M(A±1, I) the following hold:

(a) uxi
i = yi,1 · · · yi,ki (1 ≤ i ≤ n)

(b) vi = zi,1 · · · zi,li (0 ≤ i ≤ n)
(c) yi,jIyk,l for all (i, j, k, l) ∈ J1
(d) yi,jIzk,l for all (i, j, k, l) ∈ J2
(e) zi,jIzk,l for all (i, j, k, l) ∈ J3
(f) yi,j = y−1k,l for all (i, j, k, l) ∈M1

(g) yi,j = z−1k,l for all (i, j, k, l) ∈M2

(h) zi,j = z−1k,l for all (i, j, k, l) ∈M3

Here, the numbers ki and li sum up to at most 22n+1 − 2 (hence, some ki can
be exponentially large, whereas li can be bound by the length of vi, which
is at most λ). The tuple sets J1, J2, J3 collect all independencies between the
factors yi,j , zk,l that are necessary to carry out the chosen reduction of the

c5726439 2017-08-12 22:18:40 +0200

26 Markus Lohrey, Georg Zetzsche

refined left-hand side in (8). Similarly, the tuple sets M1,M2,M3 tell us which
of the factors yi,j , zk,l cancels against which of the factors yi,j , zk,l in our
chosen reduction of the refined left-hand side in (8). Note that every factor
yi,j (resp., zk,l) appears in exactly one of the identities (f), (g), (h) (since in
the reduction every factor cancels against another unique factor). Let us also
remark that in the rest of proof we no longer work in the graph group G(A, I).
All statements refer to the trace monoid M(A±1, I).

Next, we simplify our statements. Since the vi are concrete traces (of length
at most λ), we can take a disjunction over all possible factorizations vi =
vi,1 · · · vi,li (1 ≤ i ≤ n + 1) such that vi,jIvk,l for all (i, j, k, l) ∈ J3 and
vi,j = v−1k,l for all (i, j, k, l) ∈M3. This allows to replace every variable zi,j by

a concrete trace vi,j . Statements of the form vi,jIvk,l and vi,j = v−1k,l can, of

course, be eliminated. Moreover, if there is an identity yi,j = v−1k,l then we can

replace the variable yi,j by the concrete trace v−1k,l (of length at most λ).
In the next step, we eliminate trace equations of the form uxi

i = yi,1 · · · yi,ki
(1 ≤ i ≤ n). Note that some of the variables yi,j might have been replaced by
concrete traces of length at most λ. We apply to each of these trace equations
Lemma 3.3, or better Remark 3.4. This allows us to replace every equation
uxi
i = yi,1 · · · yi,ki (1 ≤ i ≤ n) by a disjunction of statements of the following

form: There exist numbers xi,j > 0 (1 ≤ i ≤ n, j ∈ Ki) such that

– xi = ci +
∑
j∈Ki

xi,j for all 1 ≤ i ≤ n,

– yi,j = pi,ju
xi,j

i si,j for all 1 ≤ i ≤ n, j ∈ Ki,
– yi,j = pi,jsi,j for all 1 ≤ i ≤ n, j ∈ [1, ki] \Ki.

Here, Ki ⊆ [1, ki], the ci are concrete numbers with ci ≤ |A| · (ki− 1), and the
pi,j , si,j are concrete traces of length at most |A| · (ki−1) · |ui| ≤ |A| · (22n+1−
3) · λ. Hence, the lengths of these traces can be exponential in n.

Note that since xi > 0, we know the alphabet of yi,j = pi,ju
xi,j

i si,j (resp.,
yi,j = pi,jsi,j). This allows us to replace all independencies of the form yi,jIyk,l
for (i, j, k, l) ∈ J1 (see (c)) and yi,jIzk,l for (i, j, k, l) ∈ J2 (see (d)) by concrete
truth values. Note that all variables zk,l have already been replaced by concrete
traces. If yi,j was already replaced by a concrete trace, then we can determine
from an equation yi,j = pi,ju

xi,j

i si,j the exponent xi,j . Since yi,j was replaced
by a trace of length at most λ (a small number), we get xi,j ≤ λ, and we can
replace xi,j in xi =

∑
j∈Ki

xi,j + ci by a concrete number of size at most λ.
Finally, if yi,j was replaced by a concrete trace, and we have an equation of
the form yi,j = pi,jsi,j , then the resulting identity is either true or false and
can be eliminated.

After this step, we obtain a disjunction of statements of the following form:
There exist numbers xi,j > 0 (1 ≤ i ≤ n, j ∈ K ′i) such that

(a’) xi = ci +
∑
j∈K′i

xi,j for all 1 ≤ i ≤ n, and

(b’) pi,ju
xi,j

i si,j = s−1k,l (u
−1
k)xk,lp−1k,l for all (i, j, k, l) ∈M .

Here, K ′i ⊆ Ki is a set of size at most ki ≤ 22n+1−2, ci ≤ |A| ·(ki−1)+λ ·ki <
(|A| + λ) · (22n+1 − 2), and the pi,j , si,j are concrete traces of length at most

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 27

|A| · (22n+1− 3) ·λ. The set M specifies a matching in the sense that for every
exponent xa,b (1 ≤ a ≤ n, b ∈ K ′i) there is a unique (i, j, k, l) ∈ M such that
(i, j) = (a, b) or (k, l) = (a, b).

We now apply Lemma 3.8 to the trace identities

pi,ju
xi,j

i si,j = s−1k,l (u
−1
k)xk,lp−1k,l .

Each such identity can be replaced by a disjunction of constraints

(xi,j , xk,l) ∈ {(ai,j,k,l + bi,j,k,l · zi,j,k,l, ci,j,k,l + di,j,k,l · zi,j,k,l) | zi,j,k,l ∈ N}.

For the numbers ai,j,k,l, bi,j,k,l, ci,j,k,l, di,j,k,l we obtain the bound

ai,j,k,l, bi,j,k,l, ci,j,k,l, di,j,k,l ∈ O(µ8 · ν8|A|)

(the alphabet of the traces is A±1 which has size 2|A|, therefore, we have to
multiply in Lemma 3.8 |A| by 2), where, by Lemma 2.4,

µ = max{ρ(pi,j), ρ(pk,l), ρ(si,j), ρ(sk,l)} ∈ O(|A|α · 22αn · λα) (9)

and

ν = max{ρ(ui), ρ(uk)} ∈ O(λα). (10)

Note that ρ(t) = ρ(t−1) for every trace t. The above condition (a’) for xi can
be now written as

xi = ci+
∑

(i,j,k,l)∈M

(ai,j,k,l + bi,j,k,l · zi,j,k,l) +
∑

(k,l,i,j)∈M

(ck,l,i,j +dk,l,i,j · zk,l,i,j).

Note that the two sums in this equation contain in total |K ′i| ≤ 22n+1 many
summands (since for every j ∈ K ′i there is a unique pair (k, l) with (i, j, k, l) ∈
M or (k, l, i, j) ∈M).

Hence, after a renaming of symbols, the initial equation (8) becomes equiva-
lent to a finite disjunction of statements of the form: There exist z1, . . . , zm ∈ N
(these zi are the above zi,j,k,l and m = maxi |K ′i|) such that

xi = ai +

m∑
j=1

ai,jzj for all 1 ≤ i ≤ n. (11)

Moreover, we have the following size bounds:

– m = maxi |K ′i| ≤ 22n+1,
– ai ∈ O(ci+ |K ′i| ·µ8 ·ν8|A|) ⊆ O(22n(|A|+λ+µ8 ·ν8|A|)) ⊆ O(22n ·µ8 ·ν8|A|)
– ai,j ∈ O(µ8 · ν8|A|)

c5726439 2017-08-12 22:18:40 +0200

28 Markus Lohrey, Georg Zetzsche

Recall that some of the variables xi can be identical. W.l.o.g. assume that
x1, . . . , xk are pairwise different and for all k + 1 ≤ i ≤ n, xi = xf(i), where
f : [k + 1, n]→ [1, k]. Then, the system of equations (11) is equivalent to

xi = ai +

m∑
j=1

ai,jzj for all 1 ≤ i ≤ k

ai − af(i) =

m∑
j=1

(af(i),j − ai,j)zj for all k + 1 ≤ i ≤ n.

The set of all (x1, . . . , xk) ∈ Nk for which there exist z1, . . . , zm ∈ N satisfying
these equations is semilinear by Lemma 3.9, and if it is non-empty then it
contains a vector (x1, . . . , xk) ∈ Nk such that (note that (

√
m)n ∈ O(2n

2+n))

xi ∈ O((
√
m)n ·m2 · 22n(n+1) · µ8(n+1) · ν8|A|(n+1)) (12)

⊆ O(23n
2+7n · µ8(n+1) · ν8|A|(n+1)). (13)

Recall that in this bound we have to replace n by α · n due to the initial
preprocessing. This proves the theorem. ut

Proof of Theorem 3.1. Consider a compressed exponent equation

E = (v0u
x1
1 v1u

x2
2 v2 · · ·uxn

n vn = 1),

where ui = val(Gi) and vi = val(Hi) for given SLPs G1, . . . ,Gn,H0, . . . ,Hn.
Let m = max{|G1|, . . . , |Gn|, |H0|, . . . , |Hn|}. By Theorem 3.11 we know that
if there exists a solution for E then there exists a solution (x1, . . . , xn) with

xi ∈ O(23(αn)
2+7αn · µ8α(n+1) · ν8α|A|(n+1)), where

– µ ∈ O(|A|α · 22α2n · λα),
– ν ∈ O(λα),
– λ = max{|u1|, |u2|, . . . , |un|, |v0|, |v1|, . . . , |vn|} ∈ 2O(m), and
– α ≤ |A|.

Note that the bound on the xi is exponential in the input length (the sum of
the sizes of all Gi and Hi). Hence, we can guess in polynomial time the binary

encodings of numbers ki ∈ O(23(αn)
2+7αn·µ8α(n+1)·ν8α|A|(n+1)) (where ki = kj

if xi = xj). Then, we have to verify whether

val(H0)val(G1)k1val(H1)val(G2)k2val(H2) · · · val(Gn)knval(Hn) = 1

in the graph group G(A, I). This is an instance of the so-called compressed word
problem for G(A, I), where the input consists of an SLP G over the alphabet
A±1 and it is asked whether val(G) = 1 in G(A, I). Note that the powers
val(Gi)ki can be produced with the productions of Gi and additional dlog kie
many productions (using iterated squaring). Since the compressed word prob-
lem for a graph group can be solved in deterministic polynomial time [36,37]
(NP would suffice), the theorem follows. For the last step, it is important that
(A, I) is fixed. ut

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 29

3.6 Solvability of compressed exponent equation for a variable graph group

For the proof of Theorem 3.1 we assumed that the graph group G(A, I) is
fixed. In this section we briefly consider the case, where the independence al-
phabet (A, I) is part of the input as well. Let uniform solvability of compressed
exponent equations over graph groups be the following computational problem.

Input: An independence alphabet (A, I) and a compressed exponent equation
E over G(A, I).

Question: Is E solvable?

Note that the bound on the exponents xi in the proof of Theorem 3.1 is
still exponential in the input length if the independence alphabet (A, I) is
part of the input as well. The problem is that we do not know whether the
uniform compressed word problem for graph groups (where the input is an
independence alphabet (A, I) together with an SLP over the terminal alphabet
A±1) can be solved in polynomial time or at least in NP. The latter would
suffice to get an NP-algorithm for uniform solvability of compressed exponent
equations over a graph groups. On the other hand, we can show that the
uniform compressed word problem for graph groups belongs to the complexity
class coRP. A language L ∈ Σ∗ belongs to the class coRP if there exists a
set P ⊆ Σ∗ × {0, 1}∗ and a polynomial p(n) such that P can be decided in
deterministic polynomial time and for all x ∈ Σ∗ with |x| = n the following
holds:

– If x ∈ L then (x, y) ∈ P for all y ∈ {0, 1}p(n).
– If x 6∈ L then (x, y) ∈ P for at most 1/3 · 2p(n) many y ∈ {0, 1}p(n).

Theorem 3.12 The uniform compressed word problem for graph groups be-
longs to coRP.

Proof We make use of a well known embedding of a graph group G(A, I) with
n = |A| into the linear matrix group GL2n(Z). This embedding is obtained by
first embedding G(A, I) into a so called right-angled Coxeter group followed
by a linear embedding for the latter group. A right-angled Coxeter group
is obtained by adding to a graph group G(A, I) all relations a2 = 1 for all
generators a ∈ A. Let us denote with C(A, I) this right-angled Coxeter group.

The following embedding of a graph group G(A, I) into a right-angled
Coxeter group goes back to [26]: Take a disjoint copy A′ = {a′ | a ∈ A} of A
and consider the right-angled Coxeter group C(A ∪A′, J) with

J = {(a, b), (a′, b), (a, b′), (a′, b′) | (a, b) ∈ I}.

Then the morphism g : G(A, I) → C(A ∪ A′, J) with g(a) = aa′ for a ∈ A is
injective.

Next, a right-angled Coxeter group C(A, I) with |A| = n can be embedded
into GLn(Z) by mapping the generator a ∈ A to the linear map σa : ZA → ZA

c5726439 2017-08-12 22:18:40 +0200

30 Markus Lohrey, Georg Zetzsche

defined by

σa(b) =

−b if b = a,

b if (a, b) ∈ I,
b+ 2a if a 6= b and (a, b) 6∈ I

This is an instance of the standard linear embedding for general Coxeter
groups, see e.g. the textbook [8] for more details.

Let us fix a graph group G(A, I) with n = |A| and let h : G(A, I) →
GL2n(Z) be the linear embedding that results from the above construction.
Note that for a given graph (A, I) we can compute in polynomial time for
every generator a ∈ A the corresponding matrix h(a) ∈ GL2n(Z).

Let G = (V,Σ, rhs, S) be an SLP over the terminal alphabet A ∪ A−1.
Without loss of generality, one can assume that for every variable X ∈ V ,
the right-hand side rhs(X) belongs to A∪A−1 ∪V V , see e.g. [36, Proposition
3.8]. We now construct an arithmetic circuit5 that evaluates to 1 if and only
if val(G) = 1 in the graph group G(A, I). The construction is the same as in
[36, Theorem 4.15]. For every nonterminal X ∈ V we introduce 4n2 many +-
labelled gates Xi,j (1 ≤ i, j ≤ 2n). The idea is that Xi,j evaluates to the entry
at position (i, j) in the matrix h(valG(X)). The wires between the gates are
defined such that they implement matrix multiplication. If rhs(X) = Y Z, then
we add an auxiliary ×-labelled gate Xi,j,k together with the wires (Yi,j , Xi,j,k),
(Zj,k, Xi,j,k), and (Xi,j,k, Xi,k) for all 1 ≤ i, j, k ≤ 2n. If rhs(X) = a ∈ A∪A−1,
then we set the value of Xi,j to the entry at position (i, j) of the matrix h(a).

Assume that the gate Si,j of the constructed arithmetic circuit evaluates
to the integer si,j . Then, the matrix (si,j)1≤i,j≤n is h(val(G)). Thus, we have
to check, whether this matrix is the identity matrix. For this,we add an ad-
ditional gate X (which will be the output gate of the circuit) together with
some auxiliary gates to the circuit such that gate X evaluates to the integer∑n
i=1(si,i−1)2+

∑
i 6=j s

2
i,j . Then, (si,j)1≤i,j≤n is the identity matrix if and only

if gate X evaluates to zero, We can conclude the proof by using the following
well-known result, see e.g. [27]: Whether a given arithmetic circuit evaluates
to zero can be decided in coRP. ut

There is some evidence in complexity theory for RP = coRP = P. Impagliazzo
and Wigderson [28] proved that if there exists a language in DTIME(2O(n))
that has circuit complexity 2Ω(n) (which seems to be plausible) then RP =
coRP = P (in fact, BPP = P).

A language L ∈ Σ∗ belongs to the class MA (for Merlin-Arthur protocol)
if there exists a set P ⊆ Σ∗×{0, 1}∗×{0, 1}∗ and polynomials p(n), q(n) such
that P can be decided in deterministic polynomial time and for all x ∈ Σ∗

with |x| = n the following holds:

5 An arithmetic circuit is a finite directed acyclic graph, where every node of indegree zero
is labelled with a binary encoded integer, and every node of non-zero indegree is labelled
with one of the arithmetic operations + or ×. Nodes (resp., edges) of the arithmetic circuit
are also called gates (resp., wires) and there is a distinguished gate, called the output gate.
Every gate evaluates to an integer (the value of the gate) in the natural way, and the
arithmetic circuits evaluates to the value of its output gate.

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 31

– If x ∈ L then there exists y ∈ {0, 1}p(n) such that (x, y, z) ∈ P for all
z ∈ {0, 1}q(n).

– If x 6∈ L then for all y ∈ {0, 1}p(n) there exist at most 1/3 · 2p(n) many
z ∈ {0, 1}q(n) such that (x, y, z) ∈ P .

The same (unproven) circuit complexity lower bounds that allow to deran-
domize RP [28] also imply MA = NP.

Corollary 3.13 Uniform solvability of compressed exponent equations over
graph groups belongs to MA.

Proof We follow to arguments from the proof of Theorem 3.1. As remarked
above, the bound on the exponents xi in the proof of Theorem 3.1 is still
exponential in the input length if the independence alphabet (A, I) is part of
the input as well. After guessing the values for the xi in binary representation
(this corresponds to the existential quantifier in the definition of MA), we are
left with the solution of an instance of the uniform compressed word problem
for graph groups, which belongs to coRP by Theorem 3.12. This yields an MA-
protocol for uniform solvability of compressed exponent equations over graph
groups. ut

4 Uncompressed knapsack and subset sum

Since knapsack and subset sum for binary encoded integers is NP-complete,
it follows that compressed knapsack and subset sum are NP-hard for every
finitely generated group that contains an element of infinite order. In the rest
of the paper, we will study the computational complexity of uncompressed
knapsack and subset sum for graph groups. In the rest of the paper, the terms
“knapsack” and “subset sum” will always refer to the uncompressed variant
of the problem.

In Section 4.1, we present a class of graph groups for which knapsack is NP-
complete. In Section 4.2, we will show that for all other graph groups, knapsack
belongs to LogCFL, which is a subclass of P. In fact, we will show that knapsack
is LogCFL-complete for these graph groups, unless they are abelian. Finally,
in Section 4.4, we prove TC0-completeness in the case of abelian graph groups
(i.e. free abelian groups). For subset sum, we are not able to exactly locate
the border between P-membership and NP-completeness.

4.1 NP-completeness

Figure 1 shows two important independence alphabets that we denote with
P4 (path on four nodes) and C4 (cycle on four nodes). Note that M(C4) =
{a, c}∗ × {b, d}∗ and G(C4) ∼= F2 × F2, where F2 the free group of rank 2.

A transitive forest is an independence that can be inductively obtained as
follows:

c5726439 2017-08-12 22:18:40 +0200

32 Markus Lohrey, Georg Zetzsche

a b c d

a b

cd

Fig. 1 P4 and C4

– ({a}, ∅) is a transitive forest.
– If (A1, I1) and (A2, I2) are transitive forests, then also (A1 ∪A2, I1 ∪ I2) is

a transitive forest.
– If (A, I) is a transitive forest and a 6∈ I, then (A∪{a}, I∪{a}×A∪A×{a})

is a transitive forest.

The name “transitive forest” comes from the fact that these graphs are ob-
tained by taking the transitive closure of a disjoint union of rooted directed
trees (a forest) and then forgetting the direction of edges. From the above
definition of transitive forests, it is clear that the graph groups G(A, I) with
(A, I) a transitive forest is the smallest class of groups that contains Z and is
closed under free products and direct products with Z. We will use the follow-
ing alternative characterization of transitive forests by Wolk [52]: (A, I) is a
transitive forest if and only if (A, I) neither contains an induced P4 nor and
induced C4.

In the rest of Section 4.1, we will prove the following theorem:

Theorem 4.1 If (A, I) is not a transitive forest, then knapsack is NP-complete
for G(A, I).

By the above mentioned result of Wolk, it suffices to show that knapsack
is NP-hard for G(C4) (Section 4.1.1) and G(P4) (Section 4.1.2). Note that
if (A′, I ′) is an induced subgraph of (A, I), then G(A′, I ′) is a subgroup of
G(A, I).

4.1.1 Knapsack and subset sum for G(C4)

In this section, we prove that knapsack and subset sum are NP-complete for
G(C4), i.e., for a direct product of two free groups of rank two. This solves an
open problem from [18].

Recall that F (Σ) denotes the free group generated by the set Σ and F2 =
F ({a, b}).

Lemma 4.2 The subset sum problem and the knapsack problem are NP-complete
for F2 × F2. For knapsack, NP-hardness already holds for the variant where
the exponent variables are allowed to take values from Z (see Remark 2.2).

Proof In [44] it was shown that there exists a fixed set D ⊆ F2 × F2 such
that the following problem (called the bounded submonoid problem) is NP-
complete:

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 33

Input: A unary encoded number n (i.e., n is given by the string an) and an
element g ∈ F2 × F2

Question: Do there exist g1, . . . gn ∈ D (not necessarily distinct) such that
g = g1g2 · · · gn in F2 × F2?

Let us briefly explain the NP-hardness proof, since we will reuse it.
Recall the notion of the Dehn function defined in Section 2.5. We start

with a finitely presented group 〈Σ | R〉 having an NP-complete word problem
and a polynomial Dehn function. Such a group was constructed in [7]. To this
group, the following classical construction by Mihăılova [42] is applied: Let

D = {(rε, 1) | r ∈ R, ε ∈ {−1, 1}} ∪ {(a, a) | a ∈ Σ±1},

which is viewed as a subset of F (Σ) × F (Σ). Note that D is closed under
taking inverses. Let 〈D〉 ≤ F (Σ) × F (Σ) be the subgroup generated by D.
Mihăılova proved that for every word w ∈ (Σ±1)∗ the following equivalence
holds:

w = 1 in 〈Σ,R〉 ⇐⇒ (w, 1) ∈ 〈D〉 in F (Σ)× F (Σ).

Moreover, based on the fact that 〈Σ,R〉 has a polynomial Dehn function p(n),
the following equivalence was shown in [44], where q(n) = p(n)+8(c ·p(n)+n),
c is the maximal length of a relator in R, and Dn is the set of all products of
n elements from D:

w = 1 in 〈Σ,R〉 ⇐⇒ ∃n ≤ q(|w|) : (w, 1) ∈ Dn in F (Σ)× F (Σ).

From these two equivalences it follows directly that the following three state-
ments are equivalent for all words w ∈ (Σ±1)∗, where D = {g1, g2, . . . , gk}:

– w = 1 in 〈Σ,R〉
– (w, 1) =

∏q(|w|)
i=1 (g

a1,i
1 g

a2,i
2 · · · gak,i

k) in F (Σ)× F (Σ) for aj,i ∈ {0, 1}
– (w, 1) =

∏q(|w|)
i=1 (g

a1,i
1 g

a2,i
2 · · · gak,i

k) in F (Σ)× F (Σ) for aj,i ∈ Z

This shows that the subset sum problem and the knapsack problem are NP-
hard for the group F (Σ) × F (Σ), where for knapsack we allow integer expo-
nents. To get the same results for F2 × F2, we use the fact that F2 contains a
copy of F (Σ). ut

4.1.2 Knapsack for G(P4)

In this section, we show that knapsack is NP-complete for the graph group
G(P4). Let us fix the copy ({a, b, c, d}, I) of P4 shown in Figure 1.

As a first step, we will prove NP-completeness of a certain automata the-
oretic problem, that will be reduced to knapsack for G(P4) in a second step.
For a trace monoid M(A, I), the intersection nonemptiness problem for acyclic
loop NFA is the following computational problem:

Input: Two acyclic loop NFA A1, A2 over the input alphabet A (as defined
in Section 2.2).

c5726439 2017-08-12 22:18:40 +0200

34 Markus Lohrey, Georg Zetzsche

Question: Does [L(A1)]I ∩ [L(A2)]I 6= ∅ hold?

Aalbersberg and Hoogeboom [1] proved that for the trace monoid M(P4) the
intersection nonemptiness problem for arbitrary NFA is undecidable. We use
their technique to show:

Lemma 4.3 For M(P4), intersection nonemptiness for acyclic loop NFA is
NP-hard.

Proof We give a reduction from 3SAT. Let ϕ =
∧m
i=1 Ci where for every i ∈

[1,m], Ci = (Li,1 ∨ Li,2 ∨ Li,3) is a clause consisting of three literals. Let
x1, . . . , xn be the boolean variables that occur in ϕ. In particular, every literal
Li,j belongs to the set {x1, . . . , xn,¬x1, . . . ,¬xn}.

Let p1, p2, . . . , pn be a list of the first n prime numbers. So, for each boolean
variable xi we have the corresponding prime number pi. We encode a valuation
β : {x1, . . . , xn} → {0, 1} by any natural number N such that N ≡ 0 mod pi
if and only if β(xi) = 1. For a positive literal xi let S(xi) = {pi · n | n ∈ N}
and for a negative literal ¬xi let S(¬xi) = {pi · n+ r | n ∈ N, r ∈ [1, pi − 1]}.
Moreover, for every i ∈ [1,m] let Si = S(Li,1) ∪ S(Li,2) ∪ S(Li,3). Thus, Si
is the set of all numbers that encode a valuation, which makes the clause Ci
true. Hence, the set S =

⋂n
i=1 Si encodes the set of all valuations that make

ϕ true.
We first construct an acyclic loop NFA A1 with

L(A1) =

m∏
i=1

{a(bc)Nid | Ni ∈ Si}.

Note that ϕ is satisfiable iff [L(A1)]I contains a trace from [{(a(bc)Nd)m | N ∈
N}]I . We will ensure this property with a second acyclic loop NFA A2 that
satisfies the equality L(A2) = b∗(ad(bc)∗)m−1adc∗.

We claim that [L(A1)]I∩[L(A2)]I = [{(a(bc)Nd)m | N ∈ S}]I . First assume
that w ≡I (a(bc)Nd)m for some N ∈ S. We have

w ≡I (a(bc)Nd)m ≡I bN (ad(bc)N)m−1adcN

and thus [w]I ∈ [L(A2)]I . Moreover, since N ∈ S we get [w]I ∈ [L(A1)]I . For
the other direction, let [w]I ∈ [L(A1)]I ∩ [L(A2)]I . Thus

w ≡I
m∏
i=1

(a(bc)Nid) ≡ bN1

(m−1∏
i=1

(adcNibNi+1)

)
adcNm ,

where Ni ∈ Si for i ∈ [1,m]. Moreover, the fact that [w]I ∈ [L(A2)]I means
hat there are k0, k1, . . . , km−1, km ≥ 0 with

bN1

(m−1∏
i=1

(adcNibNi+1)

)
adcNm ≡I bk0

(m−1∏
i=1

(ad(bc)ki)

)
adckm

≡I bk0
(m−1∏

i=1

(adbkicki)

)
adckm .

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 35

Since every symbol is dependent from a or d, this identity implies Ni = Ni+1

for i ∈ [1,m− 1]. Thus, [w]I ∈ [{(a(bc)Nd)m | N ∈ S}]I . ut

For a graph group G(A, I) the membership problem for acyclic loop NFA is
the following computational problem:

Input: An acyclic loop NFA A over the input alphabet A ∪A−1.

Question: Is there a word w ∈ L(A) such that w = 1 in G(A, I)?

It is straightforward to reduce the intersection nonemptiness problem for
acyclic loop NFA over M(A, I) to the membership problem for acyclic loop
NFA over G(A, I). For the rest of this section letΣ = {a, b, c, d, a−1, b−1, c−1, d−1}
and let θ : Σ∗ → G(P4) be the canonical homomorphism that maps a word
over Σ to the corresponding group element.

Lemma 4.4 For G(P4), the membership problem for acyclic loop NFA is NP-
hard.

Proof The lemma follows easily from Lemma 4.3. Note that [L(A1)]I∩[L(A2)]I 6=
∅ if and only if 1 ∈ θ(L(A1)L(A2)−1) in the graph group G(P4). Moreover, it
is straightforward to construct from acyclic loop NFA A1 and A2 an acyclic
loop NFA for L(A1)L(A2)−1. We only have to replace every transition label w
in A2 by w−1, then reverse all transitions in A2 and concatenate the resulting
NFA with A1 on the left. ut

We can now use a construction from [38] to reduce membership for acyclic
loop NFA to knapsack.

Lemma 4.5 Knapsack for the graph group G(P4) is NP-hard.

Proof By Lemma 4.4 it suffices to reduce for G(P4) the membership problem
for acyclic loop NFA to knapsack. Let A = (Q,Σ,∆, q0, qf) be an acyclic loop
NFA with transitions ∆ ⊆ Q×Σ∗ ×Q. W.l.o.g. assume that Q = {1, . . . , n}.

We reuse a construction from [38], where the rational subset membership
problem for G(P4) was reduced to the submonoid membership problem for
G(P4). For a state q ∈ Q let q̃ = (ada)qd(ada)−q ∈ Σ∗. Let us fix the morphism
ϕ : Σ∗ → Σ∗ with ϕ(x) = xx for x ∈ Σ. For a transition t = (p, w, q) ∈ ∆
let t̃ = p̃ ϕ(w) q̃−1 and define S = {t̃ | t ∈ ∆}∗. In [38] it was shown that
1 ∈ θ(L(A)) if and only if θ(q̃0 q̃f

−1) ∈ θ(S).
We construct in polynomial time a knapsack instance over G(P4) from the

NFA A as follows: Let us choose an enumeration t1, t2, . . . , tm of the transitions
of A such that the following holds, where ti = (pi, wi, qi): If qj = pk then j ≤ k.
Since A is an acyclic loop NFA, such an enumeration exists. The following
claim proves the theorem.

Claim: 1 ∈ θ(L(A)) if and only if θ(q̃0 q̃f
−1) ∈ θ(t̃∗1 t̃∗2 · · · t̃∗m).

One direction is clear: If θ(q̃0 q̃f
−1) ∈ θ(t̃∗1 t̃∗2 · · · t̃∗m), then θ(q̃0 q̃f

−1) ∈ θ(S).
Hence, by [38] we have 1 ∈ θ(L(A)). On the other hand, if 1 ∈ θ(L(A)), then
there exists a path in A of the form

q0 = s0
a1−→ s1

a2−→ s2 · · · sk−1
ak−→ sk = qf

c5726439 2017-08-12 22:18:40 +0200

36 Markus Lohrey, Georg Zetzsche

such that θ(a1a2 · · · ak) = 1. Let (sj−1, aj , sj) = tij , where we refer to the
above enumeration of all transitions. Then, we must have i1 ≤ i2 ≤ · · · ≤ ik.
Moreover, we have

θ(q̃0 q̃f
−1) = θ(q̃0 a1a2 · · · ak q̃f−1) = θ(t̃i1 t̃i2 · · · t̃ik) ∈ θ(t̃∗1 t̃∗2 · · · t̃∗m).

This proves the claim and hence the theorem. ut

We are now ready to prove Theorem 4.1.

Proof (Theorem 4.1) If (A, I) is not a transitive forest, then P4 or C4 is an
induced subgraph of (A, I) [52]. Thus, G(P4) or G(C4) ∼= F2 × F2 is a sub-
group of G(A, I). Hence, NP-hardness of knapsack for G(A, I) follows from
Lemma 4.2 or Lemma 4.5. ut

4.2 Membership in LogCFL

In this section, we show that if (A, I) is a transitive forest, then knapsack and
subset sum belong to LogCFL, which is a subclass of P; see Section 2.1.

Theorem 4.6 If (A, I) is a transitive forest, then knapsack and subset sum
for G(A, I) belong to LogCFL.

4.2.1 Membership for acyclic NFA

In the proof of Theorem 4.6 we employ the membership problem for acyclic
NFA (see Section 2.2), which has already been studied in connection with
the knapsack and subset sum problem [18,33]. For a graph group G(A, I) the
membership problem for acyclic NFA is the following computational problem:

Input: An acyclic automaton A over the input alphabet A ∪A−1.

Question: Is there a word w ∈ L(A) such that w = 1 in G(A, I)?

In order to show Theorem 4.6, we reduce knapsack for G(A, I) with (A, I) a
transitive forest to the membership problem for acyclic NFA for G(A, I) (note
that for subset sum this reduction is obvious). Then, we apply the following
Proposition 4.7. From work of Frenkel, Nikolaev, and Ushakov [18], it follows
that the membership problem for acyclic NFA is in P. We strengthen this to
LogCFL:

Proposition 4.7 If (A, I) is a transitive forest, then the membership problem
for acyclic NFA over G(A, I) is in LogCFL.

The proof of Proposition 4.7 uses the following lemma:

Lemma 4.8 For every transitive forest (A, I) with the associated graph group
G = G(A, I) there is a deterministic AuxPDA P(G) with input alphabet A±1

and the following properties:

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 37

– In each step, the input head for P(G) either does not move, or moves one
step to the right.

– If the input word is equal to 1 in G, then P(G) terminates in the dis-
tinguished state q1 with empty stack. Let us call this state the 1-state of
P(G).

– If the input word is not equal to 1 in G, then P(G) terminates in a state
different from q1 (and the stack is not necessarily empty).

Proof We construct the AuxPDA P(G) by induction over the structure of the
group G. For this, we consider the three cases that G = 1, G = G1 ∗G2, and
G = Z×G′. The case that G = 1 is of course trivial.

Case G = Z×G′. We have already constructed the AuxPDA P(G′). The Aux-
PDA P(G) simulates the AuxPDA P(G′) on the generators of G′. Moreover,
it stores the current value of the Z-component in binary notation on the work
tape. If the input word has length n, then O(log n) bits are sufficient for this.
At the end, P(G) goes into its 1-state if and only if P(G′) is in its 1-state
(which implies that the stack will be empty) and the Z-component is zero.

Case G = G1 ∗ G2. For i ∈ {1, 2}, we have already constructed the AuxPDA
Pi = P(Gi). Let A±1i be its input alphabet, which is a monoid generating
set for Gi. Consider now an input word w ∈ (A±11 ∪ A±12)∗. Let us assume
that w = u1v1u2v2 · · ·ukvk with ui ∈ (A±11)+ and vi ∈ (A±12)+ (other cases
can be treated analogously). The AuxPDA P(G) starts with empty stack and
simulates the AuxPDA P1 on the prefix u1. If it turns out that u1 = 1 in
G1 (which means that P1 is in its 1-state) then the stack will be empty and
the AuxPDA P(G) continues with simulating P2 on v1. On the other hand, if
u1 6= 1 in G1, then P(G) pushes the state together with the work tape content
of P1 reached after reading u1 on the stack (on top of the final stack content
of P1). This allows P(G) to resume the computation of P1 later. Then P(G)
continues with simulating P2 on v1.

The computation of P(G) will continue in this way. More precisely, if after
reading ui (resp. vi with i < k) the AuxPDA P1 (resp. P2) is in its 1-state
then either

(i) the stack is empty or
(ii) the top part of the stack is of the form sqt (t is the top), where s is a

stack content of P2 (resp. P1), q is a state of P2 (resp. P1) and t is a
work tape content of P2 (resp. P1).

In case (i), P(G) continues with the simulation of P2 (resp. P1) on the word vi
(resp. ui+1) in the initial configuration. In case (ii), P(G) continues with the
simulation of P2 (resp. P1) on the word vi (resp. ui+1), where the simulation
is started with stack content s, state q, and work tape content t. On the other
hand, if after reading ui (resp. vi with i < k) the AuxPDA P1 (resp. P2) is not
in its 1-state then P(G) pushes on the stack the state and work tape content
of P1 reached after its simulation on ui. This concludes the description of the
AuxPDA P(G). It is clear that P(G) has the properties stated in the lemma.

ut

c5726439 2017-08-12 22:18:40 +0200

38 Markus Lohrey, Georg Zetzsche

We can now prove Proposition 4.7:

Proof of Proposition 4.7. Fix the graph group G = G(A, I), where (A, I) is a
transitive forest. An AuxPDA for the membership problem for acyclic NFA
guesses a path in the input NFA A and thereby simulates the AuxPDA P(G)
from Lemma 4.8. If the final state of the input NFA A is reached while the
AuxPDA P(G) is in the accepting state q1, then the overall AuxPDA accepts.
It is important that the AuxPDA P(G) works one-way since the guessed path
in A cannot be stored in logspace. This implies that the AuxPDA cannot
re-access the input symbols that already have been processed. Also note that
the AuxPDA is logspace bounded and polynomially time bounded since A is
acyclic. ut

4.2.2 Bounds on knapsack solutions in transitive forests

As mentioned above, we reduce for graph groups G(A, I) with (A, I) a transi-
tive forest the knapsack problem to the membership problem for acyclic NFA.
To this end, we show that every positive knapsack instance has a polynomially
bounded solution. The latter is the most involved proof in our paper.

Frenkel, Nikolaev, and Ushakov [18] call groups with this property poly-
nomially bounded knapsack groups and show that this class is closed under
taking free products. However, it is not clear if direct products with Z also
inherit this property and we leave this question open.

Hence, we are looking for a property that yields polynomial-size solutions
and is passed on to free products and to direct products with Z. It is known
that the solution sets are always semilinear. If (A, I) is a transitive forest, this
follows from a more general semilinearity property of rational sets [38] and for
arbitrary graph groups, this was shown in Theorem 3.11.

Note that it is not true that the solution sets always have polynomial-size
semilinear representations. This already fails in the case of Z: The equation
x1 + · · ·+xk = k has

(
2k−1
k

)
≥ 2k solutions. We therefore need a weaker prop-

erty: We will show here that the solution sets have semilinear representations
where every occurring number is bounded by a polynomial.

For a semilinear representation (x1, F1, . . . , xn, Fn) of the semilinear set
S =

⋃n
i=1 xi + F⊕i , the magnitude of this representation is defined as the

maximum of ‖y‖∞, where y ranges over all vectors of
⋃n
i=1{xi} ∪ Fi. The

magnitude of a semilinear set S is the smallest magnitude of a semilinear
representation for S.

Definition 4.9 A group G is called knapsack tame if there is a polynomial
p such that for every exponent equation h0g

x1
1 h1g

x2
2 h2 · · · gxk

n hk = 1 of size
n with pairwise distinct variables x1, . . . , xk, the set S ⊆ Nk of solutions is
semilinear of magnitude at most p(n).

Note that here, we only consider exponent equations where each variable
occurs at most once. This corresponds to the definition of the knapsack prob-
lem as introduced by Myasnikov et. al. [44]. This is in contrast to section 3,

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 39

where the methods we used to obtain NP membership work for general ex-
ponent equations. In the case of the LogCFL membership proof, however, our
techniques only apply to the original version of the knapsack problem. See also
Remark 2.1.

Observe that although the size of an exponent equation may depend on
the chosen generating set of G, changing the generating set increases the size
only by a constant factor. Thus, whether or not a group is knapsack tame is
independent of the chosen generating set.

Theorem 4.10 If (A, I) is a transitive forest, then G(A, I) is knapsack tame.

Note that Theorem 4.10 implies in particular that every solvable exponent
equation with pairwise distinct variables has a polynomially bounded solution.
Theorem 4.10 and Proposition 4.7 easily imply Theorem 4.6.

We prove Theorem 4.10 by showing that knapsack tameness transfers from
groups G to G × Z (Proposition 4.11) and from G and H to G ∗ H (Propo-
sition 4.17). Since the trivial group is obviously knapsack tame, the inductive
characterization of groups G(A, I) for transitive forests (A, I) immediately
yields Theorem 4.10.

4.2.3 Tameness of direct products with Z

In this section, we show the following.

Proposition 4.11 If G is knapsack tame, then so is G× Z.

Linear Diophantine equations. We employ a result of Pottier [47], which bounds
the norm of minimal non-negative solutions to a linear Diophantine equation.
Recall the definition of the vector norms ‖x‖∞ and ‖x‖1 from Section 2.3.
Let A ∈ Zk×m be an integer matrix where aij is the entry of A at row i and
column j. We will use the following matrix norms:

‖A‖1,∞ = max
i∈[1,k]

(
∑

j∈[1,m]

|aij |),

‖A‖∞,1 = max
j∈[1,m]

(
∑
i∈[1,k]

|aij |),

‖A‖∞ = max
i∈[1,k],j∈[1,m]

|aij |.

A non-trivial solution x ∈ Nm \{0} to the equation Ax = 0 is minimal if there
is no y ∈ Nm \ {0} with Ay = 0 and y ≤ x, y 6= x. Here y ≤ x means that
yi ≤ xi for all i ∈ [1,m]. The set of all solutions clearly forms a submonoid of
Nm. Let r be the rank of A.

Theorem 4.12 (Pottier [47]) Each non-trivial minimal solution x ∈ Nm to
Ax = 0 satisfies ‖x‖1 ≤ (1 + ‖A‖1,∞)r.

c5726439 2017-08-12 22:18:40 +0200

40 Markus Lohrey, Georg Zetzsche

We only need Theorem 4.12 for the case that A is a row vector uT for
u ∈ Zk.

Corollary 4.13 Let u ∈ Zk. Each non-trivial minimal solution x ∈ Nk to
uTx = 0 satisfies ‖x‖1 ≤ 1 + ‖u‖1.

By applying Theorem 4.12 to the row vector (uT ,−b) for b ∈ Z, it is easy
to deduce that for each x ∈ Nk with uTx = b, there is a y ∈ Nk with uT y = b,
y ≤ x, and ‖y‖1 ≤ 1 + ‖

(
u
b

)
‖1 = 1 + ‖u‖1 + |b|. We reformulate Corollary 4.13

as follows.

Lemma 4.14 Let u ∈ Zk and b ∈ Z. Then the set {x ∈ Nk | uTx = b} admits
a decomposition {x ∈ Nk | uTx = b} =

⋃s
i=1 ci + CNt, where ci ∈ Nk and

C ∈ Nk×t with ‖ci‖1 and ‖C‖∞,1 bounded by 1 + ‖u‖1 + |b|.

Proof Let {c1, . . . , cs} be the set of minimal solutions of uTx = b. Then, as
explained above, Corollary 4.13 yields ‖ci‖1 ≤ 1 + ‖u‖1 + |b|. Moreover, let
C ∈ Nk×t be the matrix whose columns are the non-trivial minimal solutions
of uTx = 0. Then we have ‖C‖∞,1 ≤ 1 + ‖u‖1. This clearly yields the desired
decomposition. ut

The problem is that we want to apply Lemma 4.14 in a situation where we
have no bound on ‖u‖1, but only one on ‖u‖∞. The following lemma yields
such a bound.

Lemma 4.15 If u ∈ Zk and b ∈ Z with ‖u‖∞, |b| ≤ M , then we have a
decomposition {x ∈ Nk | uTx = b} =

⋃s
i=1 ci + CNt where ‖ci‖1, ‖C‖∞,1 ≤

1 + (M + 2)M .

Proof Write uT = (b1, . . . , bk) and consider the row vector vT = (b′1, . . . , b
′
2M+1),

v ∈ Z2M+1, with entries b′i = i− (M + 1). Thus, we have

vT = (b′1, . . . , b
′
2M+1) = (−M,−M + 1, . . . ,−1, 0, 1, . . . ,M).

Moreover, define the matrix S = (sij) ∈ N(2M+1)×k with

sij =

{
1 if bj = b′i,

0 otherwise.

Then clearly u = vTS and ‖v‖1 = (M + 1)M . Furthermore, observe that we
have ‖Sx‖1 = ‖x‖1 for every x ∈ Nk and that for each y ∈ N2M+1 the set

Ty = {x ∈ Nk | Sx = y}

is finite.
According to Lemma 4.14, we can write

{x ∈ N2M+1 | vTx = b} =

s′⋃
i=1

c′i + C ′Nt
′

(14)

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 41

where ‖c′i‖1, ‖C ′‖∞,1 ≤ 1 + (M + 1)M +M = 1 + (M + 2)M . Let {c1, . . . , cs}
be the union of all sets Tc′i for i ∈ [1, s′] and let C ∈ Nk×t be the matrix

whose columns comprise all Tv where v ∈ N2M+1 is a column of C ′. Since we
have ‖Sx‖1 = ‖x‖1 for x ∈ Nk, the vectors ci obey the same bound as the
vectors c′i, meaning ‖ci‖1 ≤ 1 + (M + 2)M . By the same argument, we have
‖C‖∞,1 ≤ ‖C ′‖∞,1 ≤ 1 + (M + 2)M . It remains to be shown that the equality
from Lemma 4.15 holds.

Suppose uTx = b. Then vTSx = b and hence Sx = c′i + C ′y for some

y ∈ Nt′ . Observe that every column of S is either zero or a unit vector.
This implies that if Sz = p + q for p, q ∈ N2M+1, then z decomposes as
z = p′ + q′, p′, q′ ∈ Nk, so that Sp′ = p and Sq′ = q. Therefore, we can write
x = x0 + · · · + xn with Sx0 = c′i and Sxj is some column of C ′ for each
j ∈ [1, n]. Hence, x0 = cr for some r ∈ [1, s] and for each j ∈ [1, n], xj is a
column of C. This proves x ∈ cr + CNt.

On the other hand, the definition of c1, . . . , cs and C implies that for each
column v of C, Sv is a column of C ′. Moreover, for each i ∈ [1, s], there is a
j ∈ [1, s′] with Sci = c′j and thus Sci + SCNt ⊆ c′j + C ′Nt′ . Therefore

uT (ci + CNt) = vTS(ci + CNt) ⊆ vT (c′j + C ′Nt
′
)

and the latter set contains only b because of (14). ut

Lemma 4.16 Let S ⊆ Nk be a semilinear set of magnitude M and u ∈ Zk,
b ∈ Z with ‖u‖∞, |b| ≤ m. Then {x ∈ S | uTx = b} is a semilinear set of
magnitude at most 10(kmM)3.

Proof Let T = {x ∈ Nk | uTx = b}. We may assume that S is linear of
magnitude M , because if S = L1∪· · ·∪Ln, then S∩T = (L1∩T)∪· · ·∪(Ln∩T).

Write S = a + ANn with a ∈ Nk and A ∈ Nk×n, where ‖a‖∞ ≤ M and
‖A‖∞ ≤ M . Consider the set U = {x ∈ Nn | uTAx = b − uTa}. Note that
uTA ∈ Z1×n and

‖uTA‖∞ ≤ k · ‖u‖∞ · ‖A‖∞ ≤ kmM,

|b− uTa| ≤ m+ k · ‖u‖∞ · ‖a‖∞ ≤ m+ kmM.

According to Lemma 4.15, we can write U =
⋃s
i=1 ci + CNt where ‖ci‖1 and

‖C‖∞,1 are at most 1 + (m + kmM)(m + kmM + 2) ≤ 9(kmM)2. Observe
that

a+AU =

s⋃
i=1

a+Aci +ACNt

and

‖a+Aci‖∞ ≤ ‖a‖∞ + ‖A‖∞ · ‖ci‖1 ≤M +M · 9(kmM)2 ≤ 10(kmM)3,

‖AC‖∞ ≤ ‖A‖∞ · ‖C‖∞,1 ≤M · 9(kmM)2 ≤ 10(kmM)3.

Finally, note that S ∩ T = a+AU . ut

c5726439 2017-08-12 22:18:40 +0200

42 Markus Lohrey, Georg Zetzsche

We are now ready to prove Proposition 4.11.

Proof of Proposition 4.11. Suppose G is knapsack tame with polynomial p̄. Let

h0g
x1
1 h1g

x2
2 h2 · · · gxk

k hk = 1 (15)

be an exponent equation of size n with pairwise distinct variables x1, . . . , xk
and with h0, g1, h1, . . . , gk, hk ∈ G × Z. Let hi = (h̄i, yi) for i ∈ [0, k] and
gi = (ḡi, zi) for i ∈ [1, k].

The exponent equation h̄0ḡ
x1
1 h̄1ḡ

x2
2 h̄2 · · · ḡxk

k h̄k = 1 has a semilinear solu-
tion set S̄ ⊆ Nk of magnitude at most p̄(n). The solution set of (15) is

S = {(x1, . . . , xk) ∈ S̄ | z1x1 + · · ·+ zkxk = y},

where y = −(y0 + · · · + yk). Note that |zi| ≤ n and |y| ≤ n. By Lemma 4.16,
S is semilinear of magnitude 10(n2p̄(n))3 (recall that k ≤ n). ut

4.2.4 Tameness of free products

This section is devoted to the proof of the following proposition.

Proposition 4.17 If G0 and G1 are knapsack tame, then so is G0 ∗G1.

Let G = G0 ∗ G1. Suppose that for i ∈ {0, 1}, the group Gi is generated
by Ai, where w.l.o.g. A−1i = Ai and let A = A0] A1, which generates G.
Recall that every g ∈ G can be written uniquely as g = g1 · · · gn where n ≥ 0,
gi ∈ (G0\{1})∪(G1\{1}) for each i ∈ [1, n] and where gj ∈ Gt iff gj+1 ∈ G1−t
for j ∈ [1, n − 1]. We call g cyclically reduced if for some t ∈ {0, 1}, either
g1 ∈ Gt and gn ∈ G1−t or g1, gn ∈ Gt and gng1 6= 1. Consider an exponent
equation

h0g
x1
1 h1 · · · gxk

k hk = 1, (16)

of size n, where gi is represented by ui ∈ A∗ for i ∈ [1, k] and hi is represented

by vi ∈ A∗ for i ∈ [0, k]. Then clearly
∑k
i=0 |vi| +

∑k
i=1 |ui| ≤ n. Let S ⊆

Nk be the set of all solutions to (16). Every word w ∈ A∗ has a (possibly
empty) unique factorization into maximal factors from A+

0 ∪ A
+
1 , which we

call syllables. By ‖w‖, we denote the number of syllables of w. The word w
is reduced if none of its syllables represents 1 (in G0 resp. G1). We define the
maps λ, ρ : A+ → A+ (”rotate left/right”), where for each word w ∈ A+ with
its factorization w = w1 · · ·wm into syllables, we set λ(w) = w2 · · ·wmw1 and
ρ(w) = wmw1w2 · · ·wm−1.

Consider a word w ∈ A∗ and suppose w = w1 · · ·wm, m ≥ 0, where for each
i ∈ [1,m], we have wi ∈ A+

j for some j ∈ {0, 1} (we allow that wi, wi+1 ∈ A+
j).

A cancellation is a subset C ⊆ 2[1,m] that is

– a partition:
⋃
I∈C I = [1,m] and I ∩ J = ∅ for any I, J ∈ C with I 6= J .

– consistent : for each I ∈ C, there is an i ∈ {0, 1} such that wj ∈ A+
i for all

j ∈ I.

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 43

– cancelling : if {i1, . . . , i`} ∈ C with i1 < · · · < i`, then wi1 · · ·wi` represents
1 in G.

– well-nested : there are no I, J ∈ C with i1, i2 ∈ I and j1, j2 ∈ J such that
i1 < j1 < i2 < j2.

– maximal : if wi, wi+1 ∈ A+
j for j ∈ {0, 1} then there is an I ∈ C with

i, i+ 1 ∈ I.

Since C can be regarded as a hypergraph on [1,m], the elements of C will be
called edges. We have the following simple fact:

Lemma 4.18 Let w = w1 · · ·wm, m ≥ 0, where for each i ∈ [1,m], we have
wi ∈ A+

j for some j ∈ {0, 1}. Then w admits a cancellation if and only if it
represents 1 in G.

Proof Assume that w represents 1 in the free product G. The case w = ε is
clear; hence assume that w 6= ε. Then there must exist a factor wiwi+1 · · ·wj
representing 1 in G such that (i) wiwi+1 · · ·wj ∈ A+

k for some k ∈ {0, 1}, (ii)
either i = 1 or wi−1 ∈ A+

1−k, and (iii) either j = m or wj+1 ∈ A+
1−k. The word

w′ = w1 · · ·wi−1wj+1 · · ·wm also represents 1 in G. By induction, w′ admits a
cancellation C ′. Let C ′′ be obtained from C ′ by replacing every occurrence of
an index k ≥ i in C ′ by k + j − i+ 1. Then C = C ′′ ∪ {[i, j]} is a cancellation
for w.

For the other direction let us call a partition C ⊆ 2[1,m] a weak cancellation
if it is consistent, cancelling and well-nested (but not necessarily maximal).
Then we show by induction that w represents 1, if it has a weak cancella-
tion. So, let C be a weak cancellation of w 6= ε. Then there must exist an
interval [i, j] ∈ C (otherwise C would be not well-nested). Then wiwi+1 · · ·wj
represents 1 in G. Consider the word w′ = w1 · · ·wi−1wj+1 · · ·wm. Let C ′ be
obtained from C \ {[i, j]} by replacing every occurrence of an index k ≥ j + 1
in C \ {[i, j]} by k − j + i − 1. Then C ′ is a weak cancellation for w′. Hence,
w′ represents 1, which implies that w represents 1. ut

Of course, when showing that the solution set of (16) has a polynomial mag-
nitude, we may assume that gi 6= 1 for any i ∈ [1, k]. Moreover, we lose no
generality by assuming that all words ui, i ∈ [1, k] and vi, i ∈ [0, k] are re-
duced. Furthermore, we may assume that each gi is cyclically reduced. Indeed,
if some gi is not cyclically reduced, we can write gi = f−1gf for some cycli-
cally reduced g and replace hi−1, gi, and hi by hi−1f

−1, g = fgif
−1, and fhi,

respectively. This does not change the solution set because

hi−1f
−1(fgif

−1)xifhi = hi−1g
xi
i hi.

Moreover, if we do this replacement for each gi that is not cyclically reduced,
we increase the size of the instance by at most 2|g1| + · · · + 2|gk| ≤ 2n (note
that |g| = |gi|). Applying this argument again, we may even assume that

ui ∈ A+
0 ∪A

+
1 ∪A

+
0 A
∗A+

1 ∪A
+
1 A
∗A+

0 (17)

for every i ∈ [1, k]. Note that λ and ρ are bijections on words of this form.

c5726439 2017-08-12 22:18:40 +0200

44 Markus Lohrey, Georg Zetzsche

Consider a solution (x1, . . . , xk) to (16). Then the word

w = v0u
x1
1 v1 · · ·u

xk

k vk (18)

represents 1 in G. We factorize each vi, i ∈ [0, k], and each ui, i ∈ [1, k], into
its syllables. These factorizations define a factorization w = w1 · · ·wm and we
call this the block factorization of w. This is the coarsest refinement of the
factorization w = v0u

x1
1 v1 · · ·u

xk

k vk and of w’s factorization into syllables. The
numbers 1, 2, . . . ,m are the blocks of w. We fix this factorization w = w1 · · ·wm
for the rest of this section.

Cycles and certified solutions. In the representation v0u
x1
1 v1 · · ·u

xk

k vk = 1 of
(16), the words u1, . . . , uk are called the cycles. If ui ∈ A+

0 ∪ A
+
1 , the cycle

ui is said to be simple and otherwise mixed (note that ui = ε cannot happen
because gi 6= 1). Let p be a block of w. If wp is contained in some uxi

i for a
cycle ui, then p is a ui-blocks or block from ui. If wp is contained in some vi,
then p is a vi-block or a block from vi. A certified solution is a pair (x,C),
where x is a solution to (16) and C is a cancellation of the word w as in (18).

Observe that if C ⊆ 2[1,m] is a cancellation for w = w1 · · ·wm then by
maximality, for each simple cycle ui, all ui-blocks are contained in the same
edge of C. We will also need the following two auxiliary lemmas.

Lemma 4.19 Let C be a cancellation. If i, j are two distinct blocks from the
same mixed cycle, then there is no edge I ∈ C with i, j ∈ I.

Proof Suppose there is such an I ∈ C. Furthermore, assume that i and j are
chosen so that |i − j| is minimal and i < j. Since i, j ∈ I, we have wiwj ∈
A+

0 ∪A
+
1 by consistency of C. Hence, i and j cannot be neighbors. Therefore

there is an ` ∈ [1,m] with i < ` < j. This means there is a J ∈ C with ` ∈ J .
By well-nestedness, J ⊆ [i, j]. Since every edge in C must contain at least
two elements, we have |J | ≥ 2 and thus a contradiction to the minimality of
|i− j|. ut

An edge I ∈ C is called standard if |I| = 2 and the two blocks in I are from
mixed cycles. Intuitively, the following lemma tells us that in a cancellation,
most edges are standard.

Lemma 4.20 Let C be a cancellation and ui be a mixed cycle. Then there are
at most n+ 3k + 1 non-standard edges I ∈ C containing a ui-block.

Proof Let N ⊆ C be the set of all non-standard edges I ∈ C that contain a
ui-block. Then, each edge I ∈ N satisfies one of the following.

(i) I contains a block from some simple cycle. There are at most k such I.
(ii) I contains a block from some vj , j ∈ [0, k]. Since ‖v0‖+ · · ·+ ‖vk‖ ≤ n,

there are at most n such I.
(iii) I contains only blocks from mixed cycles and |I| > 2.

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 45

Let M ⊆ C be the set of edges of type (iii). If we can show that |M | ≤ 2k+ 1,
then the lemma is proven. Consider the sets

M− = {I ∈M | I contains a block from a mixed cycle uj , j < i},
M+ = {I ∈M | I contains a block from a mixed cycle uj , j > i}.

We shall prove that |M− ∩M+| ≤ 1 and that |M+ \M−| ≤ k. By symmetry,
this also means |M− \M+| ≤ k and thus |M | = |M− ∪M+| ≤ 2k + 1.

Suppose I1, I2 ∈M−∩M+, I1 6= I2. Let r ∈ I1 and s ∈ I2 such that r and s
are blocks from ui, say with r < s. Since I1 ∈M+, I1 contains a block r′ from
a mixed cycle uj , j > i. This means in particular s < r′. By well-nestedness,
this implies I2 ⊆ [r, r′], so that I2 cannot contain a block from a mixed cycle
u` with ` < i, contradicting I2 ∈M−. Thus, |M− ∩M+| ≤ 1.

In order to prove |M+ \ M−| ≤ k, we need another concept. For each
I ∈ M+, there is a maximal j ∈ [1, k] such that uj is a mixed cycle and I
contains a block from uj . Let µ(I) = j. We will show µ(I1) 6= µ(I2) for all
I1, I2 ∈M+ \M−, I1 6= I2. This clearly implies |M+ \M−| ≤ k.

Suppose I1, I2 ∈ M+ \M−, I1 6= I2, with µ(I1) = µ(I2). Let j = µ(I1) =
µ(I2). Let r be a block from ui contained in I1 and let r′ be a block from ui
contained in I2. (Recall that those exist because I1, I2 ∈M .) Without loss of
generality, assume r < r′. Moreover, let s be a block from uj contained in I1
and let s′ be a block from uj contained in I2. Thus, we have r < r′ < s′.

However, we have |I1| > 2, meaning I1 contains a block p other than r and
s. Since an edge cannot contain two blocks of one mixed cycle (Lemma 4.19),
p has to belong to a mixed cycle ut other than ui and uj . By the maximality of
j, we have i < t < j. This implies, however, r < r′ < p < s′, which contradicts
well-nestedness. ut

Mixed periods. From now on, for each i ∈ [1, k], we use ei to denote the i-th
unit vector in Nk, i.e. the vector with 1 in the i-th coordinate and 0 otherwise.
A mixed period is a vector π ∈ Nk of the form ‖uj‖ · ei + ‖ui‖ · ej , where ui
and uj are mixed cycles. Let P ⊆ Nk be the set of mixed periods. Note that
|P| ≤ k2.

We will need a condition that guarantees that a given period π ∈ P can be
added to a solution x to obtain another solution. Suppose we have two blocks
p and q for which we know that if we insert a string f1 to the left of wp and
a string f2 to the right of wq and f1f2 cancels to 1 in G, then the whole word
cancels to 1. Which string would we insert to the left of wp and to the right
of wq if we build the solution x+ π?

Suppose p is a ui-block and q is a uj-block. Moreover, let r be the first (left-
most) ui-block and let s be the last (right-most) uj-block. If we add ‖uj‖ · ei
to x, this inserts λp−r(u

‖uj‖
i) to the left of wp: Indeed, in the case p = r, we

insert u
‖uj‖
i ; and when p moves one position to the right, the inserted string is

rotated once to the left. Similarly, if we add ‖ui‖·ej to x, we insert ρs−q(u
‖ui‖
j)

to the right of wq: This is clear for q = s and decrementing q means rotating
the inserted string to the right. This motivates the following definition.

c5726439 2017-08-12 22:18:40 +0200

46 Markus Lohrey, Georg Zetzsche

Let (x,C) be a certified solution and let ui and uj be mixed cycles with
i < j. Moreover, let r ∈ [1,m] be the left-most ui-block and let s ∈ [1,m] be
the right-most uj-block. Then the mixed period π = ‖uj‖ · ei + ‖ui‖ · ej is
compatible with (x,C) if there are a ui-block p and a uj-block q such that

{p, q} ∈ C and λp−r(u
‖uj‖
i)ρs−q(u

‖ui‖
j) represents 1 in G. (19)

With P(x,C), we denote the set of mixed periods that are compatible with
(x,C). One might wonder why we require an edge {p, q} ∈ C. In order to

guarantee that λp−r(u
‖uj‖
i) and ρs−q(u

‖ui‖
j) can cancel, it would be sufficient

to merely forbid edges I ∈ C that intersect [p, q] and contain a block outside of
[p− 1, q+ 1]. However, this weaker condition can become false when we insert
other mixed periods. Our stronger condition is preserved, which implies:

Lemma 4.21 Let (x,C) be a certified solution. Then every x′ ∈ x+P(x,C)⊕

is a solution.

Proof It suffices to show that if (x,C) is a certified solution and π ∈ P(x,C),
then there is a certified solution (x′, C ′) such that x′ = x + π and P(x,C) ⊆
P(x′, C ′). Suppose π = ‖uj‖·ei+‖ui‖·ej ∈ P(x,C). Without loss of generality,
assume i < j. Let r ∈ [1,m] be the left-most ui-block and s ∈ [1,m] be the
right-most uj-block in w. Since π ∈ P(x,C), there is a ui-block p and a uj-

block q such that (19) holds. As explained above, we can insert λp−r(u
‖uj‖
i)

on the left of wp and ρs−q(u
‖ui‖
j) on the right of wq and thus obtain a word

w′ that corresponds to the vector x′ = x+ π.

Both inserted words consist of ‖uj‖ · ‖ui‖ many blocks and they cancel to
1, which means we can construct a cancellation C ′ from C as follows. Between
the two sequences of inserted blocks, we add two-element edges so that the
left-most inserted ui-block is connected to the right-most inserted uj-block,
and so forth. The blocks that existed before are connected by edges as in C. It
is clear that then, C ′ is a partition that is consistent, cancelling and maximal.
Moreover, since there is an edge {p, q}, the new edges between the inserted
blocks do not violate well-nestedness: If there were a crossing edge, then there
would have been one that crosses {p, q}.

It remains to verify P(x,C) ⊆ P(x′, C ′). A mixed period π′ ∈ P(x,C) \ {π}
is clearly contained in P(x′, C ′) too. Hence, it remains to show π ∈ P(x′, C ′).
This, however, follows from the fact that instead of the edge {p, q} that wit-
nesses compatibility of π with (x,C), we can use its counterpart in C ′; let us
call this edge {p′, q′}: If r′ is the left-most ui-block in w′ and s′ is the right-most
uj-block in w′, then p′−r′ = p−r+‖ui‖·‖uj‖ and s′−q′ = s−q+‖ui‖·‖uj‖. This

implies λp−r(u
‖uj‖
i) = λp

′−r′(u
‖uj‖
i) and ρs−q(u

‖ui‖
j) = ρs

′−q′(u
‖ui‖
j) which

implies that (19) holds for the edge {p′, q′}. This completes the proof of the
lemma. ut

We shall need another auxiliary lemma.

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 47

Lemma 4.22 Let C be a cancellation for w. Let ui and uj be distinct mixed
cycles. Let D ⊆ C be the set of standard edges I ∈ C that contain one block
from ui and one block from uj. Then the set

B = {p ∈ [1,m] | p is a ui-block and p ∈ I for some I ∈ D}

is an interval.

Proof We prove the case i < j, the other follows by symmetry. Suppose there
are r1, r2 ∈ B such that r1 < r2 and there is no t ∈ B with r1 < t < r2.

Towards a contradiction, suppose r2 − r1 > 1. Since r1, r2 ∈ B, there are
I1, I2 ∈ D with r1 ∈ I1 and r2 ∈ I2. Let I1 = {r1, s1} and I2 = {r2, s2}. Then
s1 and s2 are uj-blocks and by well-nestedness, we have r1 < r2 < s2 < s1.
Since r2− r1 > 1, there is a t with r1 < t < r2 and therefore some J ∈ C with
t ∈ J . Since |J | ≥ 2, there has to be a t′ ∈ J , t′ 6= t. However, well-nestedness
dictates that t′ ∈ [r1, s1] \ [r2, s2]. Since J cannot contain another block from
ui (Lemma 4.19), we cannot have t′ ∈ [r1, r2], which only leaves t′ ∈ [s2, s1].
Hence, t′ is from uj . By the same argument, any block t′′ ∈ J \ {t, t′} must be
from ui or uj , contradicting Lemma 4.19. This means |J | = 2 and thus t ∈ B,
in contradiction to the choice of r1 and r2. ut

Let M ⊆ [1, k] be the set of i ∈ [1, k] such that ui is a mixed cycle. We define
a new norm on vectors x ∈ Nk by setting ‖x‖M = maxi∈M xi.

Lemma 4.23 There is a polynomial q such that the following holds. For every
certified solution (x,C) with ‖x‖M > q(n), there exists a mixed period π ∈
P(x,C) and a certified solution (x′, C ′) such that x′ = x − π and P(x,C) ⊆
P(x′, C ′).

Proof We show that the lemma holds if q(n) ≥ (n+3k+1)+kn2. (Recall that
k ≤ n.) Let (x,C) be a certified solution with ‖x‖M > q(n). Then there is a
mixed cycle ui such that xi > q(n) and hence uxi

i consists of more than q(n)
blocks. Let D ⊆ C be the set of all edges I ∈ C that contain a block from ui.
Since an edge can contain at most one block per mixed cycle (Lemma 4.19),
we have |D| > q(n). Hence, Lemma 4.20 tells us that D contains more than
kn2 standard edges. Hence, there exists a mixed cycle uj such that the set
E ⊆ D of standard edges I ∈ D that consist of one block from ui and one
block from uj satisfies |E| > n2. If Bi (resp., Bj) denotes the set of blocks
from ui (resp., uj) contained in some edge I ∈ E, then each of the sets Bi and
Bj has to be an interval (Lemma 4.22) of size more than n2.

We only deal with the case i < j, the case i > j can be done similarly.
Let us take a subinterval [p′, p] of Bi such that p − p′ = ‖ui‖ · ‖uj‖ ≤ n2.
By well-nestedness and since Bj is an interval, the neighbors (with respect to
the edges from E) of [p′, p] form an interval [q, q′] ⊆ Bj as well, and we have
p− p′ = q′ − q = ‖ui‖ · ‖uj‖. Moreover, we have an edge {p− `, q+ `} ∈ E for
each ` ∈ [0, p− p′]. In particular, wp′wp′+1 · · ·wp−1wq+1 · · ·wq′ represents 1 in
G.

c5726439 2017-08-12 22:18:40 +0200

48 Markus Lohrey, Georg Zetzsche

Let r be the left-most ui-block and let s be the right-most uj-block. Then,
as shown before the definition of compatibility (p. 45), we have

λp−r(u
‖uj‖
i) = wp′wp′+1 · · ·wp−1, ρs−q(u

‖ui‖
j) = wq+1wq+1 · · ·wq′ .

Therefore, λp−r(u
‖uj‖
i)ρs−q(u

‖ui‖
j) represents 1 in G and {p, q} witnesses com-

patibility of π = ‖uj‖ · ei + ‖ui‖ · ej with (x,C). Hence, π ∈ P(x,C).
Let x′ = x − π. We remove the factors wp′ · · ·wp−1 and wq+1 · · ·wq′ from

w. Then, the remaining blocks spell w′ = v0u
x′1
1 v1 · · ·u

x′k
k vk. Indeed, recall that

removing from a word yt any factor of length ` · |y| will result in the word
yt−`. Moreover, let C ′ be the set of edges that agree with C on the remaining
blocks. By the choice of the removed blocks, it is clear that C ′ is a cancellation
for w′. Hence, (x′, C ′) is a certified solution.

It remains to verify P(x,C) ⊆ P(x′, C ′). First note that for every mixed
cycle u`, all u`-blocks that remain in w′ change their position relative to the
left-most and the right-most u`-block by a difference that is divisible by ‖u`‖
(if i 6= ` 6= j then these relative positions do not change at all). Note that

the expression λp−r(u
‖uj‖
i) is not altered when p − r changes by a difference

divisible by ‖ui‖, and an analogous fact holds for ρs−q(u
‖ui‖
j). Hence, the edge

in C ′ that corresponds to the C-edge {p, q} is a witness for π ∈ P(x′, C ′).
Moreover, for all other mixed periods π′ ∈ P(x,C) \ {π} that are witnessed by
an edge {t, u} ∈ C, the blocks t and u do not belong to [p′, p− 1] ∪ [q + 1, q′].
Therefore, the corresponding edge in C ′ exists and serves as a witness for
π′ ∈ P(x′, C ′). ut

Lemma 4.24 There exists a polynomial q such that the following holds. For
every solution x ∈ Nk, there exists a certified solution (x′, C ′) such that
‖x′‖M ≤ q(n) and x ∈ x′ + P(x′, C ′)⊕.

Proof Let q be the polynomial provided by Lemma 4.23. Since x is a solution,
there is a certified solution (x,C). Repeated application of Lemma 4.23 yields
certified solutions (x0, C0), . . . , (xm, Cm) and mixed periods π1, . . . , πm such
that (x0, C0) = (x,C), πi ∈ P(xi−1, Ci−1) ⊆ P(xi, Ci), xi = xi−1 − πi, and
‖xm‖M ≤ q(n). In particular, P(xm, Cm) contains each πi and hence

x = xm + π1 + · · ·+ πm ∈ xm + P(xm, Cm)⊕.

Thus, (x′, C ′) = (xm, Cm) is the desired certified solution. ut

We are now ready to prove Proposition 4.17 and thus Theorem 4.10.

Proof of Proposition 4.17. Suppose that p0 and p1 are the polynomials guaran-
teed by the knapsack tameness of G0 and G1, respectively. Recall that S ⊆ Nk
is the set of solutions to (16). We prove that there exists a polynomial p
such that for every x ∈ S there is a semilinear set S′ ⊆ Nk of magnitude at
most p(n) such that x ∈ S′ ⊆ S. This clearly implies that S has magnitude
at most p(n). First, we apply Lemma 4.24. It yields a polynomial q and a

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 49

certified solution (x′, C ′) with ‖x′‖M ≤ q(n) such that x ∈ x′ + P(x′, C ′)⊕.

Let w′ = v0u
x′1
1 v1 · · ·u

x′k
k vk and consider w′ decomposed into blocks as we did

above with w.
Let us briefly describe the idea of the remaining steps to construct S′.

The semilinear set x′ + P(x′, C ′) already satisfies x ∈ x′ + P(x′, C ′) ⊆ S. The
only entries in the semilinear representation for x′ + P(x′, C ′) that are not
polynomially bounded yet are the coordinates of x′ that correspond to simple
cycles. Therefore, we consider the set T ⊆ [1, k] of all i ∈ [1, k] for which
the cycle ui is simple. In order to reduce the entries at these coordinates as
well, we partition T according to which edge of C ′ the blocks from a cycle ui,
i ∈ T , belong to. (Recall that by maximality of C ′, all the blocks of a simple
cycle belong to the same edge.) Then, all blocks that belong to the same edge
(i) belong to Gs for some s ∈ {0, 1} and (ii) yield 1 in Gs. Therefore, these
blocks form a solution to a knapsack instance over Gs, to which we can apply
knapsack tameness of Gs.

Let us make this idea precise. Since C ′ is maximal, for each i ∈ T , all
ui-blocks are contained in one edge Ii ∈ C ′. Note that it is allowed that one
edge contains the blocks of multiple simple cycles. We partition T into sets
T = T1] · · ·] Tt so that i ∈ T and j ∈ T belong to the same part if and only
if the ui-blocks and the uj-blocks belong to the same edge of C, i.e. Ii = Ij .

For a moment, let us fix an ` ∈ [1, t] and let I ∈ C ′ be the edge containing
all ui-blocks for all the i ∈ T`. Moreover, let T` = {i1, . . . , ir}. The words v̄j
for j ∈ [0, r] will collect those blocks that belong to I but are not uis-blocks
for any s ∈ [1, r]. Formally:

1. v̄0 consists of all blocks that belong to I that are to the left of all ui1 -blocks.
2. Similarly, v̄r is the concatenation of all blocks belonging to I that are to

the right of all uir -blocks.
3. Finally, for j ∈ [1, r − 1], v̄j consists of all blocks that belong to I and are

to the right of all uij -blocks and to the left of all uij+1-blocks.

By consistency of C ′, for some s ∈ {0, 1}, all the words v̄j for j ∈ [0, r] and
the words uij for j ∈ [1, r] belong to A∗s and thus represent elements of Gs.
Since Gs is knapsack tame, the set

S` = {z ∈ Nk | v̄0u
zi1
i1
v̄1u

zi2
i2
v̄2 · · ·u

zir
ir
v̄r represents 1 in Gs, zj = 0 for j /∈ T`}

has magnitude at most ps(n). Consider the vector y ∈ Nk with yi = 0 for i ∈ T
and yi = x′i for i ∈ [1, k] \ T (i.e. when ui is a mixed cycle). We claim that
S′ = y+S1+ · · ·St+P(x′, C ′)⊕ has magnitude at most q(n)+p0(n)+p1(n)+n
and satisfies x ∈ S′ ⊆ S.

First, since y and the members of S1, . . . , St are non-zero on pairwise dis-
joint coordinates, the magnitude of y + S1 + · · · + St is the maximum of
‖y‖∞ and the maximal magnitude of S1, . . . , St. Hence, it is bounded by
q(n) + p0(n) + p1(n). The summand P(x′, C ′)⊕ contributes only periods, and
their magnitude is bounded by n (recall that they are mixed periods). Thus,
the magnitude of S′ is at most p(n) = q(n) + p0(n) + p1(n) + n.

c5726439 2017-08-12 22:18:40 +0200

50 Markus Lohrey, Georg Zetzsche

The cancelling property of (x′, C ′) tells us that x′ − y is contained in the
sum S1 + · · · + St. By the choice of (x′, C ′), we have x ∈ x′ + P(x′, C ′)⊕.
Together, this means x ∈ S′. Hence, it remains to show S′ ⊆ S. To this end,
consider a vector x′′ ∈ y+S1 + · · ·+St. It differs from x′ only in the exponents
at simple cycles. Therefore, we can apply essentially the same cancellation to
x′′ as to x′: we just need to adjust the edges containing the blocks of simple
cycles. It is therefore clear that the resulting cancellation C ′′ has the same
compatible mixed periods as C ′: P(x′′, C ′′) = P(x′, C ′). Thus, by Lemma 4.21,
we have x′′+P(x′, C ′)⊕ ⊆ S. This proves S′ = y+S1+· · ·+St+P(x′, C ′)⊕ ⊆ S
and hence Proposition 4.17. ut

4.2.5 Proof of Theorem 4.6

Let us first consider knapsack. According to Proposition 4.7, it suffices to
provide a logspace reduction from the knapsack problem over G to the mem-
bership problem for acyclic NFA over G. Suppose we have an instance

h0g
x1
1 h1 · · · gxk

k hk = 1

of the knapsack problem over G of size n. Moreover, let hi be represented by
vi ∈ A∗ for each i ∈ [0, k] and let gi be represented by ui ∈ A∗ for i ∈ [1, k].

By Theorem 4.10, there is a polynomial p such that the above instance
has a solution if and only if it has a solution x ∈ Nk with ‖x‖∞ ≤ p(n). We
construct an acyclic NFA A = (Q,A,∆, q0, qf) as follows. It has the state set
Q = [0, k+ 1]× [0, p(n)] and the following transitions. From (0, 0), there is one
transition labeled v0 to (1, 0). For each i ∈ [1, k] and j ∈ [0, p(n)−1], there are
two transitions from (i, j) to (i, j+ 1); one labeled by ui and one labeled by ε.
Furthermore, there is a transition from (i, p(n)) to (i+1, 0) labeled vi for each
i ∈ [1, k]. The initial state is q0 = (0, 0) and the final state is qf = (k + 1, 0).

It is clear thatA accepts a word that represents 1 if and only if the exponent
equation has a solution. Finally, the reduction can clearly be carried out in
logarithmic space.

For subset sum the same reduction as above works but the polynomial
bound on solutions is for free.

4.3 LogCFL-completeness

In this section we complement Theorem 4.6 with a lower bound.

Theorem 4.25 If (A, I) is a transitive forest and not a complete graph, then
knapsack and subset sum for G(A, I) are LogCFL-complete.

By Theorem 4.6 it suffices to show that knapsack and subset sum for
G(A, I) are LogCFL-hard if (A, I) is not a complete graph. If (A, I) is not
complete, then (A, I) contains two non-adjacent vertices and thus G(A, I)
contains an isomorphic copy of F2, the free group of rank two. Hence, we will
show that knapsack and subset sum for F2 are LogCFL-hard:

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 51

q0 q1

(x, a#), (y, b#) (ε,#−1)(ε, 1)

(x̄, a−1#), (ȳ, b−1#)

Fig. 2 Transducer used in the proof of Lemma 4.27

Proposition 4.26 For F2, knapsack and subset sum are LogCFL-hard.

Let {a, b} be a generating set for F2. Let θ : {a, b, a−1, b−1}∗ → F2 be the
morphism that maps a word w to the group element represented by w.

A valence automaton over a group G is a tuple A = (Q,Σ,∆, q0, qf) where
Q, Σ, q0, qf are as in a finite automaton and ∆ is a finite subset of Q×Σ∗ ×
G×Q. The language accepted by A is denoted L(A) and consists of all words
w1 · · ·wn such that there is a computation

p0
w1,g1−−−→ p1 → · · · → pn−1

wn,gn−−−−→ pn

such that (pi−1, wi, gi, pi) ∈ ∆ for i ∈ [1, n], p0 = q0, pn = qf , and g1 · · · gn = 1
in G. We call this computation also an accepting run of A for w (of length n).
Note that we allow ε-transitions of the form (p, ε, g, q) ∈ ∆. This implies that
an accepting run for a word w can be of length greater than |w|.

An analysis of a proof (in this case [30]) of the Chomsky-Schützenberger
theorem yields:

Lemma 4.27 For every language L ⊆ Σ∗ the following statements are equiv-
alent:

(i) L is context-free.
(ii) There is a valence automaton A over F2 such that L = L(A).

(iii) There is a valence automaton A over F2 and a constant c ∈ N such that
L = L(A) and for every w ∈ L there exists an accepting run of A for w
of length at most c · |w|.

Proof The equivalence of (i) and (ii) is well known (see [30]) and the impli-
cation from (iii) to (ii) is trivial. We show that (i) implies (iii). For this, we
shall use the concept of rational transductions. If Σ and Γ are alphabets, sub-
sets T ⊆ Γ ∗ × Σ∗ are called transductions. Given a language L ⊆ Σ∗ and a
transduction T ⊆ Γ ∗ ×Σ∗, we define

TL = {u ∈ Γ ∗ | (u, v) ∈ T for some v ∈ L}.

A finite-state transducer is a tuple A = (Q,Σ, Γ,∆, q0, qf), where Q is a finite
set of states, Σ is its input alphabet, Γ is its output alphabet, ∆ is a finite subset
of Q × Γ ∗ × Σ∗ × Q, q0 ∈ Q is its initial state, and qf ∈ Q is its final state.

c5726439 2017-08-12 22:18:40 +0200

52 Markus Lohrey, Georg Zetzsche

The elements of ∆ are called transitions. We say that a pair (u, v) ∈ Γ ∗ ×Σ∗
is accepted by A if there is a sequence

(p0, u1, v1, p1), (p1, u2, v2, p2), . . . , (pn−1, un, vn, pn)

of transitions where n ≥ 1, p0 = q0, pn = qf , u = u1 · · ·un, and v = v1 · · · vn.
The set of all pairs (u, v) ∈ Γ ∗ × Σ∗ that are accepted by A is denoted by
T (A). A transduction T ⊆ Γ ∗ ×Σ∗ is called rational if there is a finite-state
transducer A with T (A) = T .

Let W2 ⊆ {a, b, a−1, b−1}∗ be the word problem of F2, i.e.

W2 = {w ∈ {a, b, a−1, b−1}∗ | θ(w) = 1}.

For languages K ⊆ Γ ∗ and L ⊆ Σ∗, we write K L if there is a rational
transduction T ⊆ Γ ∗ × Σ∗ and a constant c such that K = TL and for each
u ∈ K, there is a v ∈ L with |v| ≤ c|u| and (u, v) ∈ T . Observe that the
relation is transitive, meaning that it suffices to show L W2 for every
context-free language L.

Let D2 be the one-sided Dyck language over two pairs of parentheses, in
other words: D2 is the smallest language D2 ⊆ {x, x̄, y, ȳ}∗ such that ε ∈ D2

and whenever uv ∈ D2, we also have uwv ∈ D2 for w ∈ {xx̄, yȳ}.
It is easy to see that L D2 for every context-free language L. Indeed, an

ε-free pushdown automaton (which exists for every context-free language [22])
for L can be converted into a transducer witnessing L D2. Therefore, it
remains to show that D2 W2.

Let F3 be the free group of rank 3 and let {a, b,#} be a free generating
set for F3. As above, let

W3 = {w ∈ {a, b,#, a−1, b−1,#−1}∗ | w represents 1 in F3}

be the word problem of F3. Since F3 can be embedded into F2 [41, Proposi-
tion 3.1], we clearly have W3 W2. It therefore suffices to show D2 W3.

For this, we use a construction of Kambites [30]. He proves that if A is the
transducer in Figure 4.27 and T = T (A), then D2 = TW3. Thus, for every
u ∈ D2, we have (u, v) ∈ T for some v ∈ W3. An inspection of A yields that
|v| = 2|u| + |v|#−1 and |v|# = |u|. Since v ∈ W3, we have |v|#−1 = |v|# and
thus |v| = 3|u|. Hence, the transduction T witnesses D2 W3. We have thus
shown L D2 W3 W2 and hence the lemma. ut

Given w, it is easy to convert the valence automaton A from Lemma 4.27
into an acyclic automaton that exhausts all computations of A of length c · |w|.
This yields the following.

Proposition 4.28 For F2, the membership problem for acyclic NFA is LogCFL-
hard.

Proof Fix a context-free language L ⊆ Σ∗ with a LogCFL-complete mem-
bership problem; such languages exist [21]. Fix a valence automaton A =
(Q,Σ,∆, q0, qf) over F2 and a constant c ∈ N such that the statement of

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 53

Lemma 4.27(iii) holds for L, A, and c. Consider a word w ∈ Σ∗. From w
we construct an acyclic automaton B over the input alphabet {a, b, a−1, b−1}
such that 1 ∈ θ(L(B)) if and only if w ∈ L. Let m = |w|, w = a1a2 · · · am and
n = c ·m. The set of states of B is [0,m]× [0, n]×Q. The transitions of B are
defined as follows:

– (i − 1, j − 1, p)
x−−→ (i, j, q) if (p, ai, x, q) ∈ ∆ for all i ∈ [1,m], j ∈ [1, n],

and x ∈ {a, b, a−1, b−1}∗
– (i, j − 1, p)

x−−→ (i, j, q) if (p, ε, x, q) ∈ ∆ for all i ∈ [0,m], j ∈ [1, n], and
x ∈ {a, b, a−1, b−1}∗

The initial state of B is (0, 0, q0) and all states (m, j, qf) with j ∈ [0, n] are
final in B. It is then straightforward to show that 1 ∈ θ(L(B)) if and only if
w ∈ L. The intuitive idea is that in a state of B we store in the first component
the current position in the word w. In this way we enforce the simulation of a
run of A on input w. In the second component of the state we store the total
number of simulated A-transitions. In this way we make B acyclic. Finally, the
third state component of B stores the current A-state. ut

Proof of Proposition 4.26. Let A = (Q, {a, b, a−1, b−1}, ∆, q0, qf) be an acyclic
automaton. We construct words w,w1, . . . , wm ∈ {a, b, a−1, b−1} such that the
following three statements are equivalent:

(i) 1 ∈ θ(L(A)).
(ii) θ(w) ∈ θ(w∗1w∗2 · · ·w∗m).
(iii) θ(w) ∈ θ(we11 w

e2
2 · · ·wemm) for some e1, e2, . . . , em ∈ {0, 1}.

W.l.o.g. assume that Q = {1, . . . , n}, where 1 is the initial state and n is the
unique final state of A.

Let αi = aiba−i for i ∈ [1, n + 2]. It is well known that the αi generate a
free subgroup of rank n+ 2 in F2 [41, Proposition 3.1]. Define the embedding
ϕ : F2 → F2 by ϕ(a) = αn+1 and ϕ(b) = αn+2. For a transition t = (p, w, q) ∈
∆ let t̃ = αpϕ(w)α−1q . Let ∆ = {t1, . . . , tm} such that ti = (p, a, q) and
tj = (q, b, r) implies i < j. Since A is acyclic, such an enumeration must exist.
Together with the fact that the αi generate a free group, it follows that the
following three statements are equivalent:

(i) 1 ∈ θ(L(A)).
(ii) θ(α1α

−1
n) ∈ θ(t̃∗1 t̃∗2 · · · t̃∗m).

(iii) θ(α1α
−1
n) ∈ θ(t̃e11 t̃e22 · · · t̃emm) for some e1, e2, . . . , em ∈ {0, 1}.

This shows the proposition. ut

4.4 TC0-completeness

We finally show that subset sum and knapsack for free abelian groups Zm are
complete for the circuit complexity class TC0. Note that Zm is isomorphic to
the graph group G(A, I) where (A, I) is the complete graph on m nodes. The
proof of the following result is a simple combination of known results from [17,
46].

c5726439 2017-08-12 22:18:40 +0200

54 Markus Lohrey, Georg Zetzsche

Theorem 4.29 For every fixed m ≥ 1, knapsack and subset sum for the free
abelian group Zm are complete for TC0. Hence, knapsack and subset sum for
G(A, I) are complete for TC0 if (A, I) is a non-empty complete graph.

Proof Hardness for TC0 follows from the well-known fact that the word prob-
lem for Z is TC0-complete: The word problem for Z is exactly the membership
problem for the language Eq = {w ∈ {a, b}∗ | |w|a = |w|b} (take b = a−1). The
canonical TC0-complete language is Maj = {w ∈ {a, b}∗ | |w|a ≥ |w|b} [50],
which is equivalent (with respect to AC0-Turing reductions) to Eq: (i) w ∈ Eq
if and only if w ∈ Maj and w′ ∈ Maj, where w′ is obtained by swapping the

letters a and b in w, and (ii) w ∈ Maj if and only if
∧|w|
i=0 wb

i ∈ Eq.
Let us now show that knapsack for Zm belongs to TC0. LetA = {a1, . . . , am}

be the generating set for Zm. Given a word w ∈ (A ∪ A−1)∗ we can compute
the vector (b1, . . . , bm) ∈ Zm with bi := |w|ai−|w|a−1

i
represented in unary no-

tation in TC0 (counting the number of occurrences of a symbol in a string and
subtraction can be done in TC0). Hence, we can transform in TC0 an instance
of knapsack for Zm into a system of equations Ax = b, where A ∈ Zm×n is an
integer matrix with unary encoded entries, b ∈ Zm is an integer vector with
unary encoded entries, and x is a vector of n variables ranging over N. Let
t = n(ma)2m+1, where a is the maximal absolute value of an entry in (A | b).
By [46] the system Ax = b has a solution if and only if it has a solution with all
entries of x from the interval [0, t]. Since m is a constant, the unary encoding
of the number t can be computed in TC0 (iterated multiplication can be done
in TC0). However, the question whether the system Ax = b has a solution from
[0, t]n is an instance of the m-integer-linear-programming problem from [17],
which was shown to be in TC0 in [17]. For subset sum for Zm one can use the
same argument with t = 1. ut

5 Open problems

The following two open problems were mentioned earlier:

– Is the subset sum problem for the graph group G(P4) NP-hard? The prob-
lem belongs to NP.

– Is the class of polynomially bounded knapsack groups (i.e. those where
every solvable knapsack instance has a solution where all components are
bounded polynomially in the size of the knapsack instance) closed under
direct products with Z? See the remarks at the beginning of section 4.2.2.

An important class of groups with open decidability status of the knapsack
problem is that of braid groups.

In [33], it is shown that knapsack is decidable for every co-context-free
group. A group is co-context-free if the set of all words that do not represent
the group identity is a context-free language. The algorithm from [33] has
an exponential running time and it is open whether for every co-context-free
group the knapsack problem belongs to NP.

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 55

References

1. I. J. Aalbersberg and H. J. Hoogeboom. Characterizations of the decidability of some
problems for regular trace languages. Mathematical Systems Theory, 22:1–19, 1989.

2. I. Agol. The virtual Haken conjecture. With an appendix by Agol, Daniel Groves, and
Jason Manning. Documenta Mathematica, 18:1045–1087, 2013.

3. S. Arora and B. Barak. Computational Complexity — A Modern Approach. Cambridge
University Press, 2009.

4. L. Babai, R. Beals, J. Cai, G. Ivanyos, and E. M. Luks. Multiplicative equations over
commuting matrices. In Proceedings of the 7th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 1996, pages 498–507. ACM/SIAM, 1996.

5. A. Bertoni, G. Mauri, and N. Sabadini. Membership problems for regular and context
free trace languages. Information and Computation, 82:135–150, 1989.

6. M. Bestvina and N. Brady. Morse theory and finiteness properties of groups. Inventiones
Mathematicae, 129(3):445–470, 1997.

7. J.-C. Birget, A. Y. Ol′shanskii, E. Rips, and M. V. Sapir. Isoperimetric functions of
groups and computational complexity of the word problem. Annals of Mathematics.
Second Series, 156(2):467–518, 2002.

8. A. Björner and F. Brenti. Combinatorics of Coxeter Groups, volume 231 of Graduate
Texts in Mathematics. Springer, New York, 2005.

9. M. Charikar, E. Lehman, A. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai,
and A. Shelat. The smallest grammar problem. IEEE Transactions on Information
Theory, 51(7):2554–2576, 2005.

10. J. Crisp and B. Wiest. Embeddings of graph braid and surface groups in right-angled
Artin groups and braid groups. Algebraic & Geometric Topology, 4:439–472, 2004.

11. V. Diekert. Combinatorics on Traces, volume 454 of Lecture Notes in Computer Science.
Springer, 1990.

12. V. Diekert and J. Kausch. Logspace computations in graph products. Journal of
Symbolic Computation, 75:94–109, 2016.

13. V. Diekert and M. Lohrey. Word equations over graph products. International Journal
of Algebra and Computation, 18(3):493–533, 2008.

14. V. Diekert and A. Muscholl. Solvability of equations in graph groups is decidable.
International Journal of Algebra and Computation, 16(6):1047–1069, 2006.

15. V. Diekert, A. G. Myasnikov, and A. Weiß. Conjugacy in Baumslag’s group, generic case
complexity, and division in power circuiats. In Symposium of the 11th Latin American
Symposium, LATIN 2014, volume 8392 of Lecture Notes in Computer Science, pages
1–12. Springer, 2014.

16. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
17. M. Elberfeld, A. Jakoby, and T. Tantau. Algorithmic meta theorems for circuit classes of

constant and logarithmic depth. Electronic Colloquium on Computational Complexity
(ECCC), 18:128, 2011.

18. E. Frenkel, A. Nikolaev, and A. Ushakov. Knapsack problems in products of groups.
Journal of Symbolic Computation, 74:96–108, 2016.

19. J. von zur Gathen and M. Sieveking. A bound on solutions of linear integer equalities
and inequalities. Proceedings of the American Mathematical Society, 72(1):155–158,
1978.

20. R. Ghrist and V. Peterson. The geometry and topology of reconfiguration. Advances
in Applied Mathematics, 38(3):302–323, 2007.

21. S. Greibach. The hardest context-free language. SIAM Journal on Computing, 2(4):304–
310, 1973.

22. S. A. Greibach. A new normal-form theorem for context-free phrase structure grammars.
Journal of the Association for Computing Machinery, 12(1):42–52, 1965.

23. C. Haase. On the complexity of model checking counter automata. PhD thesis, Univer-
sity of Oxford, St Catherine’s College, 2011.

24. F. Haglund and D. T. Wise. Coxeter groups are virtually special. Advances in Mathe-
matics, 224(5):1890–1903, 2010.

25. W. Hesse, E. Allender, and D. A. M. Barrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. Journal of Computer and System Sci-
ences, 65:695–716, 2002.

c5726439 2017-08-12 22:18:40 +0200

56 Markus Lohrey, Georg Zetzsche

26. T. Hsu and D. T. Wise. On linear and residual properties of graph products. Michigan
Mathematical Journal, 46(2):251–259, 1999.

27. O. H. Ibarra and S. Moran. Probabilistic algorithms for deciding equivalence of straight-
line programs. Journal of the Association for Computing Machinery, 30(1):217–228,
1983.

28. R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. In Proceedings of the 29th Annual ACM Symposium on
the Theory of Computing, STOC 1997, pages 220–229. ACM Press, 1997.

29. B. Jenner. Knapsack problems for NL. Information Processing Letters, 54(3):169–174,
1995.

30. M. Kambites. Formal languages and groups as memory. Communications in Algebra,
37:193–208, 2009.

31. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum Press,
New York, 1972.

32. D. König and M. Lohrey. Evaluating matrix circuits. In Proceedings of the 21st Inter-
national Conference on Computing and Combinatorics, COCOON 2015, volume 9198
of Lecture Notes in Computer Science, pages 235–248. Springer, 2015.

33. D. König, M. Lohrey, and G. Zetzsche. Knapsack and subset sum problems in nilpotent,
polycyclic, and co-context-free groups. In Algebra and Computer Science, volume 677
of Contemporary Mathematics. AMS, 2016.

34. D. Kuske and M. Lohrey. Logical aspects of Cayley-graphs: the monoid case. Interna-
tional Journal of Algebra and Computation, 16(2):307–340, 2006.

35. M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity
Cryptology, 4(2):241–299, 2012.

36. M. Lohrey. The Compressed Word Problem for Groups. SpringerBriefs in Mathematics.
Springer, 2014.

37. M. Lohrey and S. Schleimer. Efficient computation in groups via compression. In
Proceedings of Computer Science in Russia, CSR 2007, volume 4649 of Lecture Notes
in Computer Science, pages 249–258. Springer, 2007.

38. M. Lohrey and B. Steinberg. The submonoid and rational subset membership problems
for graph groups. Journal of Algebra, 320(2):728–755, 2008.

39. M. Lohrey and G. Zetzsche. Knapsack in graph groups, HNN-extensions and amalga-
mated products. In Proceedings of the 33rd International Symposium on Theoretical
Aspects of Computer Science (STACS 2016), volume 47 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 50:1–50:14, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

40. M. Lohrey and G. Zetzsche. The complexity of knapsack in graph groups, 2017. In
Proceedings of the 34th International Symposium on Theoretical Aspects of Computer
Science (STACS 2017), volume 66 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 52:1–52:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

41. R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer, 1977.
42. K. A. Mihăılova. The occurrence problem for direct products of groups. Math. USSR

Sbornik, 70:241–251, 1966. English translation.
43. A. Muscholl and D. Peled. Message sequence graphs and decision problems on

Mazurkiewicz traces. In Proceedings of the 24th International Symposium on Mathe-
matical Foundations of Computer Science, MFCS 1999, number 1672 in Lecture Notes
in Computer Science, pages 81–91. Springer, 1999.

44. A. Myasnikov, A. Nikolaev, and A. Ushakov. Knapsack problems in groups. Mathemat-
ics of Computation, 84:987–1016, 2015.

45. A. Nikolaev and A. Ushakov. Subset sum problem in polycyclic groups. Journal of
Symbolic Computation, 84:84–94, 2018.

46. C. H. Papadimitriou. On the complexity of integer programming. Journal of the Asso-
ciation for Computing Machinery, 28(4):765–768, 1981.

47. L. Pottier. Minimal solutions of linear Diophantine systems: bounds and algorithms. In
Proceedings of the 4th International Conference on Rewriting Techniques and Appli-
cations, RTA 1991, volume 488 of Lecture Notes in Computer Science, pages 162–173.
Springer-Verlag, 1991.

c5726439 2017-08-12 22:18:40 +0200

Knapsack in Graph Groups 57

48. I. H. Sudborough. On the tape complexity of deterministic context–free languages.
Journal of the Association for Computing Machinery, 25(3):405–414, 1978.

49. A. W. To. Unary finite automata vs. arithmetic progressions. Information Processing
Letters, 109(17):1010–1014, 2009.

50. H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.
51. D. T. Wise. Research announcement: the structure of groups with a quasiconvex hier-

archy. Electronic Research Announcements in Mathematical Sciences, 16:44–55, 2009.
52. E. S. Wolk. A note on the “The comparability graph of a tree”. Proceedings of the

American Mathematical Society, 16:17–20, 1965.

c5726439 2017-08-12 22:18:40 +0200

