Knapsack in Graph Groups, HNN-Extensions and Amalgamated Products

Markus Lohrey ${ }^{1}$ Georg Zetzsche ${ }^{2}$
${ }^{1}$ Department für Elektrotechnik und Informatik
Universität Siegen
${ }^{2}$ LSV, CNRS \& ENS Cachan
Université Paris-Saclay

Equations and formal languages in algebra
Les Diablerets 2016

Theorem

For every virtually special group, compressed knapsack is in NP.

- virtually special: finite extension of a subgroup of a right-angled Artin group
- compressed knapsack: equation $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}}=g$, where g_{1}, \ldots, g_{k}, g are given by SLPs over $\Sigma \cup \Sigma^{-1}$.

Theorem

For every virtually special group, compressed knapsack is in NP.

- virtually special: finite extension of a subgroup of a right-angled Artin group
- compressed knapsack: equation $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}}=g$, where g_{1}, \ldots, g_{k}, g are given by SLPs over $\Sigma \cup \Sigma^{-1}$.

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric.

Theorem

For every virtually special group, compressed knapsack is in NP.

- virtually special: finite extension of a subgroup of a right-angled Artin group
- compressed knapsack: equation $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}}=g$, where g_{1}, \ldots, g_{k}, g are given by SLPs over $\Sigma \cup \Sigma^{-1}$.

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric. The group $\mathbb{G}(A, I)$ is defined as

$$
\mathbb{G}(A, I)=\langle A \mid a b=b a((a, b) \in I)\rangle
$$

Theorem

For every virtually special group, compressed knapsack is in NP.

- virtually special: finite extension of a subgroup of a right-angled Artin group
- compressed knapsack: equation $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}}=g$, where g_{1}, \ldots, g_{k}, g are given by SLPs over $\Sigma \cup \Sigma^{-1}$.

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric. The group $\mathbb{G}(A, I)$ is defined as

$$
\mathbb{G}(A, I)=\langle A \mid a b=b a((a, b) \in I)\rangle .
$$

Groups of the form $\mathbb{G}(A, I)$ are called right-angled Artin group.

Semilinear sets

- A subset of \mathbb{N}^{k} of the form

$$
L=\left\{v_{0}+\sum_{i=1}^{n} x_{i} v_{i} \mid x_{1}, \ldots, x_{n} \in \mathbb{N}\right\}
$$

with $v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{N}^{k}$ is called linear.

Semilinear sets

- A subset of \mathbb{N}^{k} of the form

$$
L=\left\{v_{0}+\sum_{i=1}^{n} x_{i} v_{i} \mid x_{1}, \ldots, x_{n} \in \mathbb{N}\right\}
$$

with $v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{N}^{k}$ is called linear.

- A subset of \mathbb{N}^{k} is semilinear if it is a finite union of linear sets.

Semilinear sets

- A subset of \mathbb{N}^{k} of the form

$$
L=\left\{v_{0}+\sum_{i=1}^{n} x_{i} v_{i} \mid x_{1}, \ldots, x_{n} \in \mathbb{N}\right\}
$$

with $v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{N}^{k}$ is called linear.

- A subset of \mathbb{N}^{k} is semilinear if it is a finite union of linear sets.

Examples: non-negative solutions of linear diophantine equations

Semilinear sets

- A subset of \mathbb{N}^{k} of the form

$$
L=\left\{v_{0}+\sum_{i=1}^{n} x_{i} v_{i} \mid x_{1}, \ldots, x_{n} \in \mathbb{N}\right\}
$$

with $v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{N}^{k}$ is called linear.

- A subset of \mathbb{N}^{k} is semilinear if it is a finite union of linear sets.

Examples: non-negative solutions of linear diophantine equations
Theorem (Ginsburg-Spanier 1966)
A set is semilinear if and only if it is first-order definable in $(\mathbb{N},+, \geqslant, 0)$.

Semilinear sets

- A subset of \mathbb{N}^{k} of the form

$$
L=\left\{v_{0}+\sum_{i=1}^{n} x_{i} v_{i} \mid x_{1}, \ldots, x_{n} \in \mathbb{N}\right\}
$$

with $v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{N}^{k}$ is called linear.

- A subset of \mathbb{N}^{k} is semilinear if it is a finite union of linear sets.

Examples: non-negative solutions of linear diophantine equations
Theorem (Ginsburg-Spanier 1966)
A set is semilinear if and only if it is first-order definable in $(\mathbb{N},+, \geqslant, 0)$.
Equivalence is effective \rightarrow decidability

Theorem

Let $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{G}(A, I) \backslash\{1\}, v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{G}(A, I)$ and let x_{1}, \ldots, x_{n} be variables ranging over \mathbb{N}. Then, the set of solutions of the exponent equation

$$
v_{0} u_{1}^{x_{1}} v_{1} u_{2}^{x_{2}} v_{2} \cdots u_{n}^{x_{n}} v_{n}=1
$$

is semilinear.

Theorem

Let $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{G}(A, I) \backslash\{1\}, v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{G}(A, I)$ and let x_{1}, \ldots, x_{n} be variables ranging over \mathbb{N}. Then, the set of solutions of the exponent equation

$$
v_{0} u_{1}^{x_{1}} v_{1} u_{2}^{x_{2}} v_{2} \cdots u_{n}^{x_{n}} v_{n}=1
$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_{i} are exponential in the size of SLPs for $u_{1}, u_{2}, \ldots, u_{n}, v_{0}, v_{1}, \ldots, v_{n}$.

Theorem

Let $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{G}(A, I) \backslash\{1\}, v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{G}(A, I)$ and let x_{1}, \ldots, x_{n} be variables ranging over \mathbb{N}. Then, the set of solutions of the exponent equation

$$
v_{0} u_{1}^{x_{1}} v_{1} u_{2}^{\chi_{2}} v_{2} \cdots u_{n}^{\chi_{n}} v_{n}=1
$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_{i} are exponential in the size of SLPs for $u_{1}, u_{2}, \ldots, u_{n}, v_{0}, v_{1}, \ldots, v_{n}$.

Algorithm for compressed knapsack

- Consider right-angled Artin groups

Theorem

Let $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{G}(A, I) \backslash\{1\}, v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{G}(A, I)$ and let x_{1}, \ldots, x_{n} be variables ranging over \mathbb{N}. Then, the set of solutions of the exponent equation

$$
v_{0} u_{1}^{x_{1}} v_{1} u_{2}^{\chi_{2}} v_{2} \cdots u_{n}^{\chi_{n}} v_{n}=1
$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_{i} are exponential in the size of SLPs for $u_{1}, u_{2}, \ldots, u_{n}, v_{0}, v_{1}, \ldots, v_{n}$.

Algorithm for compressed knapsack

- Consider right-angled Artin groups
- Guess binary representation of solution of $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}}=g$

Theorem

Let $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{G}(A, I) \backslash\{1\}, v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{G}(A, I)$ and let x_{1}, \ldots, x_{n} be variables ranging over \mathbb{N}. Then, the set of solutions of the exponent equation

$$
v_{0} u_{1}^{x_{1}} v_{1} u_{2}^{x_{2}} v_{2} \cdots u_{n}^{x_{n}} v_{n}=1
$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_{i} are exponential in the size of SLPs for $u_{1}, u_{2}, \ldots, u_{n}, v_{0}, v_{1}, \ldots, v_{n}$.

Algorithm for compressed knapsack

- Consider right-angled Artin groups
- Guess binary representation of solution of $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}}=g$
- Construct an SLP for $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}} g^{-1}$

Theorem

Let $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{G}(A, I) \backslash\{1\}, v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{G}(A, I)$ and let x_{1}, \ldots, x_{n} be variables ranging over \mathbb{N}. Then, the set of solutions of the exponent equation

$$
v_{0} u_{1}^{x_{1}} v_{1} u_{2}^{x_{2}} v_{2} \cdots u_{n}^{x_{n}} v_{n}=1
$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_{i} are exponential in the size of SLPs for $u_{1}, u_{2}, \ldots, u_{n}, v_{0}, v_{1}, \ldots, v_{n}$.

Algorithm for compressed knapsack

- Consider right-angled Artin groups
- Guess binary representation of solution of $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}}=g$
- Construct an SLP for $g_{1}^{x_{1}} \cdots g_{k}^{x_{k}} g^{-1}$
- Lohrey and Schleimer (2007): compressed word problem for each right-angled Artin group in P.

Trace monoids

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.

Trace monoids

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv, be the smallest congruence on A^{*} with $a b \equiv$, ba for all $(a, b) \in I$.

Trace monoids

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv, be the smallest congruence on A^{*} with $a b \equiv$ ן ba for all $(a, b) \in I$.
- The trace monoid $\mathbb{M}(A, I)$ is defined as

$$
\mathbb{M}(A, I)=A^{*} / \equiv I
$$

Trace monoids

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv, be the smallest congruence on A^{*} with $a b \equiv$ ן ba for all $(a, b) \in I$.
- The trace monoid $\mathbb{M}(A, I)$ is defined as

$$
\mathbb{M}(A, I)=A^{*} / \equiv I
$$

- $[u]_{I}$ denotes the congruence class of $u \in A^{*}$.

Trace monoids

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv, be the smallest congruence on A^{*} with $a b \equiv$ ן $b a$ for all $(a, b) \in I$.
- The trace monoid $\mathbb{M}(A, I)$ is defined as

$$
\mathbb{M}(A, I)=A^{*} / \equiv I
$$

- $[u]_{\text {, }}$ denotes the congruence class of $u \in A^{*}$.
- We consider $\mathbb{M}\left(A^{ \pm 1}, I^{ \pm 1}\right)$, where

$$
A^{ \pm 1}=\left\{a^{+1}, a^{-1} \mid a \in A\right\}, \quad I^{ \pm}=\left\{\left(a^{ \pm 1}, b^{ \pm 1}\right) \mid(a, b) \in I\right\} .
$$

Trace monoids

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv, be the smallest congruence on A^{*} with $a b \equiv$ ן $b a$ for all $(a, b) \in I$.
- The trace monoid $\mathbb{M}(A, I)$ is defined as

$$
\mathbb{M}(A, I)=A^{*} / \equiv I
$$

- $[u]$, denotes the congruence class of $u \in A^{*}$.
- We consider $\mathbb{M}\left(A^{ \pm 1}, I^{ \pm 1}\right)$, where

$$
A^{ \pm 1}=\left\{a^{+1}, a^{-1} \mid a \in A\right\}, \quad I^{ \pm}=\left\{\left(a^{ \pm 1}, b^{ \pm 1}\right) \mid(a, b) \in I\right\} .
$$

- A trace t is irreducible if there is no decomposition $t=\left[u a a^{-1} v\right]_{/}$for $a \in A^{ \pm 1}, u, v \in\left(A^{ \pm 1}\right)^{*}$.

We call a trace t connected if there is no factorization $t=u v$ with $u \neq 1 \neq v$ and $u l v$.

We call a trace t connected if there is no factorization $t=u v$ with $u \neq 1 \neq v$ and $u l v$.

We call a trace t connected if there is no factorization $t=u v$ with $u \neq 1 \neq v$ and $u l v$.

Lemma
Fix the alphabet A. Let $p, q, u, v, s, t \in \mathbb{M}(A, I)$ with $u \neq 1$ and $v \neq 1$ connected. Then the set

$$
\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid p u^{x} s=q v^{y} t\right\}
$$

is semilinear.

We call a trace t connected if there is no factorization $t=u v$ with $u \neq 1 \neq v$ and $u l v$.

Lemma

Fix the alphabet A. Let $p, q, u, v, s, t \in \mathbb{M}(A, I)$ with $u \neq 1$ and $v \neq 1$ connected. Then the set

$$
\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid p u^{x} s=q v^{y} t\right\}
$$

is semilinear.

- Techniques from recognizable trace languages:
- Construct finite automaton for $\left[p u^{*} s\right]_{I} \cap\left[q v^{*} t\right]_{I}$.

Levi's Lemma

Lemma

Let $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n} \in \mathbb{M}(A, I)$. Then $u_{1} u_{2} \cdots u_{m}=v_{1} v_{2} \cdots v_{n}$ if and only if there exist $w_{i, j} \in \mathbb{M}(A, I)(1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n)$ such that

- $u_{i}=w_{i, 1} w_{i, 2} \cdots w_{i, n}$ for every $1 \leqslant i \leqslant m$,
- $v_{j}=w_{1, j} w_{2, j} \cdots w_{m, j}$ for every $1 \leqslant j \leqslant n$, and
- $\left(w_{i, j}, w_{k, \ell}\right) \in I$ if $1 \leqslant i<k \leqslant m$ and $n \geqslant j>\ell \geqslant 1$.

v_{n}	$w_{1, n}$	$w_{2, n}$	$w_{3, n}$	\ldots	$w_{m, n}$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
v_{3}	$w_{1,3}$	$w_{2,3}$	$w_{3,3}$	\ldots	$w_{m, 3}$
v_{2}	$w_{1,2}$	$w_{2,2}$	$w_{3,2}$	\ldots	$w_{m, 2}$
v_{1}	$w_{1,1}$	$w_{2,1}$	$w_{3,1}$	\ldots	$w_{m, 1}$
	u_{1}	u_{2}	u_{3}	\ldots	u_{m}

Levi's Lemma

Lemma

Let $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n} \in \mathbb{M}(A, I)$. Then $u_{1} u_{2} \cdots u_{m}=v_{1} v_{2} \cdots v_{n}$ if and only if there exist $w_{i, j} \in \mathbb{M}(A, I)(1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n)$ such that

- $u_{i}=w_{i, 1} w_{i, 2} \cdots w_{i, n}$ for every $1 \leqslant i \leqslant m$,
- $v_{j}=w_{1, j} w_{2, j} \cdots w_{m, j}$ for every $1 \leqslant j \leqslant n$, and
- $\left(w_{i, j}, w_{k, \ell}\right) \in I$ if $1 \leqslant i<k \leqslant m$ and $n \geqslant j>\ell \geqslant 1$.

v_{n}	$w_{1, n}$	$w_{2, n}$	$w_{3, n}$	\ldots	$w_{m, n}$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
v_{3}	$w_{1,3}$	$w_{2,3}$	$w_{3,3}$	\ldots	$w_{m, 3}$
v_{2}	$w_{1,2}$	$w_{2,2}$	$w_{3,2}$	\ldots	$w_{m, 2}$
v_{1}	$w_{1,1}$	$w_{2,1}$	$w_{3,1}$	\ldots	$w_{m, 1}$
	u_{1}	u_{2}	u_{3}	\ldots	u_{m}

Let $u_{1}, u_{2}, \ldots, u_{n} \in \operatorname{IRR}\left(A^{ \pm 1}, I\right)$ be irreducible traces.
The sequence $u_{1}, u_{2}, \ldots, u_{n}$ is I-freely reducible if it can be reduced to the empty sequence ε by the following rules:

- $u_{i}, u_{j} \rightarrow u_{j}, u_{i}$ if $u_{i} l u_{j}$
- $u_{i}, u_{j} \rightarrow \varepsilon$ if $u_{i}=u_{j}^{-1}$ in $\mathbb{G}(A, l)$
- $u_{i} \rightarrow \varepsilon$ if $u_{i}=\varepsilon$.

Let $u_{1}, u_{2}, \ldots, u_{n} \in \operatorname{IRR}\left(A^{ \pm 1}, I\right)$ be irreducible traces.
The sequence $u_{1}, u_{2}, \ldots, u_{n}$ is I-freely reducible if it can be reduced to the empty sequence ε by the following rules:

- $u_{i}, u_{j} \rightarrow u_{j}, u_{i}$ if $u_{i} l u_{j}$
- $u_{i}, u_{j} \rightarrow \varepsilon$ if $u_{i}=u_{j}^{-1}$ in $\mathbb{G}(A, l)$
- $u_{i} \rightarrow \varepsilon$ if $u_{i}=\varepsilon$.

Lemma

Let $n \geqslant 2$ and $u_{1}, u_{2}, \ldots, u_{n} \in \operatorname{IRR}\left(A^{ \pm 1}\right.$, I). If $u_{1} u_{2} \cdots u_{n}=1$ in $\mathbb{G}(A, I)$, then there exist factorizations $u_{i}=u_{i, 1} \cdots u_{i, k_{i}}$ such that the sequence

$$
u_{1,1}, \ldots, u_{1, k_{1}}, u_{2,1}, \ldots, u_{2, k_{2}}, \ldots, u_{n, 1}, \ldots, u_{n, k_{n}}
$$

is I-freely reducible. Moreover, $\sum_{i=1}^{n} k_{i} \leqslant 2^{n}-2$.

Lemma

Let $u^{x}=y_{1} \cdots y_{m}$ be an equation where u is a concrete connected trace. It is equivalent to a disjunction of statements

$$
\exists x_{1}, \ldots, x_{m} \geqslant 0: \quad x=\sum_{i=1}^{m} x_{i}+c \wedge \bigwedge_{i=1}^{m} y_{i}=p_{i} u^{x_{i}} s_{i}
$$

where

- p_{i}, s_{i} are concrete traces of length polynomial in m and $|u|$
- c is a concrete number, polynomial in m

$$
\begin{aligned}
& \text { Theorem } \\
& \text { Let } u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{G}(A, I) \backslash\{1\}, v_{0}, v_{1}, \ldots, v_{n} \in \mathbb{G}(A, I) \text { and let } x_{1}, \ldots, x_{n} \\
& \text { be variables ranging over } \mathbb{N} \text {. Then, the set of solutions of the exponent } \\
& \text { equation } \\
& \qquad v_{0} u_{1}^{x_{1}} v_{1} u_{2}^{x_{2}} v_{2} \cdots u_{n}^{x_{n}} v_{n}=1
\end{aligned}
$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_{i} are exponential in the size of SLPs for $u_{1}, u_{2}, \ldots, u_{n}, v_{0}, v_{1}, \ldots, v_{n}$.

- Consider $v_{0} \cdot u_{1}^{\chi_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{x_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{x_{1}}, u_{2}^{x_{2}}, \ldots, u_{n}^{x_{n}}, v_{0}, \ldots, v_{n}$ are irreducible, connected
- Consider $v_{0} \cdot u_{1}^{x_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{x_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{\chi_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{\chi_{n}}, v_{0}, \ldots, v_{n}$ are irreducible, connected
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider $v_{0} \cdot u_{1}^{x_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{x_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{\chi_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{\chi_{n}}, v_{0}, \ldots, v_{n}$ are irreducible, connected
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- Consider $v_{0} \cdot u_{1}^{x_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{x_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{\chi_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{\chi_{n}}, v_{0}, \ldots, v_{n}$ are irreducible, connected
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
- Consider $v_{0} \cdot u_{1}^{x_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{\chi_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{\chi_{n}}, v_{0}, \ldots, v_{n}$ are irreducible, connected
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
(0) $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}$
(f) $y_{i, j}=z_{k, l}^{-1}$
(D) $v_{i}=z_{i, 1} \cdots z_{i, l_{i}}$
(g) $z_{i, j}=z_{k, l}^{-1}$
(c) $y_{i, j}=y_{k, l}^{-1}$
(h) commutation relations
- Consider $v_{0} \cdot u_{1}^{X_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{\chi_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{\chi_{n}}, v_{0}, \ldots, v_{n}$ are irreducible, connected
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
(a) $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}$
(f) $y_{i, j}=z_{k, l}^{-1}$
(D) $v_{i}=z_{i, 1} \cdots z_{i, l_{i}}$
(g) $z_{i, j}=z_{k, l}^{-1}$
(c) $y_{i, j}=y_{k, l}^{-1}$
(h) commutation relations
- Replace $z_{k, l}$ by concrete traces.
- Consider $v_{0} \cdot u_{1}^{X_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{\chi_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{\chi_{n}}, v_{0}, \ldots, v_{n}$ are irreducible, connected
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
(0) $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}$
(c) $y_{i, j}=y_{k, l}^{-1}$
(h) commutation relations
- Replace $z_{k, l}$ by concrete traces.
- Consider $v_{0} \cdot u_{1}^{x_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{x_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{\chi_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{\chi_{n}}, v_{0}, \ldots, v_{n}$ are irreducible, connected
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
(a) $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}$
(c) $y_{i, j}=y_{k, l}^{-1}$
(h) commutation relations
- Replace $z_{k, l}$ by concrete traces.
- Replace $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}$

$$
x_{i}=c_{i}+\sum_{j=1}^{k_{i}} x_{i, j} \wedge y_{i, j}=p_{i, j} u_{i}^{x_{i, j}} s_{i, j}
$$

- Consider $v_{0} \cdot u_{1}^{x_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{x_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{\chi_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{\chi_{n}}, v_{0}, \ldots, v_{n}$ are irreducible, connected
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
(c) $y_{i, j}=y_{k, l}^{-1}$
(h) commutation relations
- Replace $z_{k, l}$ by concrete traces.
- Replace $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}$

$$
x_{i}=c_{i}+\sum_{j=1}^{k_{i}} x_{i, j} \wedge y_{i, j}=p_{i, j} u_{i}^{x_{i, j}} s_{i, j}
$$

- Consider $v_{0} \cdot u_{1}^{X_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{\chi_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{\chi_{n}}, v_{0}, \ldots, v_{n}$ are irreducible, connected
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
(c) $y_{i, j}=y_{k, l}^{-1}$
(h) commutation relations
- Replace $z_{k, l}$ by concrete traces.
- Replace $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}$

$$
x_{i}=c_{i}+\sum_{j=1}^{k_{i}} x_{i, j} \wedge y_{i, j}=p_{i, j} u_{i}^{x_{i, j}} s_{i, j}
$$

- Guess which x_{i} are positive \rightarrow eliminate commutation relations
- Consider $v_{0} \cdot u_{1}^{X_{1}} \cdot v_{1} \cdot u_{2}^{\chi_{2}} \cdot v_{2} \cdots u_{n}^{\chi_{n}} \cdot v_{n}=1$
- By preprocessing, all factors $u_{1}^{\chi_{1}}, u_{2}^{\chi_{2}}, \ldots, u_{n}^{\chi_{n}}, v_{0}, \ldots, v_{n}$ are irreducible, connected
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
(c) $y_{i, j}=y_{k, l}^{-1}$
- Replace $z_{k, l}$ by concrete traces.
- Replace $u_{i}^{x_{i}}=y_{i, 1} \cdots y_{i, k_{i}}$

$$
x_{i}=c_{i}+\sum_{j=1}^{k_{i}} x_{i, j} \quad \wedge \quad y_{i, j}=p_{i, j} u_{i}^{x_{i, j}} s_{i, j}
$$

- Guess which x_{i} are positive \rightarrow eliminate commutation relations
- The only remaining statements are of the form:
(a) $x_{i}=c_{i}+\sum_{j=1}^{k_{i}} x_{i, j}$
(b) $p_{i, j} u_{i}^{x_{i, j}} s_{i, j}=s_{k, l}^{-1}\left(u_{k}^{-1}\right)^{x_{k, l}} p_{k, l}^{-1}$
- The only remaining statements are of the form:
(a) $x_{i}=c_{i}+\sum_{j=1}^{k_{i}} x_{i, j}$
(b) $p_{i, j} u_{i}^{x_{i, j}} s_{i, j}=s_{k, l}^{-1}\left(u_{k}^{-1}\right)^{x_{k, l}} p_{k, l}^{-1}$
- Now we apply the fact that sets

$$
\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid p u^{x} s=q v^{y} t\right\}
$$

are semilinear.

- The only remaining statements are of the form:
(2) $x_{i}=c_{i}+\sum_{j=1}^{k_{i}} x_{i, j}$
(0) $p_{i, j} u_{i}^{x_{i, j}} s_{i, j}=s_{k, l}^{-1}\left(u_{k}^{-1}\right)^{x_{k, l}} p_{k, l}^{-1}$
- Now we apply the fact that sets

$$
\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid p u^{x} s=q v^{y} t\right\}
$$

are semilinear.

- Replace (a') and (b') by linear diophantine equations.
- The only remaining statements are of the form:
(2) $x_{i}=c_{i}+\sum_{j=1}^{k_{i}} x_{i, j}$
(0) $p_{i, j} u_{i}^{x_{i, j}} s_{i, j}=s_{k, l}^{-1}\left(u_{k}^{-1}\right)^{x_{k, l}} p_{k, l}^{-1}$
- Now we apply the fact that sets

$$
\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid p u^{x} s=q v^{y} t\right\}
$$

are semilinear.

- Replace (a') and (b') by linear diophantine equations.
- Result of von zur Gathen and Sieveking (1978) yields a small solution.

Transfer results

Theorem
The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

Transfer results

Theorem
The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Generalize problem: $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{k}^{x_{k}} v_{k}=1$

Transfer results

Theorem
The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Generalize problem: $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{k}^{x_{k}} v_{k}=1$
- Guess coset of $v_{0} u_{1}^{\chi_{1}} v_{1} \cdots u_{i}^{x_{i}} v_{i}$ for $1 \leqslant i \leqslant n$

Transfer results

Theorem
The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Generalize problem: $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{k}^{x_{k}} v_{k}=1$
- Guess coset of $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{i}^{x_{i}} v_{i}$ for $1 \leqslant i \leqslant n$
- Set of x_{i} that comply with this choice is ultimately periodic

Transfer results

Theorem
The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Generalize problem: $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{k}^{x_{k}} v_{k}=1$
- Guess coset of $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{i}^{x_{i}} v_{i}$ for $1 \leqslant i \leqslant n$
- Set of x_{i} that comply with this choice is ultimately periodic For free products:

Transfer results

Theorem
The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Generalize problem: $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{k}^{x_{k}} v_{k}=1$
- Guess coset of $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{i}^{x_{i}} v_{i}$ for $1 \leqslant i \leqslant n$
- Set of x_{i} that comply with this choice is ultimately periodic

For free products:

- Adapt algorithm of Benois (1969) for rational subsets

Transfer results

Theorem
The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Generalize problem: $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{k}^{x_{k}} v_{k}=1$
- Guess coset of $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{i}^{x_{i}} v_{i}$ for $1 \leqslant i \leqslant n$
- Set of x_{i} that comply with this choice is ultimately periodic

For free products:

- Adapt algorithm of Benois (1969) for rational subsets
- Saturation procedure that successively adds transitions to automaton

Transfer results

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Generalize problem: $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{k}^{x_{k}} v_{k}=1$
- Guess coset of $v_{0} u_{1}^{x_{1}} v_{1} \cdots u_{i}^{x_{i}} v_{i}$ for $1 \leqslant i \leqslant n$
- Set of x_{i} that comply with this choice is ultimately periodic

For free products:

- Adapt algorithm of Benois (1969) for rational subsets
- Saturation procedure that successively adds transitions to automaton
- Choose suitable class of automata such that adding transitions still leads to knapsack instances: knapsack automata.

