Knapsack in Graph Groups, HNN-Extensions and Amalgamated Products

Markus Lohrey¹ Georg Zetzsche²

¹Department für Elektrotechnik und Informatik Universität Siegen

> ²LSV, CNRS & ENS Cachan Université Paris-Saclay

Equations and formal languages in algebra Les Diablerets 2016

For every virtually special group, compressed knapsack is in NP.

- virtually special: finite extension of a subgroup of a right-angled Artin group
- compressed knapsack: equation $g_1^{x_1}\cdots g_k^{x_k}=g$, where g_1,\ldots,g_k,g are given by SLPs over $\Sigma\cup\Sigma^{-1}$.

For every virtually special group, compressed knapsack is in NP.

- virtually special: finite extension of a subgroup of a right-angled Artin group
- compressed knapsack: equation $g_1^{x_1} \cdots g_k^{x_k} = g$, where g_1, \dots, g_k, g are given by SLPs over $\Sigma \cup \Sigma^{-1}$.

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric.

For every virtually special group, compressed knapsack is in NP.

- virtually special: finite extension of a subgroup of a right-angled Artin group
- compressed knapsack: equation $g_1^{x_1} \cdots g_k^{x_k} = g$, where g_1, \dots, g_k, g are given by SLPs over $\Sigma \cup \Sigma^{-1}$.

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric. The group $\mathbb{G}(A,I)$ is defined as

$$\mathbb{G}(A,I) = \langle A \mid ab = ba \ ((a,b) \in I) \rangle.$$

For every virtually special group, compressed knapsack is in NP.

- virtually special: finite extension of a subgroup of a right-angled Artin group
- compressed knapsack: equation $g_1^{x_1} \cdots g_k^{x_k} = g$, where g_1, \dots, g_k, g are given by SLPs over $\Sigma \cup \Sigma^{-1}$.

Definition

Let A be an alphabet and $I \subseteq A \times A$ be irreflexive and symmetric. The group $\mathbb{G}(A,I)$ is defined as

$$\mathbb{G}(A,I) = \langle A \mid ab = ba \ ((a,b) \in I) \rangle.$$

Groups of the form $\mathbb{G}(A, I)$ are called *right-angled Artin group*.

• A subset of \mathbb{N}^k of the form

$$L = \left\{ v_0 + \sum_{i=1}^n x_i v_i \mid x_1, \dots, x_n \in \mathbb{N} \right\}$$

with $v_0, v_1, \ldots, v_n \in \mathbb{N}^k$ is called *linear*.

• A subset of \mathbb{N}^k of the form

$$L = \left\{ v_0 + \sum_{i=1}^n x_i v_i \mid x_1, \dots, x_n \in \mathbb{N} \right\}$$

with $v_0, v_1, \ldots, v_n \in \mathbb{N}^k$ is called *linear*.

• A subset of \mathbb{N}^k is *semilinear* if it is a finite union of linear sets.

• A subset of \mathbb{N}^k of the form

$$L = \left\{ v_0 + \sum_{i=1}^n x_i v_i \mid x_1, \dots, x_n \in \mathbb{N} \right\}$$

with $v_0, v_1, \ldots, v_n \in \mathbb{N}^k$ is called *linear*.

• A subset of \mathbb{N}^k is *semilinear* if it is a finite union of linear sets.

Examples: non-negative solutions of linear diophantine equations

• A subset of \mathbb{N}^k of the form

$$L = \left\{ v_0 + \sum_{i=1}^n x_i v_i \mid x_1, \dots, x_n \in \mathbb{N} \right\}$$

with $v_0, v_1, \ldots, v_n \in \mathbb{N}^k$ is called *linear*.

• A subset of \mathbb{N}^k is *semilinear* if it is a finite union of linear sets.

Examples: non-negative solutions of linear diophantine equations

Theorem (Ginsburg-Spanier 1966)

A set is semilinear if and only if it is first-order definable in $(\mathbb{N}, +, \geq, 0)$.

• A subset of \mathbb{N}^k of the form

$$L = \left\{ v_0 + \sum_{i=1}^n x_i v_i \mid x_1, \dots, x_n \in \mathbb{N} \right\}$$

with $v_0, v_1, \ldots, v_n \in \mathbb{N}^k$ is called *linear*.

• A subset of \mathbb{N}^k is *semilinear* if it is a finite union of linear sets.

Examples: non-negative solutions of linear diophantine equations

Theorem (Ginsburg-Spanier 1966)

A set is semilinear if and only if it is first-order definable in $(\mathbb{N}, +, \geq, 0)$.

Equivalence is effective → decidability

Let $u_1, u_2, \ldots, u_n \in \mathbb{G}(A, I) \setminus \{1\}$, $v_0, v_1, \ldots, v_n \in \mathbb{G}(A, I)$ and let x_1, \ldots, x_n be variables ranging over \mathbb{N} . Then, the set of solutions of the exponent equation

$$v_0 u_1^{x_1} v_1 u_2^{x_2} v_2 \cdots u_n^{x_n} v_n = 1$$

is semilinear.

Let $u_1, u_2, \ldots, u_n \in \mathbb{G}(A, I) \setminus \{1\}$, $v_0, v_1, \ldots, v_n \in \mathbb{G}(A, I)$ and let x_1, \ldots, x_n be variables ranging over \mathbb{N} . Then, the set of solutions of the exponent equation

$$v_0 u_1^{x_1} v_1 u_2^{x_2} v_2 \cdots u_n^{x_n} v_n = 1$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_i are exponential in the size of SLPs for $u_1, u_2, \ldots, u_n, v_0, v_1, \ldots, v_n$.

Let $u_1, u_2, \ldots, u_n \in \mathbb{G}(A, I) \setminus \{1\}$, $v_0, v_1, \ldots, v_n \in \mathbb{G}(A, I)$ and let x_1, \ldots, x_n be variables ranging over \mathbb{N} . Then, the set of solutions of the exponent equation

$$v_0 u_1^{x_1} v_1 u_2^{x_2} v_2 \cdots u_n^{x_n} v_n = 1$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_i are exponential in the size of SLPs for $u_1, u_2, \ldots, u_n, v_0, v_1, \ldots, v_n$.

Algorithm for compressed knapsack

Consider right-angled Artin groups

Let $u_1, u_2, \ldots, u_n \in \mathbb{G}(A, I) \setminus \{1\}$, $v_0, v_1, \ldots, v_n \in \mathbb{G}(A, I)$ and let x_1, \ldots, x_n be variables ranging over \mathbb{N} . Then, the set of solutions of the exponent equation

$$v_0 u_1^{x_1} v_1 u_2^{x_2} v_2 \cdots u_n^{x_n} v_n = 1$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_i are exponential in the size of SLPs for $u_1, u_2, \ldots, u_n, v_0, v_1, \ldots, v_n$.

Algorithm for compressed knapsack

- Consider right-angled Artin groups
- Guess binary representation of solution of $g_1^{x_1} \cdots g_k^{x_k} = g$

Let $u_1, u_2, \ldots, u_n \in \mathbb{G}(A, I) \setminus \{1\}$, $v_0, v_1, \ldots, v_n \in \mathbb{G}(A, I)$ and let x_1, \ldots, x_n be variables ranging over \mathbb{N} . Then, the set of solutions of the exponent equation

$$v_0 u_1^{x_1} v_1 u_2^{x_2} v_2 \cdots u_n^{x_n} v_n = 1$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_i are exponential in the size of SLPs for $u_1, u_2, \ldots, u_n, v_0, v_1, \ldots, v_n$.

Algorithm for compressed knapsack

- Consider right-angled Artin groups
- Guess binary representation of solution of $g_1^{x_1} \cdots g_k^{x_k} = g$
- Construct an SLP for $g_1^{x_1} \cdots g_k^{x_k} g^{-1}$

Let $u_1, u_2, \ldots, u_n \in \mathbb{G}(A, I) \setminus \{1\}$, $v_0, v_1, \ldots, v_n \in \mathbb{G}(A, I)$ and let x_1, \ldots, x_n be variables ranging over \mathbb{N} . Then, the set of solutions of the exponent equation

$$v_0 u_1^{x_1} v_1 u_2^{x_2} v_2 \cdots u_n^{x_n} v_n = 1$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_i are exponential in the size of SLPs for $u_1, u_2, \ldots, u_n, v_0, v_1, \ldots, v_n$.

Algorithm for compressed knapsack

- Consider right-angled Artin groups
- Guess binary representation of solution of $g_1^{x_1} \cdots g_k^{x_k} = g$
- Construct an SLP for $g_1^{x_1} \cdots g_k^{x_k} g^{-1}$
- Lohrey and Schleimer (2007): compressed word problem for each right-angled Artin group in P.

Definition

• Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv_I be the smallest congruence on A^* with $ab \equiv_I ba$ for all $(a,b) \in I$.

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv_I be the smallest congruence on A^* with $ab \equiv_I ba$ for all $(a,b) \in I$.
- The *trace monoid* M(A, I) is defined as

$$\mathbb{M}(A,I) = A^*/\equiv_I.$$

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv_I be the smallest congruence on A^* with $ab \equiv_I ba$ for all $(a,b) \in I$.
- The *trace monoid* M(A, I) is defined as

$$\mathbb{M}(A,I) = A^*/\equiv_I.$$

• $[u]_I$ denotes the congruence class of $u \in A^*$.

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv_I be the smallest congruence on A^* with $ab \equiv_I ba$ for all $(a,b) \in I$.
- The *trace monoid* M(A, I) is defined as

$$\mathbb{M}(A,I) = A^*/\equiv_I.$$

- $[u]_I$ denotes the congruence class of $u \in A^*$.
- We consider $\mathbb{M}(A^{\pm 1}, I^{\pm 1})$, where

$$A^{\pm 1} = \{a^{+1}, a^{-1} \mid a \in A\}, \quad I^{\pm} = \{(a^{\pm 1}, b^{\pm 1}) \mid (a, b) \in I\}.$$

Definition

- Let A be an alphabet and $I \subseteq A \times A$ irreflexive and symmetric.
- Let \equiv_I be the smallest congruence on A^* with $ab \equiv_I ba$ for all $(a,b) \in I$.
- The *trace monoid* M(A, I) is defined as

$$\mathbb{M}(A,I) = A^*/\equiv_I.$$

- $[u]_I$ denotes the congruence class of $u \in A^*$.
- We consider $\mathbb{M}(A^{\pm 1}, I^{\pm 1})$, where

$$A^{\pm 1} = \{a^{+1}, a^{-1} \mid a \in A\}, \quad I^{\pm} = \{(a^{\pm 1}, b^{\pm 1}) \mid (a, b) \in I\}.$$

• A trace t is *irreducible* if there is no decomposition $t = [uaa^{-1}v]_I$ for $a \in A^{\pm 1}, u, v \in (A^{\pm 1})^*$.

We call a trace t connected if there is no factorization t=uv with $u \neq 1 \neq v$ and ulv.

We call a trace t connected if there is no factorization t = uv with $u \neq 1 \neq v$ and uv.

We call a trace t connected if there is no factorization t = uv with $u \neq 1 \neq v$ and ulv.

Lemma

Fix the alphabet A. Let $p, q, u, v, s, t \in \mathbb{M}(A, I)$ with $u \neq 1$ and $v \neq 1$ connected. Then the set

$$\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid pu^xs=qv^yt\}$$

is semilinear.

We call a trace t connected if there is no factorization t = uv with $u \neq 1 \neq v$ and ulv.

Lemma

Fix the alphabet A. Let $p, q, u, v, s, t \in \mathbb{M}(A, I)$ with $u \neq 1$ and $v \neq 1$ connected. Then the set

$$\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid pu^xs=qv^yt\}$$

is semilinear.

- Techniques from recognizable trace languages:
- Construct finite automaton for $[pu^*s]_I \cap [qv^*t]_I$.

Levi's Lemma

Lemma

Let $u_1,\ldots,u_m,v_1,\ldots,v_n\in\mathbb{M}(A,I)$. Then $u_1u_2\cdots u_m=v_1v_2\cdots v_n$ if and only if there exist $w_{i,j}\in\mathbb{M}(A,I)$ $(1\leqslant i\leqslant m,\ 1\leqslant j\leqslant n)$ such that

- $u_i = w_{i,1}w_{i,2}\cdots w_{i,n}$ for every $1 \leqslant i \leqslant m$,
- $v_j = w_{1,j}w_{2,j}\cdots w_{m,j}$ for every $1 \leqslant j \leqslant n$, and
- $(w_{i,j}, w_{k,\ell}) \in I$ if $1 \leqslant i < k \leqslant m$ and $n \geqslant j > \ell \geqslant 1$.

Vn	$w_{1,n}$	<i>W</i> 2, <i>n</i>	W3,n		W _{m,n}
:	:		:	:	:
<i>V</i> 3	W _{1,3}	W _{2,3}	W3,3		<i>W_{m,3}</i>
<i>V</i> ₂	<i>w</i> _{1,2}	W _{2,2}	W3,2		<i>W</i> _{<i>m</i>,2}
v_1	w _{1,1}	<i>w</i> _{2,1}	w _{3,1}		$w_{m,1}$
	u_1	<i>u</i> ₂	из		u _m

Levi's Lemma

Lemma

Let $u_1,\ldots,u_m,v_1,\ldots,v_n\in\mathbb{M}(A,I)$. Then $u_1u_2\cdots u_m=v_1v_2\cdots v_n$ if and only if there exist $w_{i,j}\in\mathbb{M}(A,I)$ $(1\leqslant i\leqslant m,\ 1\leqslant j\leqslant n)$ such that

- $u_i = w_{i,1}w_{i,2}\cdots w_{i,n}$ for every $1 \leqslant i \leqslant m$,
- $v_j = w_{1,j}w_{2,j}\cdots w_{m,j}$ for every $1 \leqslant j \leqslant n$, and
- $(w_{i,j}, w_{k,\ell}) \in I$ if $1 \leqslant i < k \leqslant m$ and $n \geqslant j > \ell \geqslant 1$.

Vn	<i>W</i> 1, <i>n</i>	<i>W</i> 2, <i>n</i>	W3,n		W _{m,n}
:	:	:	:	:	:
<i>V</i> 3	W _{1,3}	W _{2,3}	W3,3		<i>W_{m,3}</i>
<i>v</i> ₂	<i>w</i> _{1,2}	W _{2,2}	W3,2		<i>W</i> _{<i>m</i>,2}
v_1	w _{1,1}	$w_{2,1}$	w _{3,1}		$w_{m,1}$
	u_1	<i>u</i> ₂	из		u _m

Let $u_1, u_2, \ldots, u_n \in IRR(A^{\pm 1}, I)$ be irreducible traces.

The sequence u_1, u_2, \dots, u_n is *I-freely reducible* if it can be reduced to the empty sequence ε by the following rules:

- $u_i, u_j \rightarrow u_j, u_i \text{ if } u_i I u_j$
- $u_i, u_j \to \varepsilon$ if $u_i = u_j^{-1}$ in $\mathbb{G}(A, I)$
- $u_i \to \varepsilon$ if $u_i = \varepsilon$.

Let $u_1, u_2, \ldots, u_n \in IRR(A^{\pm 1}, I)$ be irreducible traces.

The sequence u_1, u_2, \ldots, u_n is *I-freely reducible* if it can be reduced to the empty sequence ε by the following rules:

- $u_i, u_j \rightarrow u_j, u_i \text{ if } u_i I u_j$
- $u_i, u_j \to \varepsilon$ if $u_i = u_j^{-1}$ in $\mathbb{G}(A, I)$
- $u_i \to \varepsilon$ if $u_i = \varepsilon$.

Lemma

Let $n \ge 2$ and $u_1, u_2, \ldots, u_n \in IRR(A^{\pm 1}, I)$. If $u_1 u_2 \cdots u_n = 1$ in $\mathbb{G}(A, I)$, then there exist factorizations $u_i = u_{i,1} \cdots u_{i,k_i}$ such that the sequence

$$u_{1,1},\ldots,u_{1,k_1},\ u_{2,1},\ldots,u_{2,k_2},\ \ldots,u_{n,1},\ldots,u_{n,k_n}$$

is I-freely reducible. Moreover, $\sum_{i=1}^{n} k_i \leq 2^n - 2$.

Lemma

Let $u^x = y_1 \cdots y_m$ be an equation where u is a concrete connected trace. It is equivalent to a disjunction of statements

$$\exists x_1,\ldots,x_m \geqslant 0: \quad x = \sum_{i=1}^m x_i + c \quad \wedge \quad \bigwedge_{i=1}^m y_i = p_i u^{x_i} s_i,$$

where

- ullet p_i, s_i are concrete traces of length polynomial in m and |u|
- c is a concrete number, polynomial in m

Let $u_1, u_2, \ldots, u_n \in \mathbb{G}(A, I) \setminus \{1\}$, $v_0, v_1, \ldots, v_n \in \mathbb{G}(A, I)$ and let x_1, \ldots, x_n be variables ranging over \mathbb{N} . Then, the set of solutions of the exponent equation

$$v_0 u_1^{x_1} v_1 u_2^{x_2} v_2 \cdots u_n^{x_n} v_n = 1$$

is semilinear. Moreover, if there is a solution, then there is a solution where the x_i are exponential in the size of SLPs for $u_1, u_2, \ldots, u_n, v_0, v_1, \ldots, v_n$.

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdot \cdot \cdot u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \dots, u_n^{x_n}, v_0, \dots, v_n$ are irreducible, connected

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdot \cdot \cdot u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \dots, u_n^{x_n}, v_0, \dots, v_n$ are irreducible, connected
- Apply exponential refinement to obtain *I*-freely reducible sequence.

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \dots, u_n^{x_n}, v_0, \dots, v_n$ are irreducible, connected
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \dots, u_n^{x_n}, v_0, \dots, v_n$ are irreducible, connected
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \dots, u_n^{x_n}, v_0, \dots, v_n$ are irreducible, connected
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

(f)
$$y_{i,j} = z_{k,l}^{-1}$$

(g)
$$z_{i,j} = z_{k,l}^{-1}$$

$$y_{i,j} = y_{k,l}^{-1}$$

(h) commutation relations

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \dots, u_n^{x_n}, v_0, \dots, v_n$ are irreducible, connected
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

(f)
$$y_{i,j} = z_{k,l}^{-1}$$

(g)
$$z_{i,j} = z_{k,l}^{-1}$$

(h) commutation relations

• Replace $z_{k,l}$ by concrete traces.

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \dots, u_n^{x_n}, v_0, \dots, v_n$ are irreducible, connected
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:
 - - (h) commutation relations
- Replace $z_{k,l}$ by concrete traces.

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \dots, u_n^{x_n}, v_0, \dots, v_n$ are irreducible, connected
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

- Replace $z_{k,l}$ by concrete traces.
- Replace $u_i^{x_i} = y_{i,1} \cdots y_{i,k_i}$

$$x_{i} = c_{i} + \sum_{j=1}^{k_{i}} x_{i,j} \wedge y_{i,j} = p_{i,j} u_{i}^{x_{i,j}} s_{i,j}$$

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \dots, u_n^{x_n}, v_0, \dots, v_n$ are irreducible, connected
- Apply exponential refinement to obtain *I*-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

- $y_{i,j} = y_{k,l}^{-1}$
- (h) commutation relations
- Replace $z_{k,l}$ by concrete traces.
- Replace $u_i^{x_i} = y_{i,1} \cdots y_{i,k_i}$

$$x_{i} = c_{i} + \sum_{j=1}^{k_{i}} x_{i,j} \wedge y_{i,j} = p_{i,j} u_{i}^{x_{i,j}} s_{i,j}$$

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \dots, u_n^{x_n}, v_0, \dots, v_n$ are irreducible, connected
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

- (h) commutation relations
- Replace $z_{k,l}$ by concrete traces.
- Replace $u_i^{x_i} = y_{i,1} \cdots y_{i,k_i}$

$$x_i = c_i + \sum_{j=1}^{k_i} x_{i,j} \wedge y_{i,j} = p_{i,j} u_i^{x_{i,j}} s_{i,j}$$

• Guess which x_i are positive \rightarrow eliminate commutation relations

- Consider $v_0 \cdot u_1^{x_1} \cdot v_1 \cdot u_2^{x_2} \cdot v_2 \cdots u_n^{x_n} \cdot v_n = 1$
- By preprocessing, all factors $u_1^{x_1}, u_2^{x_2}, \dots, u_n^{x_n}, v_0, \dots, v_n$ are irreducible, connected
- Apply exponential refinement to obtain I-freely reducible sequence.
- Consider all possible refinements and all possible reduction sequences.
- We obtain a disjunction of statements:

- Replace $z_{k,l}$ by concrete traces.
- Replace $u_i^{x_i} = y_{i,1} \cdots y_{i,k_i}$

$$x_i = c_i + \sum_{j=1}^{k_i} x_{i,j} \wedge y_{i,j} = p_{i,j} u_i^{x_{i,j}} s_{i,j}$$

• Guess which x_i are positive \rightarrow eliminate commutation relations

- The only remaining statements are of the form:

 - $p_{i,j}u_i^{x_{i,j}}s_{i,j} = s_{k,l}^{-1}(u_k^{-1})^{x_{k,l}}p_{k,l}^{-1}$

- The only remaining statements are of the form:

 - $p_{i,j}u_i^{x_{i,j}}s_{i,j} = s_{k,l}^{-1}(u_k^{-1})^{x_{k,l}}p_{k,l}^{-1}$
- Now we apply the fact that sets

$$\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid pu^xs=qv^yt\}$$

are semilinear.

- The only remaining statements are of the form:

$$p_{i,j}u_i^{x_{i,j}}s_{i,j} = s_{k,l}^{-1}(u_k^{-1})^{x_{k,l}}p_{k,l}^{-1}$$

Now we apply the fact that sets

$$\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid pu^xs=qv^yt\}$$

are semilinear.

Replace (a') and (b') by linear diophantine equations.

- The only remaining statements are of the form:

 - $p_{i,j}u_i^{x_{i,j}}s_{i,j} = s_{k,l}^{-1}(u_k^{-1})^{x_{k,l}}p_{k,l}^{-1}$
- Now we apply the fact that sets

$$\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid pu^xs=qv^yt\}$$

are semilinear.

- Replace (a') and (b') by linear diophantine equations.
- Result of von zur Gathen and Sieveking (1978) yields a small solution.

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

• Generalize problem: $v_0 u_1^{x_1} v_1 \cdots u_k^{x_k} v_k = 1$

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Generalize problem: $v_0 u_1^{x_1} v_1 \cdots u_k^{x_k} v_k = 1$
- Guess coset of $v_0 u_1^{x_1} v_1 \cdots u_i^{x_i} v_i$ for $1 \leqslant i \leqslant n$

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Generalize problem: $v_0 u_1^{x_1} v_1 \cdots u_k^{x_k} v_k = 1$
- Guess coset of $v_0 u_1^{x_1} v_1 \cdots u_i^{x_i} v_i$ for $1 \leqslant i \leqslant n$
- Set of x_i that comply with this choice is ultimately periodic

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Generalize problem: $v_0 u_1^{x_1} v_1 \cdots u_k^{x_k} v_k = 1$
- Guess coset of $v_0 u_1^{x_1} v_1 \cdots u_i^{x_i} v_i$ for $1 \leq i \leq n$
- Set of x_i that comply with this choice is ultimately periodic

For free products:

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Generalize problem: $v_0 u_1^{x_1} v_1 \cdots u_k^{x_k} v_k = 1$
- Guess coset of $v_0 u_1^{x_1} v_1 \cdots u_i^{x_i} v_i$ for $1 \leqslant i \leqslant n$
- Set of x_i that comply with this choice is ultimately periodic

For free products:

• Adapt algorithm of Benois (1969) for rational subsets

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Generalize problem: $v_0 u_1^{x_1} v_1 \cdots u_k^{x_k} v_k = 1$
- Guess coset of $v_0 u_1^{x_1} v_1 \cdots u_i^{x_i} v_i$ for $1 \leqslant i \leqslant n$
- Set of x_i that comply with this choice is ultimately periodic

For free products:

- Adapt algorithm of Benois (1969) for rational subsets
- Saturation procedure that successively adds transitions to automaton

Theorem

The class of groups with knapsack in NP is closed under

- Taking finite extensions
- HNN-extensions over finite associated subgroups
- Amalgamated products with finite identified groups

For finite extensions:

- Generalize problem: $v_0 u_1^{x_1} v_1 \cdots u_k^{x_k} v_k = 1$
- Guess coset of $v_0 u_1^{x_1} v_1 \cdots u_i^{x_i} v_i$ for $1 \leqslant i \leqslant n$
- Set of x_i that comply with this choice is ultimately periodic

For free products:

- Adapt algorithm of Benois (1969) for rational subsets
- Saturation procedure that successively adds transitions to automaton
- Choose suitable class of automata such that adding transitions still leads to knapsack instances: knapsack automata.