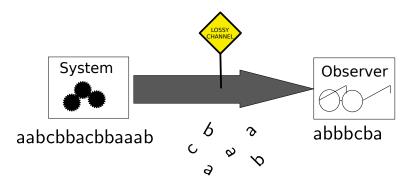
Effectively Regular Downward Closures

Georg Zetzsche

Technische Universität Kaiserslautern

LSV Cachan, 28 October 2014

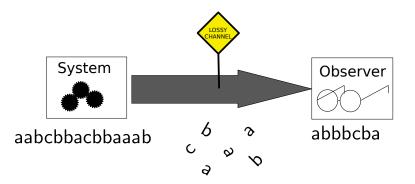
= 900



<u>aabcbbacbbaaab</u>

= 990

Georg Zetzsche (TU KL)



<u>aabcbbacbbaaab</u>

Downward Closures

- $u \leq v$: *u* is a subsequence of *v*
- $L \downarrow = \{ u \in X^* \mid \exists v \in L \colon u \leq v \}$
- Oberver sees precisely $L\downarrow$

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

ELE NOR

4 E b

▲ 同 ▶ → 三 ▶

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

I DAG

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$

• Is a ever executed after b? $(ab \in L\downarrow)$

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$
- Is a ever executed after b? $(ab \in L\downarrow)$
- Can the system run arbitrarily long? ($L\downarrow$ infinite)

• • = • • = •

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$
- Is a ever executed after b? $(ab \in L\downarrow)$
- Can the system run arbitrarily long? ($L\downarrow$ infinite)

Problem

- Finite automaton for $L\downarrow$ exists for every L.
- How can we compute it?

Very few known techniques.

Georg Zetzsche (TU KL)

三日 のへの

イロト イボト イヨト イヨト

Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

- 3 →

Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

- Context-free rules $A \rightarrow w$
- Applied as: $Au \Rightarrow uw$

Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

- Context-free rules $A \rightarrow w$
- Applied as: $Au \Rightarrow uw$

Theorem (Habermehl, Meyer, Wimmel 2010)

Downward closures are computable for Petri net languages.

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stacked counter automata

A storage mechanism M consists of:

- States: set *S* of states
- Operations: partial maps $\alpha_1, \ldots, \alpha_n \colon S \to S$
- Initial state: $s_0 \in S$
- Final states: $F \subseteq S$

ELE DOG

Stacked counter automata

A storage mechanism M consists of:

- States: set S of states
- Operations: partial maps $\alpha_1, \ldots, \alpha_n \colon S \to S$
- Initial state: $s_0 \in S$
- Final states: $F \subseteq S$

Counter

- States: ℕ
- Operations: increment, decrement, zero test
- Initial and final state: 0

= 900

Stacked counter automata

A storage mechanism M consists of:

- States: set S of states
- Operations: partial maps $\alpha_1, \ldots, \alpha_n \colon S \to S$
- Initial state: $s_0 \in S$
- Final states: $F \subseteq S$

Counter

- States: ℕ
- Operations: increment, decrement, zero test
- Initial and final state: 0

Trivial mechanism

Consists of one state and no operations.

C(M): Adding a blind counter

- States: (s, z), s an old state, $z \in \mathbb{Z}$.
- Operations: old operations; increment, decrement for counter
- Initial state: $(s_0, 0)$
- Final states: (f, 0), f final in old mechanism

1 - nan

C(M): Adding a blind counter

- States: (s, z), s an old state, $z \in \mathbb{Z}$.
- Operations: old operations; increment, decrement for counter
- Initial state: (*s*₀, 0)
- Final states: (f, 0), f final in old mechanism

S(M): Building stacks

- States: sequences $\Box c_1 \Box c_2 \Box \cdots \Box c_n$, c_i old states
- Operations: push separator, pop if empty, manipulate topmost entry
- Initial and final state: Empty sequence

• • = • • = •

C(M): Adding a blind counter

- States: (s, z), s an old state, $z \in \mathbb{Z}$.
- Operations: old operations; increment, decrement for counter
- Initial state: (s₀, 0)
- Final states: (f, 0), f final in old mechanism

S(M): Building stacks

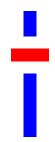
- States: sequences $\Box c_1 \Box c_2 \Box \cdots \Box c_n$, c_i old states
- Operations: push separator, pop if empty, manipulate topmost entry
- Initial and final state: Empty sequence

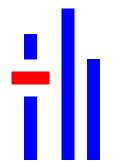
Stacked counters

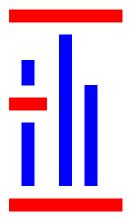
Mechanisms obtained from the trivial one by

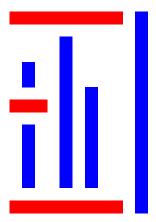
- adding blind counters,
- building stacks.

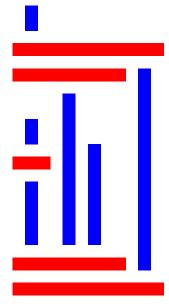
シック 正則 (川) (山) (山) (山) (山)











• Generalize both pushdown automata and blind counter automata

-

- Generalize both pushdown automata and blind counter automata
- Recursive programs with access to private/shared counters

- Generalize both pushdown automata and blind counter automata
- Recursive programs with access to private/shared counters
- Connections to group theory

- Generalize both pushdown automata and blind counter automata
- Recursive programs with access to private/shared counters
- Connections to group theory

Theorem (Z. 2014)

Downward closures are computable for stacked counter automata.

Expressiveness

Algebraic extensions

Let \mathcal{C} be a language class. A \mathcal{C} -grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

1 - nan

Expressiveness

Algebraic extensions

Let \mathcal{C} be a language class. A \mathcal{C} -grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

ELE SQC

Expressiveness

Algebraic extensions

Let ${\mathcal C}$ be a language class. A ${\mathcal C}\text{-}grammar\;G$ consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

• Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.

ELE NOR

Expressiveness

Algebraic extensions

Let ${\mathcal C}$ be a language class. A ${\mathcal C}\text{-}grammar\ G$ consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

- Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.
- Such languages are *algebraic over* C, class denoted Alg(C).

Expressiveness

Algebraic extensions

Let ${\mathcal C}$ be a language class. A ${\mathcal C}\text{-}grammar\;G$ consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in C$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

- Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.
- Such languages are *algebraic over* C, class denoted Alg(C).

Example

Alg(FIN) = Alg(REG) = CF

向 ト イヨト イヨト ヨヨ のくら

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

Georg Zetzsche (TU KL)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let X be an alphabet.

•
$$X^{\oplus} = {\mu \mid \mu \colon X \to \mathbb{N}}, \text{ multisets.}$$

• $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

- $\Psi: X^* \to X^{\oplus}, \Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$

<<p>A 目 > A 目 > A 目 > 目 = のQQ

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.

向 ト イヨト イヨト ヨヨ のくら

Let X be an alphabet.

- $X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$
- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called semilinear.

ELE SOC

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called *semilinear*.

Semilinear constraints

Let ${\mathcal C}$ be a language class. ${\sf SLI}({\mathcal C})$ denotes the class of languages

```
h(L \cap \Psi^{-1}(S))
```

for some $L \in C$, a homomorphism h and a semilinear set S.

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called *semilinear*.

Semilinear constraints

Let ${\mathcal C}$ be a language class. ${\sf SLI}({\mathcal C})$ denotes the class of languages

```
h(L \cap \Psi^{-1}(S))
```

for some $L \in C$, a homomorphism h and a semilinear set S.

$$b + (a + c)^{\oplus}$$

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called *semilinear*.

Semilinear constraints

Let ${\mathcal C}$ be a language class. ${\sf SLI}({\mathcal C})$ denotes the class of languages

```
h(L \cap \Psi^{-1}(S))
```

for some $L \in C$, a homomorphism *h* and a semilinear set *S*.

$$\Psi^{-1}(b + (a + c)^{\oplus})$$

Let X be an alphabet.

•
$$X^{\oplus} = \{ \mu \mid \mu \colon X \to \mathbb{N} \}$$
, multisets.

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called *semilinear*.

Semilinear constraints

Let ${\mathcal C}$ be a language class. ${\sf SLI}({\mathcal C})$ denotes the class of languages

```
h(L \cap \Psi^{-1}(S))
```

for some $L \in C$, a homomorphism h and a semilinear set S.

$$a^*bc^* \cap \Psi^{-1}(b + (a + c)^{\oplus})$$

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called semilinear.

Semilinear constraints

Let ${\mathcal C}$ be a language class. ${\sf SLI}({\mathcal C})$ denotes the class of languages

```
h(L \cap \Psi^{-1}(S))
```

for some $L \in C$, a homomorphism *h* and a semilinear set *S*.

Example

$$h(a^*bc^* \cap \Psi^{-1}(b + (a + c)^{\oplus})))$$

 $h: a, c \mapsto a, b \mapsto b.$

Let X be an alphabet.

•
$$X^{\oplus} = \{\mu \mid \mu \colon X \to \mathbb{N}\}, \text{ multisets.}$$

- $\Psi \colon X^* \to X^{\oplus}$, $\Psi(w)(x) = |w|_x$ is the Parikh map.
- For $F = \{\mu_1, \dots, \mu_n\} \subseteq X^{\oplus}$, let $F^{\oplus} = \{\sum_{i=1}^n a_i \mu_i \mid a_1, \dots, a_n \in \mathbb{N}\}$
- Sets of the form $\mu_0 + F^{\oplus}$ are called *linear*.
- Finite unions of linear sets are called semilinear.

Semilinear constraints

Let ${\mathcal C}$ be a language class. ${\sf SLI}({\mathcal C})$ denotes the class of languages

```
h(L \cap \Psi^{-1}(S))
```

for some $L \in C$, a homomorphism h and a semilinear set S.

$$h(a^*bc^* \cap \Psi^{-1}(b + (a + c)^{\oplus})) = \{a^n ba^n \mid n \ge 0\}, \ h: a, c \mapsto a, \ b \mapsto b.$$

Hierarchy

 $F_0 = finite \ languages,$

$$G_i = Alg(F_i),$$
 $F_{i+1} = SLI(G_i),$ $F = \bigcup_{i \ge 0} F_i.$

ELE SOC

・ 同 ト ・ ヨ ト ・ ヨ ト

Hierarchy

 $F_0 = finite \ languages,$

 $G_i = Alg(F_i),$ $F_{i+1} = SLI(G_i),$ $F = \bigcup_{i \ge 0} F_i.$

In particular: $G_0 = CF$.

(日本)

Hierarchy

 $F_0 = finite \ languages,$

 $G_i = Alg(F_i),$ $F_{i+1} = SLI(G_i),$ $F = \bigcup_{i \ge 0} F_i.$

In particular: $G_0 = CF$.

 $F_0\subseteq G_0\subseteq F_1\subseteq G_1\subseteq \cdots\subseteq F$

<<p>A 目 > A 目 > A 目 > 目 = のQQ

Hierarchy

 $F_0 = finite \ languages,$

 $G_i = Alg(F_i),$ $F_{i+1} = SLI(G_i),$ $F = \bigcup F_i.$

In particular: $G_0 = CF$.

 $F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \dots \subseteq F$

Theorem

 $\mathcal{L}(S(S(M))) = \mathsf{Alg}(\mathcal{L}(M))$

Hierarchy

 $F_0 = finite \ languages,$

 $G_i = Alg(F_i),$ $F_{i+1} = SLI(G_i),$ $F = \bigcup_i F_i.$

In particular: $G_0 = CF$.

 $F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \dots \subseteq F$

Theorem

$$\mathcal{L}(S(S(M))) = \operatorname{Alg}(\mathcal{L}(M)), \qquad \bigcup_{i \ge 0} \mathcal{L}(C^{i}(M)) = \operatorname{SLI}(\mathcal{L}(M)).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hierarchy

 $F_0 = finite \ languages,$

$$G_i = Alg(F_i),$$
 $F_{i+1} = SLI(G_i),$ $F = \bigcup F_i.$

In particular: $G_0 = CF$.

 $F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \dots \subseteq F$

Theorem

$$\mathcal{L}(S(S(M))) = \operatorname{Alg}(\mathcal{L}(M)), \qquad \bigcup_{i \ge 0} \mathcal{L}(C^{i}(M)) = \operatorname{SLI}(\mathcal{L}(M)).$$

Corollary

Stacked counter automata accept precisely the languages in F.

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

i≥0

Ingredient I

van Leeuwen proved a stronger statement:

Theorem (van Leeuwen 1978)

If C is closed under regular intersections: Downward closures computable for $C \implies$ computable for Alg(C).

E SQA

Ingredient I

van Leeuwen proved a stronger statement:

Theorem (van Leeuwen 1978)

If C is closed under regular intersections: Downward closures computable for $C \implies$ computable for Alg(C).

Consequence

Algorithm for $F_i \implies Algorithm$ for $G_i = Alg(F_i)$.

ELE NOR

b) a) The bound of the bound

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

EL SQA

< 1⁻

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1 Suppose there is only one nonterminal *S*.

E SQA

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1 Suppose there is only one nonterminal *S*.

• Wlog: S occurs on every right-hand side; compute $SF(G)\downarrow$.

EL SQA

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute $SF(G)\downarrow$.
- If ≤ 1 occurrences of S on right-hand sides $(SS \notin L\downarrow \text{ for } S \rightarrow L\downarrow)$:

ELE SQC

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute $SF(G)\downarrow$.
- If ≤ 1 occurrences of S on right-hand sides $(SS \notin L\downarrow \text{ for } S \rightarrow L\downarrow)$:
 - SF(G)↓ = X*{S, ε}Y*;
 X: occur to the left of S; Y: occur to the right of S

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: *S* occurs on every right-hand side; compute SF(*G*)↓.
- If ≤ 1 occurrences of S on right-hand sides (SS $\notin L \downarrow$ for $S \rightarrow L \downarrow$):
 - SF(G)↓ = X*{S, ε}Y*;
 X: occur to the left of S; Y: occur to the right of S
 x₁x₂Sy₁y₂

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute SF(G)↓.
- If ≤ 1 occurrences of S on right-hand sides $(SS \notin L\downarrow \text{ for } S \rightarrow L\downarrow)$:
 - $SF(G) \downarrow = X^* \{S, \varepsilon\} Y^*;$ X: occur to the left of S; Y: occur to the right of S
 - $\underline{S} \Rightarrow x_1 S$ $x_1 x_2 S y_1 y_2$

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute SF(G)↓.
- If ≤ 1 occurrences of S on right-hand sides $(SS \notin L\downarrow \text{ for } S \rightarrow L\downarrow)$:
 - SF(G)↓ = X*{S, ε}Y*;
 X: occur to the left of S; Y: occur to the right of S
 - $S \Rightarrow x_1 \underline{S} \Rightarrow x_1 x_2 S$ $x_1 x_2 S y_1 y_2$

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute SF(G)↓.
- If ≤ 1 occurrences of S on right-hand sides $(SS \notin L\downarrow \text{ for } S \rightarrow L\downarrow)$:
 - SF(G)↓ = X*{S, ε}Y*;
 X: occur to the left of S; Y: occur to the right of S
 - $S \Rightarrow x_1 S \Rightarrow x_1 x_2 \underline{S} \Rightarrow x_1 x_2 S y_2 \qquad x_1 x_2 S y_1 y_2$

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute SF(G)↓.
- If ≤ 1 occurrences of S on right-hand sides $(SS \notin L\downarrow \text{ for } S \rightarrow L\downarrow)$:
 - SF(G)↓ = X*{S, ε}Y*;
 X: occur to the left of S; Y: occur to the right of S
 - $S \Rightarrow x_1 S \Rightarrow x_1 x_2 S \Rightarrow x_1 x_2 \underline{S} y_2 \Rightarrow x_1 x_2 S y_1 y_2$

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute SF(G)↓.
- If ≤ 1 occurrences of S on right-hand sides $(SS \notin L\downarrow \text{ for } S \rightarrow L\downarrow)$:
 - SF(G)↓ = X*{S, ε}Y*;
 X: occur to the left of S; Y: occur to the right of S
 - $S \Rightarrow x_1 S \Rightarrow x_1 x_2 S \Rightarrow x_1 x_2 S y_2 \Rightarrow x_1 x_2 S y_1 y_2$

ELE SOC

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute SF(G)↓.
- If ≤ 1 occurrences of S on right-hand sides $(SS \notin L\downarrow \text{ for } S \rightarrow L\downarrow)$:
 - SF(G)↓ = X*{S, ε}Y*;
 X: occur to the left of S; Y: occur to the right of S
 - $S \Rightarrow x_1 S \Rightarrow x_1 x_2 S \Rightarrow x_1 x_2 S y_2 \Rightarrow x_1 x_2 S y_1 y_2$
- If ≥ 2 occurrences of S on some right-hand side:

JOC ELE

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute SF(G)↓.
- If ≤ 1 occurrences of S on right-hand sides $(SS \notin L\downarrow \text{ for } S \rightarrow L\downarrow)$:
 - SF(G)↓ = X*{S, ε}Y*;
 X: occur to the left of S; Y: occur to the right of S
 - $S \Rightarrow x_1 S \Rightarrow x_1 x_2 S \Rightarrow x_1 x_2 S y_2 \Rightarrow x_1 x_2 S y_1 y_2$
- If ≥ 2 occurrences of S on some right-hand side:

• $\mathsf{SF}(G) \downarrow = (X \cup Y \cup \{S\})^*$

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute SF(G)↓.
- If ≤ 1 occurrences of S on right-hand sides $(SS \notin L\downarrow \text{ for } S \rightarrow L\downarrow)$:
 - SF(G)↓ = X*{S, ε}Y*;
 X: occur to the left of S; Y: occur to the right of S
 - $S \Rightarrow x_1 S \Rightarrow x_1 x_2 S \Rightarrow x_1 x_2 S y_2 \Rightarrow x_1 x_2 S y_1 y_2$
- If ≥ 2 occurrences of S on some right-hand side:

•
$$\mathsf{SF}(G) \downarrow = (X \cup Y \cup \{S\})^*$$

 Sx_1y_1

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute SF(G)↓.
- If ≤ 1 occurrences of S on right-hand sides $(SS \notin L\downarrow \text{ for } S \rightarrow L\downarrow)$:
 - SF(G)↓ = X*{S, ε}Y*;
 X: occur to the left of S; Y: occur to the right of S
 - $S \Rightarrow x_1 S \Rightarrow x_1 x_2 S \Rightarrow x_1 x_2 S y_2 \Rightarrow x_1 x_2 S y_1 y_2$
- If ≥ 2 occurrences of S on some right-hand side:

•
$$\mathsf{SF}(G) \downarrow = (X \cup Y \cup \{S\})^*$$

• $\underline{S} \Rightarrow SS$ Sx_1y_1

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute SF(G)↓.
- If ≤ 1 occurrences of S on right-hand sides (SS $\notin L \downarrow$ for $S \rightarrow L \downarrow$):

•
$$S \Rightarrow x_1 S \Rightarrow x_1 x_2 S \Rightarrow x_1 x_2 S y_2 \Rightarrow x_1 x_2 S y_1 y_2$$

• If ≥ 2 occurrences of S on some right-hand side:

•
$$\mathsf{SF}(G) \downarrow = (X \cup Y \cup \{S\})^*$$

 $\bullet S \Rightarrow S\underline{S} \Rightarrow Sx_1S \qquad \qquad Sx_1y_1$

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute SF(G)↓.
- If ≤ 1 occurrences of S on right-hand sides $(SS \notin L\downarrow \text{ for } S \rightarrow L\downarrow)$:
 - SF(G)↓ = X*{S, ε}Y*;
 X: occur to the left of S; Y: occur to the right of S
 - $S \Rightarrow x_1 S \Rightarrow x_1 x_2 S \Rightarrow x_1 x_2 S y_2 \Rightarrow x_1 x_2 S y_1 y_2$
- If ≥ 2 occurrences of S on some right-hand side:

•
$$\mathsf{SF}(G) \downarrow = (X \cup Y \cup \{S\})^*$$

•
$$S \Rightarrow SS \Rightarrow Sx_1\underline{S} \Rightarrow Sx_1SS$$

 Sx_1v_1

伺 ト イヨト イヨト ヨヨー の々で

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute SF(G)↓.
- If ≤ 1 occurrences of S on right-hand sides (SS $\notin L \downarrow$ for $S \rightarrow L \downarrow$):

•
$$S \Rightarrow x_1 S \Rightarrow x_1 x_2 S \Rightarrow x_1 x_2 S y_2 \Rightarrow x_1 x_2 S y_1 y_2$$

• If ≥ 2 occurrences of S on some right-hand side:

•
$$\mathsf{SF}(G) \downarrow = (X \cup Y \cup \{S\})^*$$

•
$$S \Rightarrow SS \Rightarrow Sx_1S \Rightarrow Sx_1\underline{S}S \Rightarrow Sx_1Sy_1S \ge Sx_1y_1$$

• Replace each production $A \rightarrow L$ with $A \rightarrow L \downarrow$.

Case 1

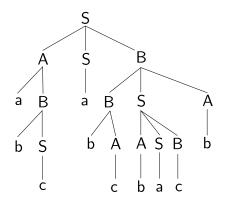
Suppose there is only one nonterminal S.

- Wlog: S occurs on every right-hand side; compute SF(G)↓.
- If ≤ 1 occurrences of S on right-hand sides $(SS \notin L\downarrow \text{ for } S \rightarrow L\downarrow)$:
 - SF(G)↓ = X*{S, ε}Y*;
 X: occur to the left of S; Y: occur to the right of S
 - $S \Rightarrow x_1 S \Rightarrow x_1 x_2 S \Rightarrow x_1 x_2 S y_2 \Rightarrow x_1 x_2 S y_1 y_2$
- If ≥ 2 occurrences of S on some right-hand side:

•
$$\mathsf{SF}(G) \downarrow = (X \cup Y \cup \{S\})^*$$

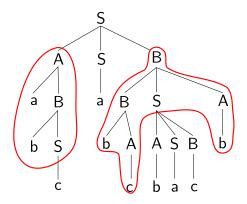
• $S \Rightarrow SS \Rightarrow Sx_1S \Rightarrow Sx_1SS \Rightarrow Sx_1Sy_1S \ge Sx_1y_1$

伺 ト イヨト イヨト ヨヨー の々で

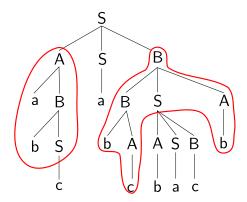


1= 9QC

< 1[™] >



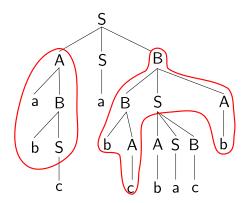
三日 のへの



Algorithm

 For nonterminals A ≠ S, construct grammar G_A:
 Start symbol A
 S is now terminal

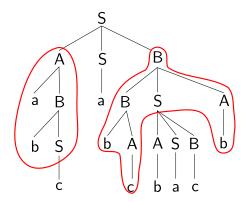
-



Algorithm

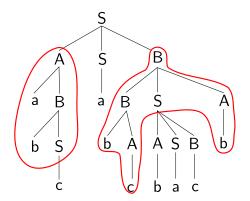
- For nonterminals A ≠ S, construct grammar G_A:
 Start symbol A
 S is now terminal
- *G_A* has fewer nonterminals

-



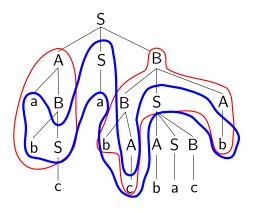
Algorithm

- For nonterminals A ≠ S, construct grammar G_A:
 Start symbol A
 S is now terminal
- *G_A* has fewer nonterminals
- Compute $L(G_A) \downarrow$



Algorithm

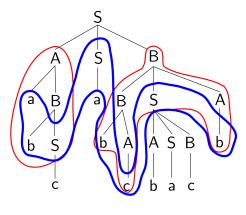
- For nonterminals A ≠ S, construct grammar G_A:
 - Start symbol A
 S is now terminal
- *G_A* has fewer nonterminals
- Compute L(*G*_A)↓
- In each $S \to L$, replace each A by $L(G_A) \downarrow$



 $\mathsf{S} \to \mathsf{abSSbcSb}$

Algorithm

- For nonterminals A ≠ S, construct grammar G_A:
 Start symbol A
 - *S* is now terminal
- *G_A* has fewer nonterminals
- Compute L(*G*_A)↓
- In each $S \rightarrow L$, replace each A by $L(G_A) \downarrow$



 $\mathsf{S} \to \mathsf{abSSbcSb}$

Algorithm

• For nonterminals $A \neq S$, construct grammar G_A :

Start symbol *A S* is now terminal

- *G_A* has fewer nonterminals
- Compute L(*G*_A)↓
- In each $S \rightarrow L$, replace each A by $L(G_A) \downarrow$
- Resulting grammar has one nonterminal

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

 \bullet Computability preserved by $\mathsf{Alg}(\cdot)$

ELE NOR

4 E b

▲ 伊 ▶ ▲ 三

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- $\bullet~\mbox{No}~\mbox{preservation}$ for $\mbox{SLI}(\cdot)$

-

EL SQA

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- $\bullet~\mbox{No}$ preservation for $\mbox{SLI}(\cdot)$

Idea

• Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- No preservation for $\mathsf{SLI}(\cdot)$

Idea

- Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.
- Wlog $L = K \cap \Psi^{-1}(S)$, $K \in G_i$, S semilinear

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- No preservation for $\mathsf{SLI}(\cdot)$

Idea

- Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.
- Wlog $L = K \cap \Psi^{-1}(S)$, $K \in G_i$, S semilinear
- Construct $K' \in G_i$ with $K \cap \Psi^{-1}(S) \subseteq K' \subseteq (K \cap \Psi^{-1}(S)) \downarrow$

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- No preservation for $\mathsf{SLI}(\cdot)$

Idea

- Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.
- Wlog $L = K \cap \Psi^{-1}(S)$, $K \in G_i$, S semilinear
- Construct $K' \in G_i$ with $K \cap \Psi^{-1}(S) \subseteq K' \subseteq (K \cap \Psi^{-1}(S)) \downarrow$
- Plan: Use finite state transductions to stay within G_i

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- No preservation for $\mathsf{SLI}(\cdot)$

Idea

- Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.
- Wlog $L = K \cap \Psi^{-1}(S)$, $K \in G_i$, S semilinear
- Construct $K' \in G_i$ with $K \cap \Psi^{-1}(S) \subseteq K' \subseteq (K \cap \Psi^{-1}(S)) \downarrow$
- Plan: Use finite state transductions to stay within G_i
- Annotate words with additional information

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- No preservation for $\mathsf{SLI}(\cdot)$

Idea

- Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.
- Wlog $L = K \cap \Psi^{-1}(S)$, $K \in G_i$, S semilinear
- Construct $K' \in \mathsf{G}_i$ with $K \cap \Psi^{-1}(S) \subseteq K' \subseteq (K \cap \Psi^{-1}(S)) \downarrow$
- Plan: Use finite state transductions to stay within G_i
- Annotate words with additional information

Theorem (Parikh)For context-free L, $\Psi(L)$ is semilinear.Georg Zetzsche (TU KL)Effectively Regular Downward ClosuresSeminar Cachan15/21

$F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- No preservation for $\mathsf{SLI}(\cdot)$

Idea

- Given $L \in F_{i+1} = SLI(G_i)$, construct $L' \in G_i$ with $L' \downarrow = L \downarrow$.
- Wlog $L = K \cap \Psi^{-1}(S)$, $K \in G_i$, S semilinear
- Construct $K' \in \mathsf{G}_i$ with $K \cap \Psi^{-1}(S) \subseteq K' \subseteq (K \cap \Psi^{-1}(S)) \downarrow$
- Plan: Use finite state transductions to stay within G_i
- Annotate words with additional information

 $L = (ab)^* (ca^* \cup db^*)$ Parikh image: $c + \{a + b, a\}^{\oplus} \cup d + \{a + b, b\}^{\oplus}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$L = (ab)^* (ca^* \cup db^*)$$
Parikh image: $c + \{a + b, a\}^{\oplus}$ \cup $d + \{a + b, b\}^{\oplus}$.
 $c = \{\alpha, \beta\},$
 $P = \{\mu, \nu, \sigma, \tau\},$
 $P_{\alpha} = \{\mu, \nu\},$
 $P_{\beta} = \{\sigma, \tau\},$

$$L = (ab)^* (ca^* \cup db^*)$$
Parikh image: $c + \{a + b, a\}^{\oplus}$ \cup $d + \{a + b, b\}^{\oplus}$.
 \uparrow^{α} \uparrow^{β} \downarrow^{β} \downarrow^{β} \uparrow^{β} \uparrow^{β} .
 $C = \{\alpha, \beta\},$
 $P = \{\mu, \nu, \sigma, \tau\},$ $\varphi(\alpha) = c,$ $\varphi(\beta) = d,$
 $P_{\alpha} = \{\mu, \nu\},$ $\varphi(\mu) = a + b,$ $\varphi(\nu) = a,$
 $P_{\beta} = \{\sigma, \tau\},$ $\varphi(\sigma) = a + b,$ $\varphi(\tau) = b,$

$$L = (ab)^* (ca^* \cup db^*)$$
Parikh image: $c + \{a + b, a\}^{\oplus}$ \cup $d + \{a + b, b\}^{\oplus}$.
 \uparrow^{α} \uparrow^{μ} \downarrow^{ν} \cup $d + \{a + b, b\}^{\oplus}$.
 f_{β} \uparrow^{α} \uparrow^{β} \downarrow^{β} .
 $C = \{\alpha, \beta\},$
 $P = \{\mu, \nu, \sigma, \tau\},$ $\varphi(\alpha) = c,$ $\varphi(\beta) = d,$
 $P_{\alpha} = \{\mu, \nu\},$ $\varphi(\mu) = a + b,$ $\varphi(\nu) = a,$
 $P_{\beta} = \{\sigma, \tau\},$ $\varphi(\sigma) = a + b,$ $\varphi(\tau) = b,$

$$L = (ab)^* (ca^* \cup db^*)$$
Parikh image: $c + \{a + b, a\}^{\oplus}$ \cup $d + \{a + b, b\}^{\oplus}$.
 $\uparrow^{\uparrow}_{\alpha} \qquad \uparrow^{\uparrow}_{\mu} \qquad \downarrow^{\downarrow}_{\nu} \qquad \cup \qquad d + \{a + b, b\}^{\oplus}$.
 $C = \{\alpha, \beta\},$
 $P = \{\mu, \nu, \sigma, \tau\}, \qquad \varphi(\alpha) = c, \qquad \varphi(\beta) = d,$
 $P_{\alpha} = \{\mu, \nu\}, \qquad \varphi(\mu) = a + b, \qquad \varphi(\nu) = a,$
 $P_{\beta} = \{\sigma, \tau\}, \qquad \varphi(\sigma) = a + b, \qquad \varphi(\tau) = b,$

Georg Zetzsche (TU KL)

$$L = (ab)^* (ca^* \cup db^*)$$
Parikh image: $c + \{a + b, a\}^{\oplus}$ \cup $d + \{a + b, b\}^{\oplus}$.
 $c = \{\alpha, \beta\},$
 $P = \{\mu, \nu, \sigma, \tau\},$ $\varphi(\alpha) = c,$ $\varphi(\beta) = d,$
 $P_{\alpha} = \{\mu, \nu\},$ $\varphi(\mu) = a + b,$ $\varphi(\nu) = a,$
 $P_{\beta} = \{\sigma, \tau\},$ $\varphi(\sigma) = a + b,$ $\varphi(\tau) = b,$
 $K = \alpha(\mu ab)^* c(\nu a)^* \cup \beta(\sigma ab)^* d(\tau b)^*$

- New language in the same class
- Additional symbols encode decomposition of Parikh image into constant and period vectors
- Adding period vectors by inserting at designated positions

- New language in the same class
- Additional symbols encode decomposition of Parikh image into constant and period vectors
- Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and $L \in C$, $L \subseteq X^*$. A Parikh annotation for L in C is a tuple $(K, C, P, (P_c)_{c \in C}, \varphi)$

- New language in the same class
- Additional symbols encode decomposition of Parikh image into constant and period vectors
- Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and $L \in C$, $L \subseteq X^*$. A Parikh annotation for L in C is a tuple $(K, C, P, (P_c)_{c \in C}, \varphi)$, where

• $K \subseteq C(X \cup P)^*$ is in C,

- New language in the same class
- Additional symbols encode decomposition of Parikh image into constant and period vectors
- Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and $L \in C$, $L \subseteq X^*$. A Parikh annotation for L in C is a tuple $(K, C, P, (P_c)_{c \in C}, \varphi)$, where

•
$$K \subseteq C(X \cup P)^*$$
 is in C ,

•
$$\pi_X(K) = L$$
,

- New language in the same class
- Additional symbols encode decomposition of Parikh image into constant and period vectors
- Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and $L \in C$, $L \subseteq X^*$. A Parikh annotation for L in C is a tuple $(K, C, P, (P_c)_{c \in C}, \varphi)$, where

•
$$K \subseteq C(X \cup P)^*$$
 is in C ,

•
$$\pi_X(K) = L$$

•
$$\Psi(\pi_X(w)) = \varphi(\pi_{C \cup P}(w))$$
 for each $w \in K$,

- New language in the same class
- Additional symbols encode decomposition of Parikh image into constant and period vectors
- Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and $L \in C$, $L \subseteq X^*$. A Parikh annotation for L in C is a tuple $(K, C, P, (P_c)_{c \in C}, \varphi)$, where

•
$$K \subseteq C(X \cup P)^*$$
 is in C ,

•
$$\pi_X(K) = L$$

•
$$\Psi(\pi_X(w)) = \varphi(\pi_{C \cup P}(w))$$
 for each $w \in K$,

•
$$\Psi(\pi_{C \cup P}(K)) = \bigcup_{c \in C} c + P_c^{\oplus}$$
.

- New language in the same class
- Additional symbols encode decomposition of Parikh image into constant and period vectors
- Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and $L \in C$, $L \subseteq X^*$. A Parikh annotation for L in C is a tuple $(K, C, P, (P_c)_{c \in C}, \varphi)$, where

•
$$K \subseteq C(X \cup P)^*$$
 is in C ,

•
$$\pi_X(K) = L$$
,

•
$$\Psi(\pi_X(w)) = \varphi(\pi_{C \cup P}(w))$$
 for each $w \in K$,

•
$$\Psi(\pi_{C\cup P}(K)) = \bigcup_{c\in C} c + P_c^{\oplus}$$
.

• For $cw \in K$ and $\kappa \in P_c^{\oplus}$

- New language in the same class
- Additional symbols encode decomposition of Parikh image into constant and period vectors
- Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and $L \in C$, $L \subseteq X^*$. A Parikh annotation for L in C is a tuple $(K, C, P, (P_c)_{c \in C}, \varphi)$, where

•
$$K \subseteq C(X \cup P)^*$$
 is in C ,

•
$$\pi_X(K) = L$$
,

•
$$\Psi(\pi_X(w)) = \varphi(\pi_{C \cup P}(w))$$
 for each $w \in K$,

•
$$\Psi(\pi_{C\cup P}(K)) = \bigcup_{c \in C} c + P_c^{\oplus}$$
.

• For $cw \in K$ and $\kappa \in P_c^{\oplus}$, there is a $v \in L$ with

- New language in the same class
- Additional symbols encode decomposition of Parikh image into constant and period vectors
- Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and $L \in C$, $L \subseteq X^*$. A Parikh annotation for L in C is a tuple $(K, C, P, (P_c)_{c \in C}, \varphi)$, where

•
$$K \subseteq C(X \cup P)^*$$
 is in C ,

•
$$\pi_X(K) = L$$
,

•
$$\Psi(\pi_X(w)) = \varphi(\pi_{C \cup P}(w))$$
 for each $w \in K$,

•
$$\Psi(\pi_{C\cup P}(K)) = \bigcup_{c\in C} c + P_c^{\oplus}$$
.

• For $cw \in K$ and $\kappa \in P_c^{\oplus}$, there is a $v \in L$ with

$$\Psi(\mathbf{v}) = \Psi(\pi_{\mathbf{X}}(\mathbf{c}\mathbf{w})) + \varphi(\kappa)$$

Parikh annotations

- New language in the same class
- Additional symbols encode decomposition of Parikh image into constant and period vectors
- Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and $L \in C$, $L \subseteq X^*$. A Parikh annotation for L in C is a tuple $(K, C, P, (P_c)_{c \in C}, \varphi)$, where

•
$$K \subseteq C(X \cup P)^*$$
 is in C ,

•
$$\pi_X(K) = L$$
,

•
$$\Psi(\pi_X(w)) = \varphi(\pi_{C \cup P}(w))$$
 for each $w \in K$,

•
$$\Psi(\pi_{C\cup P}(K)) = \bigcup_{c\in C} c + P_c^{\oplus}$$
.

• For $cw \in K$ and $\kappa \in P_c^{\oplus}$, there is a $v \in L$ with

$$\Psi(\mathbf{v}) = \Psi(\pi_X(\mathbf{cw})) + \varphi(\kappa), \qquad \quad \pi_X(\mathbf{cw}) \leqslant \mathbf{v}.$$

For each level of the hierarchy, one can construct Parikh annotations.

• Refinement of Parikh's theorem

-

For each level of the hierarchy, one can construct Parikh annotations.

- Refinement of Parikh's theorem
- Direct construction for $F_{i+1} = SLI(G_i)$

E SQA

For each level of the hierarchy, one can construct Parikh annotations.

- Refinement of Parikh's theorem
- Direct construction for $F_{i+1} = SLI(G_i)$
- Series of steps for $G_i = Alg(F_i)$
 - Decomposition similar to van Leeuwen's algorithm
 - Most involved step: substitute a by {a, b}
 - Replace annotation symbols and ordinary symbols consistently

For each level of the hierarchy, one can construct Parikh annotations.

- Refinement of Parikh's theorem
- Direct construction for $F_{i+1} = SLI(G_i)$
- Series of steps for $G_i = Alg(F_i)$
 - Decomposition similar to van Leeuwen's algorithm
 - ▶ Most involved step: substitute *a* by {*a*, *b*}
 - Replace annotation symbols and ordinary symbols consistently

A morphism $\psi \colon (N \cup T)^* \to \mathbb{Z}$ is *G*-compatible if $A \Rightarrow^* w$ implies $\psi(A) = \psi(w)$, for $A \in N$, $w \in T^*$.

ELE SOC

For each level of the hierarchy, one can construct Parikh annotations.

- Refinement of Parikh's theorem
- Direct construction for $F_{i+1} = SLI(G_i)$
- Series of steps for $G_i = Alg(F_i)$
 - Decomposition similar to van Leeuwen's algorithm
 - Most involved step: substitute a by {a, b}
 - Replace annotation symbols and ordinary symbols consistently

A morphism $\psi \colon (N \cup T)^* \to \mathbb{Z}$ is *G*-compatible if $A \Rightarrow^* w$ implies $\psi(A) = \psi(w)$, for $A \in N$, $w \in T^*$.

Lemma

Let G be a reduced C-grammar and $\psi: T^* \to \mathbb{Z}$ a morphism such that $\psi(w) = 0$ for every $w \in L(G)$. Then ψ extends uniquely to a G-compatible morphism $\psi: (N \cup T)^* \to \mathbb{Z}$.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Corollary Given $L \in G_i$ and semilinear S, one can construct $L' \in G_i$ with $L \cap \Psi^{-1}(S) \subseteq L' \subseteq (L \cap \Psi^{-1}(S)) \downarrow$.

EL SQA

Corollary Given $L \in G_i$ and semilinear S, one can construct $L' \in G_i$ with $L \cap \Psi^{-1}(S) \subseteq L' \subseteq (L \cap \Psi^{-1}(S)) \downarrow$.

• Select all words where adding period vectors leads into S

Corollary Given $L \in G_i$ and semilinear S, one can construct $L' \in G_i$ with $L \cap \Psi^{-1}(S) \subseteq L' \subseteq (L \cap \Psi^{-1}(S)) \downarrow$.

- Select all words where adding period vectors leads into S
- Downward closed set of multisets of period vectors

Corollary Given $L \in G_i$ and semilinear S, one can construct $L' \in G_i$ with $L \cap \Psi^{-1}(S) \subseteq L' \subseteq (L \cap \Psi^{-1}(S)) \downarrow$.

- Select all words where adding period vectors leads into S
- Downward closed set of multisets of period vectors
- Recognizable by finite automaton

I DOC

Conclusion

- Downward closure: promising abstraction of languages
- Computability known for few language classes
- Computable for stacked counter automata

Conclusion

- Downward closure: promising abstraction of languages
- Computability known for few language classes
- Computable for stacked counter automata

Future work

- Applications of downward closures
- Downward closures for other WQOs
- Further classes of systems

Conclusion

- Downward closure: promising abstraction of languages
- Computability known for few language classes
- Computable for stacked counter automata

Future work

- Applications of downward closures
- Downward closures for other WQOs
- Further classes of systems

Thank you for your attention!

Why not $K \subseteq CX^*P^*$? Then there would be no Parikh annotations for context-free languages!

< 1 k

I= nac

Then there would be no Parikh annotations for context-free languages!

• Suppose $L = \{a^n b^n \mid n \ge 0\}$. Then $L \in CF$.

EL SQA

4 A 1

Then there would be no Parikh annotations for context-free languages!

• Suppose $L = \{a^n b^n \mid n \ge 0\}$. Then $L \in CF$.

• If *L* has a PA with $K \subseteq CX^*P^*$ in CF, then there is one with $K \subseteq X^*P^*C$.

EL SQA

Then there would be no Parikh annotations for context-free languages!

- Suppose $L = \{a^n b^n \mid n \ge 0\}$. Then $L \in CF$.
- If *L* has a PA with $K \subseteq CX^*P^*$ in CF, then there is one with $K \subseteq X^*P^*C$.
- Let L' be obtained from K by replacing every $x \in C \cup P$ by $a^{\varphi(x)(a)}$.

ELE SQA

Then there would be no Parikh annotations for context-free languages!

- Suppose $L = \{a^n b^n \mid n \ge 0\}$. Then $L \in CF$.
- If *L* has a PA with $K \subseteq CX^*P^*$ in CF, then there is one with $K \subseteq X^*P^*C$.
- Let L' be obtained from K by replacing every $x \in C \cup P$ by $a^{\varphi(x)(a)}$.
- Then $L' = \{a^n b^n a^n \mid n \ge 0\}$, which is not context-free.

EL SQA