Effectively Regular Downward Closures

Georg Zetzsche

Technische Universitat Kaiserslautern

LSV Cachan, 28 October 2014

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 1/21

System Observer

o so

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 2/21

System Observer

o vo

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 2/21

System Observer
aabcbbacbbaaab 6 abbbcba
C o
9 0

aabcbbacbbaaab

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 2/21

System Observer
aabcbbacbbaaab 6 2 abbbcba
(N
s 9
aabcbbacbbaaab

Downward Closures
@ u < v: uis a subsequence of v
o Ll ={ueX*|3vel:uxv}

@ Oberver sees precisely L]

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 2/21

Downward Closures

Theorem (Higman/Haines)

For every language L = X*, L| is regular.

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

Downward Closures

Theorem (Higman/Haines)

For every language L = X*, L| is regular.

Applications

Given an automaton for L|, many things are decidable:

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 3/21

Downward Closures

Theorem (Higman/Haines)

For every language L = X*, L| is regular.

Applications
Given an automaton for L|, many things are decidable:

@ Inclusion of behavior under lossy observation (K| < L|)
Ordinary inclusion almost always undecidable!

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 3/21

Downward Closures

Theorem (Higman/Haines)

For every language L = X*, L| is regular.

Applications
Given an automaton for L|, many things are decidable:

@ Inclusion of behavior under lossy observation (K| < L|)
Ordinary inclusion almost always undecidable!

@ Which actions occur arbitrarily often? (a* < L|)

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 3/21

Downward Closures

Theorem (Higman/Haines)

For every language L = X*, L| is regular.

Applications
Given an automaton for L|, many things are decidable:

@ Inclusion of behavior under lossy observation (K| < L|)
Ordinary inclusion almost always undecidable!

@ Which actions occur arbitrarily often? (a* < L|)
o Is a ever executed after b? (abe L))

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 3/21

Downward Closures

Theorem (Higman/Haines)
For every language L = X*, L| is regular.

Applications
Given an automaton for L|, many things are decidable:

@ Inclusion of behavior under lossy observation (K| < L|)
Ordinary inclusion almost always undecidable!

@ Which actions occur arbitrarily often? (a* < L|)
o Is a ever executed after b? (abe L))

@ Can the system run arbitrarily long? (L| infinite)

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 3/21

Downward Closures

Theorem (Higman/Haines)
For every language L = X*, L| is regular.

Applications
Given an automaton for L|, many things are decidable:

@ Inclusion of behavior under lossy observation (K| < L|)
Ordinary inclusion almost always undecidable!

@ Which actions occur arbitrarily often? (a* < L|)
o Is a ever executed after b? (abe L))

@ Can the system run arbitrarily long? (L| infinite)

Problem

@ Finite automaton for L| exists for every L.

@ How can we compute it?

v

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 3/21

State of the art

Very few known techniques.

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

State of the art
Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures

State of the art
Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting
systems/0OL-systems.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 4/21

State of the art
Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting
systems/0OL-systems.

o Context-free rules A — w

o Applied as: Au = uw

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 4/21

State of the art
Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting
systems/0OL-systems.

o Context-free rules A — w

o Applied as: Au = uw

Theorem (Habermehl, Meyer, Wimmel 2010)

Downward closures are computable for Petri net languages.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan

4/21

Stacked counter automata

A storage mechanism M consists of:
o States: set S of states
@ Operations: partial maps a1,...,0,: S — S
@ Initial state: spe S
o Final states: F< S

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 5/21

Stacked counter automata

A storage mechanism M consists of:
o States: set S of states
@ Operations: partial maps a1,...,0,: S — S
@ Initial state: spe S
o Final states: F< S

Counter
o States: N
o Operations: increment, decrement, zero test

@ Initial and final state: 0

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 5/21

Stacked counter automata

A storage mechanism M consists of:
o States: set S of states
@ Operations: partial maps a1,...,0,: S — S
@ Initial state: spe S

@ Final states: FC< S

Counter
o States: N
o Operations: increment, decrement, zero test

@ Initial and final state: 0

Trivial mechanism
Consists of one state and no operations.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 5/21

C(M): Adding a blind counter
e States: (s,z), s an old state, z € Z.
@ Operations: old operations; increment, decrement for counter
o Initial state: (sp,0)

o Final states: (f,0), f final in old mechanism

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 6/21

C(M): Adding a blind counter
States: (s, z), s an old state, z € Z.

Operations: old operations; increment, decrement for counter
Initial state: (sp,0)

°
()
(]
o Final states: (f,0), f final in old mechanism

S(M): Building stacks
@ States: sequences e[l - - [Clcn, ¢; old states

@ Operations: push separator, pop if empty, manipulate topmost entry
@ Initial and final state: Empty sequence

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 6/21

C(M): Adding a blind counter
States: (s, z), s an old state, z € Z.

Operations: old operations; increment, decrement for counter
Initial state: (sp,0)

°
()
(]
o Final states: (f,0), f final in old mechanism

S(M): Building stacks
@ States: sequences e[l - - [Clcn, ¢; old states

@ Operations: push separator, pop if empty, manipulate topmost entry
@ Initial and final state: Empty sequence

Stacked counters
Mechanisms obtained from the trivial one by
@ adding blind counters,

@ building stacks.

v

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 6/21

Georg Zetzsche

Effectively Regular Downward Closures

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 7/21

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 7/21

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 7/21

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 7/21

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 7/21

Modeling capabilities

@ Generalize both pushdown automata and blind counter automata

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

Modeling capabilities
@ Generalize both pushdown automata and blind counter automata

@ Recursive programs with access to private/shared counters

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 8/21

Modeling capabilities
@ Generalize both pushdown automata and blind counter automata
@ Recursive programs with access to private/shared counters

@ Connections to group theory

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 8/21

Modeling capabilities
@ Generalize both pushdown automata and blind counter automata
@ Recursive programs with access to private/shared counters

@ Connections to group theory

Theorem (Z. 2014)

Downward closures are computable for stacked counter automata.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 8/21

Expressiveness

Algebraic extensions

Let C be a language class. A C-grammar G consists of
@ Nonterminals N, terminals T, start symbol S e N
@ Productions A— Lwith L (NuUT)* LeC

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 9/21

Expressiveness

Algebraic extensions

Let C be a language class. A C-grammar G consists of
@ Nonterminals N, terminals T, start symbol S e N
@ Productions A— Lwith L (NuUT)* LeC

UAv = uwv whenever w € L.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 9/21

Expressiveness

Algebraic extensions

Let C be a language class. A C-grammar G consists of
@ Nonterminals N, terminals T, start symbol S e N
@ Productions A— Lwith L (NuUT)* LeC

uAv = uwv whenever w € L.
o Generated language: {we T*| S =* w}.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 9/21

Expressiveness

Algebraic extensions

Let C be a language class. A C-grammar G consists of
@ Nonterminals N, terminals T, start symbol S e N
@ Productions A— Lwith L (NuUT)* LeC

uAv = uwv whenever w € L.
o Generated language: {we T*| S =* w}.

@ Such languages are algebraic over C, class denoted Alg(C).

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 9/21

Expressiveness

Algebraic extensions

Let C be a language class. A C-grammar G consists of
@ Nonterminals N, terminals T, start symbol S e N
@ Productions A— Lwith L (NuUT)* LeC

uAv = uwv whenever w € L.
Generated language: {we T* | S =% w}.

Such languages are algebraic over C, class denoted Alg(C).

Example
Alg(FIN) = Alg(REG) = CF

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 9/21

Definition
Let X be an alphabet.

o X® = {u|u: X > N}, multisets.

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

Definition
Let X be an alphabet.

o XO = {u|u: X — N}, multisets.

o V: X* - X® W(w)(x) = |w|y is the Parikh map.

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

Seminar Cachan

10/21

Definition
Let X be an alphabet.
o XO = {u|u: X — N}, multisets.
o W: X* — X® W(w)(x) = |wlx is the Parikh map.
o For F={p1,...,un} S X®, let FO = {37 aju;i | a1,...,a, € N}

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 10/21

Definition
Let X be an alphabet.
o XO = {u|u: X — N}, multisets.
o W: X* — X® W(w)(x) = |wlx is the Parikh map.
o For F={p1,...,un} S X®, let FO = {37 aju;i | a1,...,a, € N}
@ Sets of the form po + F® are called linear.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 10/21

Definition

Let X be an alphabet.

X® = {u| u: X — N}, multisets.

V: X* — X® W(w)(x) = |w|y is the Parikh map.

For F = {u1,...,pun} S X®, let FO = {377 ajpi | a1,...,an € N}
Sets of the form jg + F® are called linear.

Finite unions of linear sets are called semilinear.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 10/21

Definition
Let X be an alphabet.
o XO = {u|u: X — N}, multisets.
o W: X* — X® W(w)(x) = |wlx is the Parikh map.
o For F={p1,...,un} S X®, let FO = {37 aju;i | a1,...,a, € N}
@ Sets of the form po + F® are called linear.

@ Finite unions of linear sets are called semilinear.

Semilinear constraints
Let C be a language class. SLI(C) denotes the class of languages

h(L A V7L(S))

for some L € C, a homomorphism h and a semilinear set S.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 10/21

Definition

Let X be an alphabet.

X® = {u| u: X — N}, multisets.

V: X* — X® W(w)(x) = |w|y is the Parikh map.

For F = {u1,...,pun} S X®, let FO = {377 ajpi | a1,...,an € N}
Sets of the form jg + F® are called linear.

Finite unions of linear sets are called semilinear.

Semilinear constraints
Let C be a language class. SLI(C) denotes the class of languages

h(L A V7L(S))

for some L € C, a homomorphism h and a semilinear set S.

Example
b+ (a+c)®

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 10/21

Definition

Let X be an alphabet.

X® = {u| u: X — N}, multisets.

V: X* — X® W(w)(x) = |w|y is the Parikh map.

For F = {u1,...,pun} S X®, let FO = {377 ajpi | a1,...,an € N}
Sets of the form jg + F® are called linear.

Finite unions of linear sets are called semilinear.

Semilinear constraints
Let C be a language class. SLI(C) denotes the class of languages

h(L A V7L(S))

for some L € C, a homomorphism h and a semilinear set S.

Example
V1(b+ (a+¢)®)
Seminar Cachan 1021

Definition

Let X be an alphabet.

X® = {u| u: X — N}, multisets.

V: X* — X® W(w)(x) = |w|y is the Parikh map.

For F = {u1,...,pun} S X®, let FO = {377 ajpi | a1,...,an € N}
Sets of the form jg + F® are called linear.

Finite unions of linear sets are called semilinear.

Semilinear constraints
Let C be a language class. SLI(C) denotes the class of languages

h(L A V7L(S))

for some L € C, a homomorphism h and a semilinear set S.

Example
a*bc* "W (b+ (a+c)9)

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 10/21

Definition

Let X be an alphabet.

X® = {u| u: X — N}, multisets.

V: X* — X® W(w)(x) = |w|y is the Parikh map.

For F = {u1,...,pun} S X®, let FO = {377 ajpi | a1,...,an € N}
Sets of the form jg + F® are called linear.

Finite unions of linear sets are called semilinear.

Semilinear constraints
Let C be a language class. SLI(C) denotes the class of languages

h(L A V7L(S))

for some L € C, a homomorphism h and a semilinear set S.

Example
h(a*bc* " WL(b+ (a+ c)9)) h:a,c— a, b b.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 10/21

Definition
Let X be an alphabet.

o XO = {u|u: X — N}, multisets.

o W: X* — X® W(w)(x) = |wlx is the Parikh map.

o For F={p1,...,un} S X®, let FO = {37 aju;i | a1,...,a, € N}
@ Sets of the form po + F® are called linear.
o

Finite unions of linear sets are called semilinear.

Semilinear constraints
Let C be a language class. SLI(C) denotes the class of languages

h(L A V7L(S))

for some L € C, a homomorphism h and a semilinear set S.

Example
h(a*bc* "W L(b+ (a+¢)®)) ={a"ba" | n> 0}, h: a,c+>a, b+ b.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 10/21

A hierarchy of language classes
Hierarchy

Fo = finite languages,
G; = Alg(Fi)7

Fir1 = SLI(G)),

F=|JF:

i=0

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

A hierarchy of language classes

Hierarchy

G; = Alg(F)),

In particular: Gg = CF.

Fo = finite languages,

Fit1 = SLI(G),

i=0

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

Seminar Cachan

11/21

A hierarchy of language classes
Hierarchy

Fo = finite languages,
G; = Alg(F;), Fit1 = SLI(G)),

In particular: Gy = CF.

i=0

FocGocFicGic---

Georg Zetzsche (TU KL) Effectively Regular Downward Closures

Seminar Cachan

11/21

A hierarchy of language classes
Hierarchy

Fo = finite languages,
G; = Alg(F)), Fir1 = SLI(G)), F=|JF:
i=0

In particular: Gy = CF.

FocGocFicG c---cF

Theorem
L(5(5(M))) = Alg(L(M))

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan

11/21

A hierarchy of language classes

Hierarchy
Fo = finite languages,
G; = Alg(F;), Fir1 = SLI(G;), F=|JF:
i>0
In particular: Gy = CF.
FocGocFicG c---cF

Theorem

L(S(S(M))) = Alg(L(M)), Uizo L(C'(M)) = SLI(L(M)). J

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 11/21

A hierarchy of language classes

Hierarchy
Fo = finite languages,
G; = Alg(F;), Fir1 = SLI(G;), F=|JF:
i>0
In particular: Gy = CF.
FocGocFicG c---cF

Theorem

L(S(S(M))) = Alg(L(M)), Uizo L(C'(M)) = SLI(L(M)). J

Corollary J

Stacked counter automata accept precisely the languages in F.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 11/21

Ingredient |

van Leeuwen proved a stronger statement:

Theorem (van Leeuwen 1978)

If C is closed under regular intersections:
Downward closures computable for C = computable for Alg(C).

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 12/21

Ingredient |

van Leeuwen proved a stronger statement:

Theorem (van Leeuwen 1978)

If C is closed under regular intersections:
Downward closures computable for C = computable for Alg(C).

Consequence
Algorithm for F; = Algorithm for G; = Alg(F;).

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 12/21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].
Case 1

Suppose there is only one nonterminal S.

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13/21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13/21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Suppose there is only one nonterminal S.

Case 1 J

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13/21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
> x1X25y1Y2

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13 /21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
» S=xS5 X1X2Sy1y»

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13 /21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
> S$= x5 = xS x1%25y1Y2

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13 /21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
» S= x5 = x10S5 = x1S» x1xSy1y

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13/21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
» S = x5 = x105 = x10Sy = x1xSy1y>

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13 /21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
» S = x5 = x105 = x10S5y = x1xSy1)>

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13 /21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
» S = x5 = x105 = x10S5y = x1xSy1)>

@ If = 2 occurrences of S on some right-hand side:

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13 /21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
» S = x5 = x105 = x10S5y = x1xSy1)>
@ If = 2 occurrences of S on some right-hand side:
» SF(G)] = (XuYu{SH*

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13 /21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*,
X: occur to the left of S; Y: occur to the right of S
» S = x5 = x105 = x10S5y = x1xSy1)>
@ If = 2 occurrences of S on some right-hand side:
» SF(G)l =(XuYu{ShH*
» Sxiy1

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13 /21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Suppose there is only one nonterminal S.

Case 1 J

@ Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
» S= x5 = X105 = x105y = x1xSy1)
o If = 2 occurrences of S on some right-hand side:
» SF(G)] = (Xu Yu{S}H*
> i =SS 5X1y1

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13/21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Suppose there is only one nonterminal S.

Case 1 J

@ Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (SS ¢ L] for S — L]):
» SF(G)| = X*{S,e} Y™,
X: occur to the left of S; Y: occur to the right of S
» S= x5 = X105 = x105y = x1xSy1)
o If = 2 occurrences of S on some right-hand side:
» SF(G)] = (Xu Yu{S}H*
» $=55=5xS Sxiy

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13 /21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Case 1 J

Suppose there is only one nonterminal S.

@ Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (SS ¢ L] for S — L]):
» SF(G)| = X*{S,e} Y™,
X: occur to the left of S; Y: occur to the right of S
> 5 = X15 = X1X25 = X1X25y2 = X1X25y1y2
o If = 2 occurrences of S on some right-hand side:
» SF(G)] = (XuYu{SH*
» §=855= 55 = 5x5S Sxiyr

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13/21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Case 1 J

Suppose there is only one nonterminal S.

@ Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (SS ¢ L] for S — L]):
» SF(G)| = X*{S,e} Y™,
X: occur to the left of S; Y: occur to the right of S
> 5 = X15 = X1X25 = X1X25y2 = X1X25y1y2
o If = 2 occurrences of S on some right-hand side:
» SF(G)] = (XuYu{SH*
» 5= 55=54q5=50q55= 545nS > San

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13/21

van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*,
X: occur to the left of S; Y: occur to the right of S
» S = x5 = x105 = x10S5y = x1xSy1)>
@ If = 2 occurrences of S on some right-hand side:
» SF(G)] = (XuYu{SH*
» 5= 55=545=5455= 54q51S > Sxan

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 13 /21

van Leeuwen’s Algorithm

b S b

Georg Zetzsche (TU KL)

A

A
:

Effectively Regular Downward Closures

van Leeuwen’s Algorithm

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 14 /21

van Leeuwen’s Algorithm

Algorithm
@ For nonterminals A # S,
construct grammar Ggu:

Start symbol A
S is now terminal

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 14 /21

van Leeuwen’s Algorithm

Algorithm
@ For nonterminals A # S,
construct grammar Ga:
Start symbol A
S is now terminal
@ Gy has fewer
nonterminals

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 14 /21

van Leeuwen’s Algorithm

Algorithm
@ For nonterminals A # S,
construct grammar Ga:
Start symbol A
S is now terminal
@ Gy has fewer
nonterminals

o Compute L(Ga)l

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 14 /21

van Leeuwen’s Algorithm

Algorithm
@ For nonterminals A # S,
construct grammar Ga:
Start symbol A
S is now terminal
@ Gy has fewer
nonterminals

o Compute L(Ga)l

@ In each S — L, replace
each A by L(Ga)|

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 14 /21

van Leeuwen’s Algorithm

S — abSSbcSb

Georg Zetzsche (TU KL)

Algorithm
@ For nonterminals A # S,
construct grammar Ga:
Start symbol A
S is now terminal
@ Gy has fewer
nonterminals

o Compute L(Ga)l

@ In each S — L, replace
each A by L(Ga)|

Effectively Regular Downward Closures Seminar Cachan 14 /21

van Leeuwen’s Algorithm

Algorithm
@ For nonterminals A # S,
construct grammar Ga:
Start symbol A
S is now terminal
@ Gy has fewer
nonterminals

o Compute L(Ga)l

@ In each S — L, replace
each A by L(Ga)|

@ Resulting grammar has
one nonterminal

S — abSSbcSb

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 14 /21

Ingredient Il

FogGogFlgGlg
Problem

e Computability preserved by Alg(-)

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

Ingredient Il

FogGogFlgGlg
Problem

e Computability preserved by Alg(-)
@ No preservation for SLI(-)

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

Ingredient Il
FobcGocFicG c---cF
Problem
e Computability preserved by Alg(-)
@ No preservation for SLI(-)

Idea
e Given L € F;y1 = SLI(G;), construct L' € G; with L'| = L].

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 15/21

Ingredient Il
FobcGocFicG c---cF
Problem
e Computability preserved by Alg(-)
@ No preservation for SLI(-)

Idea
e Given L € F;y1 = SLI(G;), construct L' € G; with L'| = L].
o Wilog L = K nW1(S), KeG;, S semilinear

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 15/21

Ingredient Il
FobcGocFicG c---cF
Problem
e Computability preserved by Alg(-)
@ No preservation for SLI(-)

Idea
e Given L € F;y1 = SLI(G;), construct L' € G; with L'| = L].
o Wilog L = K nW1(S), KeG;, S semilinear
o Construct K’ € G; with K n W=1(S) € K' < (K n ¥~1(S))]

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 15/21

Ingredient Il
FobcGocFicG c---cF
Problem
e Computability preserved by Alg(-)
@ No preservation for SLI(-)

Idea
e Given L € F;y1 = SLI(G;), construct L' € G; with L'| = L].
o Wilog L = K nW1(S), KeG;, S semilinear
o Construct K’ € G; with K n W=1(S) € K' < (K n ¥~1(S))]

@ Plan: Use finite state transductions to stay within G;

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 15/21

Ingredient Il
FocGocFicGic---CF
Problem
e Computability preserved by Alg(-)

@ No preservation for SLI(-)

Idea
e Given L € F;y1 = SLI(G;), construct L' € G; with L'| = L].
o Wilog L = K nW1(S), KeG;, S semilinear
o Construct K’ € G; with K n W=1(S) € K' < (K n ¥~1(S))]

@ Plan: Use finite state transductions to stay within G;

@ Annotate words with additional information)

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 15/21

Ingredient Il
FocGocFicGic---CF
Problem
e Computability preserved by Alg(-)

@ No preservation for SLI(-)

Idea
e Given L € F;y1 = SLI(G;), construct L' € G; with L'| = L].
o Wilog L = K nW1(S), KeG;, S semilinear
o Construct K’ € G; with K n W=1(S) € K' < (K n ¥~1(S))]

@ Plan: Use finite state transductions to stay within G;

@ Annotate words with additional information

Theorem (Parikh)

For context-free L,
V(L) is semilinear.
Seminar Cachan 1521

Ingredient Il
FocGocFic G c---cF
Problem
e Computability preserved by Alg(-)
@ No preservation for SLI(-)

Idea
e Given L € F;y1 = SLI(G;), construct L' € G; with L'| = L].
o Wilog L = K nW1(S), KeG;, S semilinear
o Construct K’ € G; with K n W=1(S) € K' < (K n ¥~1(S))]
@ Plan: Use finite state transductions to stay within G;

@ Annotate words with additional information

Theorem (Parikh) n o @ uj: constant vector
For context-free L, v(L) = U pi + F; @ F;: set of period
V(L) is semilinear. =1 vectors

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 15/21

Example

L = (ab)*(ca® u db¥)

Parikh image: ¢ +{a+b,a}® U d+{a+ b,b}®.

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

Example

L = (ab)*(ca® u db¥)

Parikh image: ¢ +{a+b,a}® U d+{a+ b,b}®.
1 ¢ 1 too1

(6% I 14 ,8 lod T
C= {O[,,B},
P= {M,V,O‘,T},
Py = {,u’al/}v
PB = {0-77—}’

Georg Zetzsche (TU KL) Effectively Regular Downward Closures

Seminar Cachan

16/21

Example
L = (ab)*(ca® u db¥)
Parikh image: ¢ +{a+b,a}® U d+{a+ b,b}®.
1 ¢ 1 too1

(07 I v ,8 lod T
C = {a716}7
P={uv,o,r1}, p(a) = c, v(B) =d,
Po = {p, v}, o(u) = a+b, p(v) = a,
PB = {0-77—}’ 30(0-) =a-+ bv @(7—) = ba

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan

16/21

Example
L = (ab)*(ca® u db¥)
Parikh image: ¢ +{a+ b,a}® U d+{a+b,b}®.
1 poog 1 too1

(07 I v ,8 lod T
C = {Oé,,B},
P={uv,o,r1}, p(a) = c, v(B) =d,
Po = {p, v}, o(u) =a+b, p(v) = a,
PB = {0-77—}’ 30(0-) =a-+ bv QP(T) = ba

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan

16/21

Example

L = (ab)*(ca® u db¥)

Parikh image: ¢ +{a+b,a}® U d+{a+ b,b}®.
1 ¢ 1 to1

(e o 14 ,8 o
C= {aaﬁ}v
P ={p,v,0,7}, p(a) =c,
Po = {p, v}, o(u) = a+b,
PQZ{O',T}, 30(0-):3+ba

¢(B) =d,
p(v) = a,
o(T) = b,

Georg Zetzsche (TU KL) Effectively Regular Downward Closures

Seminar Cachan

16/21

Example
L = (ab)*(ca® u db¥)
Parikh image: ¢ +{a+b,a}® U d+{a+ b,b}®.
1 ¢ 1 too1

(6% I 14 18 o T
C= {Oé,ﬁ},
P= {'u,y, UaT}v 90(0‘) =6 90(6) = d:
Po = {p, v}, ¢(u) = a+ b, e(v) = a,
Pg = {o, T}, o(o) = a+ b, o(T) = b,

K = a(pab)*c(va)* o B(cab)*d(rh)*

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 16 /21

Parikh annotations
@ New language in the same class
@ Additional symbols encode decomposition of Parikh image into
constant and period vectors
@ Adding period vectors by inserting at designated positions

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 17 /21

Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec, ¥)

V.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 17 /21

Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec,), where
e K C(XuP)*isinC,

V.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 17 /21

Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)
Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec,), where

e K C(XuP)*isinC,

o mx(K) =L,

V.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 17 /21

Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)
Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec,), where

e K C(XuP)*isinC,

e mx(K) =L,

o V(mx(w)) = p(mcup(w)) for each w € K,

v

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 17 /21

Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)
Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec,), where

e K C(XuP)*isinC,

e mx(K) =L,

o V(mx(w)) = @(rcup(w)) for each w € K,

o V(rcup(K)) = Ucec € + PO,

v

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 17 /21

Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec,), where

e K C(XuP)*isinC,

mx(K) = L,

V(rx(w)) = p(mcup(w)) for each w € K,
V(rcup(K)) =Ucecc+ Pe.

For cw € K and k € P9

v

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 17 /21

Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec,), where

e K C(XuP)*isinC,

mx(K) = L,

V(rx(w)) = p(mcup(w)) for each w € K,
V(rcup(K)) =Ucecc+ Pe.

For cw € K and k € PP, there is a v € L with

v

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 17 /21

Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec,), where

e K C(XuP)*isinC,

mx(K) = L,

V(rx(w)) = p(mcup(w)) for each w € K,

V(rcup(K)) =Ucecc+ Pe.

For cw € K and k € PP, there is a v € L with
V(v) = W(mx(ew)) + ¢(x)

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 17 /21

Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec,), where

e K C(XuP)*isinC,
mx(K) = L,
V(rx(w)) = p(mcup(w)) for each w € K,
V(rcup(K)) =Ucecc+ Pe.
For cw € K and k € PP, there is a v € L with
V(v) = V(rx(ew)) + ¢(k), x(cw) < v.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 17 /21

Theorem

For each level of the hierarchy, one can construct Parikh annotations.
@ Refinement of Parikh’s theorem

Georg Zetzsche (TU KL)

Effectively Regular Downward Closures

Theorem J

For each level of the hierarchy, one can construct Parikh annotations.

@ Refinement of Parikh’'s theorem

e Direct construction for F; 1 = SLI(G;)

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 18 /21

Theorem J

For each level of the hierarchy, one can construct Parikh annotations.

@ Refinement of Parikh’'s theorem

e Direct construction for F;1 = SLI(G;)
o Series of steps for G; = Alg(F;)

» Decomposition similar to van Leeuwen’s algorithm
» Most involved step: substitute a by {a, b}
» Replace annotation symbols and ordinary symbols consistently

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 18 /21

Theorem
For each level of the hierarchy, one can construct Parikh annotations. J

@ Refinement of Parikh’s theorem
e Direct construction for F;1 = SLI(G;)
@ Series of steps for G; = Alg(F;)

» Decomposition similar to van Leeuwen’s algorithm

» Most involved step: substitute a by {a, b}

» Replace annotation symbols and ordinary symbols consistently
A morphism ¢: (N u T)* — Z is G-compatible if A =" w implies
P(A) =(w), for Ae N, we T*.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 18 /21

Theorem

For each level of the hierarchy, one can construct Parikh annotations. J

@ Refinement of Parikh’s theorem
e Direct construction for F;1 = SLI(G;)
@ Series of steps for G; = Alg(F;)

» Decomposition similar to van Leeuwen’s algorithm
» Most involved step: substitute a by {a, b}
» Replace annotation symbols and ordinary symbols consistently

A morphism ¢: (N u T)* — Z is G-compatible if A =" w implies
P(A) =(w), for Ae N, we T*.

Lemma

Let G be a reduced C-grammar and v): T* — 7 a morphism such that
(w) = 0 for every w € L(G). Then 1 extends uniquely to a
G-compatible morphism ¢: (N v T)* — Z.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 18 /21

Using Parikh annotations, one can show:

Corollary

Given L € G; and semilinear S, one can construct L' € G; with
Lov (S cl' c(Lnvi(S)].

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 19/21

Using Parikh annotations, one can show:

Corollary

Given L € G; and semilinear S, one can construct L' € G; with
Lov (S cl' c(Lnvi(S)].

@ Select all words where adding period vectors leads into S

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 19/21

Using Parikh annotations, one can show:

Corollary

Given L € G; and semilinear S, one can construct L' € G; with
Lov (S cl' c(Lnvi(S)].

@ Select all words where adding period vectors leads into S

@ Downward closed set of multisets of period vectors

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 19/21

Using Parikh annotations, one can show:

Corollary

Given L € G; and semilinear S, one can construct L' € G; with
Lov (S cl' c(Lnvi(S)].

@ Select all words where adding period vectors leads into S
@ Downward closed set of multisets of period vectors

@ Recognizable by finite automaton

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 19/21

Conclusion
@ Downward closure: promising abstraction of languages
@ Computability known for few language classes

@ Computable for stacked counter automata

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 20/21

Conclusion
@ Downward closure: promising abstraction of languages
@ Computability known for few language classes

@ Computable for stacked counter automata

Future work
@ Applications of downward closures

@ Downward closures for other WQOs

@ Further classes of systems

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 20/21

Conclusion
@ Downward closure: promising abstraction of languages
@ Computability known for few language classes

@ Computable for stacked counter automata

Future work
@ Applications of downward closures
@ Downward closures for other WQOs

@ Further classes of systems

Thank you for your attention!

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 20/21

Why not K < CX*P*?
Then there would be no Parikh annotations for context-free languages!

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 21/21

Why not K < CX*P*?
Then there would be no Parikh annotations for context-free languages!
@ Suppose L = {a"b" | n = 0}. Then L e CF.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 21/21

Why not K < CX*P*?
Then there would be no Parikh annotations for context-free languages!
@ Suppose L = {a"b" | n = 0}. Then L e CF.

o If L has a PA with K < CX*P* in CF, then there is one with
K< X*P*C.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 21/21

Why not K < CX*P*?
Then there would be no Parikh annotations for context-free languages!
@ Suppose L = {a"b" | n = 0}. Then L e CF.
o If L has a PA with K < CX*P* in CF, then there is one with
K < X*P*C.
o Let L’ be obtained from K by replacing every x € C u P by a#(¥)(a).

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 21/21

Why not K < CX*P*?
Then there would be no Parikh annotations for context-free languages!
@ Suppose L = {a"b" | n = 0}. Then L e CF.
o If L has a PA with K < CX*P* in CF, then there is one with
K < X*P*C.
o Let L’ be obtained from K by replacing every x € C u P by a#(¥)(a).

@ Then L' = {a"b"a" | n = 0}, which is not context-free.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 21/21

	Appendix

