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Downward Closures
@ u < v: uis a subsequence of v
o Ll ={ueX*|3vel:uxv}

@ Oberver sees precisely L]
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Downward Closures

Theorem (Higman/Haines)
For every language L = X*, L| is regular.

Applications
Given an automaton for L|, many things are decidable:

@ Inclusion of behavior under lossy observation (K| < L|)
Ordinary inclusion almost always undecidable!

@ Which actions occur arbitrarily often? (a* < L|)
o Is a ever executed after b? (abe L))

@ Can the system run arbitrarily long? (L| infinite)

Problem

@ Finite automaton for L| exists for every L.

@ How can we compute it?

v
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State of the art
Very few known techniques.

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting
systems/0OL-systems.

o Context-free rules A — w

o Applied as: Au = uw

Theorem (Habermehl, Meyer, Wimmel 2010)

Downward closures are computable for Petri net languages.
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Stacked counter automata

A storage mechanism M consists of:
o States: set S of states
@ Operations: partial maps a1,...,0,: S — S
@ Initial state: spe S
o Final states: F< S
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Stacked counter automata

A storage mechanism M consists of:
o States: set S of states
@ Operations: partial maps a1,...,0,: S — S
@ Initial state: spe S

@ Final states: FC< S

Counter
o States: N
o Operations: increment, decrement, zero test

@ Initial and final state: 0

Trivial mechanism
Consists of one state and no operations.
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C(M): Adding a blind counter
e States: (s,z), s an old state, z € Z.
@ Operations: old operations; increment, decrement for counter
o Initial state: (sp,0)

o Final states: (f,0), f final in old mechanism
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C(M): Adding a blind counter
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°
()
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o Final states: (f,0), f final in old mechanism

S(M): Building stacks
@ States: sequences e[l - - [Clcn, ¢; old states

@ Operations: push separator, pop if empty, manipulate topmost entry
@ Initial and final state: Empty sequence
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C(M): Adding a blind counter
States: (s, z), s an old state, z € Z.

Operations: old operations; increment, decrement for counter
Initial state: (sp,0)

°
()
(]
o Final states: (f,0), f final in old mechanism

S(M): Building stacks
@ States: sequences e[l - - [Clcn, ¢; old states

@ Operations: push separator, pop if empty, manipulate topmost entry
@ Initial and final state: Empty sequence

Stacked counters
Mechanisms obtained from the trivial one by
@ adding blind counters,

@ building stacks.

v
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Modeling capabilities
@ Generalize both pushdown automata and blind counter automata
@ Recursive programs with access to private/shared counters

@ Connections to group theory

Theorem (Z. 2014)

Downward closures are computable for stacked counter automata.
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Expressiveness

Algebraic extensions

Let C be a language class. A C-grammar G consists of
@ Nonterminals N, terminals T, start symbol S e N
@ Productions A— Lwith L (NuUT)* LeC
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Expressiveness

Algebraic extensions

Let C be a language class. A C-grammar G consists of
@ Nonterminals N, terminals T, start symbol S e N
@ Productions A— Lwith L (NuUT)* LeC

uAv = uwv whenever w € L.
Generated language: {we T* | S =% w}.

Such languages are algebraic over C, class denoted Alg(C).

Example
Alg(FIN) = Alg(REG) = CF
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Definition
Let X be an alphabet.

o X® = {u|u: X > N}, multisets.
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Definition
Let X be an alphabet.
o XO = {u|u: X — N}, multisets.
o W: X* — X® W(w)(x) = |wlx is the Parikh map.
o For F={p1,...,un} S X®, let FO = {37  aju;i | a1,...,a, € N}
@ Sets of the form po + F® are called linear.

@ Finite unions of linear sets are called semilinear.

Semilinear constraints
Let C be a language class. SLI(C) denotes the class of languages

h(L A V7L(S))

for some L € C, a homomorphism h and a semilinear set S.
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Definition

Let X be an alphabet.

X® = {u| u: X — N}, multisets.

V: X* — X® W(w)(x) = |w|y is the Parikh map.

For F = {u1,...,pun} S X®, let FO = {377 ajpi | a1,...,an € N}
Sets of the form jg + F® are called linear.

Finite unions of linear sets are called semilinear.

Semilinear constraints
Let C be a language class. SLI(C) denotes the class of languages

h(L A V7L(S))

for some L € C, a homomorphism h and a semilinear set S.

Example
b+ (a+c)®
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Definition

Let X be an alphabet.

X® = {u| u: X — N}, multisets.

V: X* — X® W(w)(x) = |w|y is the Parikh map.

For F = {u1,...,pun} S X®, let FO = {377 ajpi | a1,...,an € N}
Sets of the form jg + F® are called linear.

Finite unions of linear sets are called semilinear.

Semilinear constraints
Let C be a language class. SLI(C) denotes the class of languages

h(L A V7L(S))

for some L € C, a homomorphism h and a semilinear set S.

Example
a*bc* "W (b+ (a+c)9)
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Definition

Let X be an alphabet.

X® = {u| u: X — N}, multisets.

V: X* — X® W(w)(x) = |w|y is the Parikh map.

For F = {u1,...,pun} S X®, let FO = {377 ajpi | a1,...,an € N}
Sets of the form jg + F® are called linear.

Finite unions of linear sets are called semilinear.

Semilinear constraints
Let C be a language class. SLI(C) denotes the class of languages

h(L A V7L(S))

for some L € C, a homomorphism h and a semilinear set S.

Example
h(a*bc* " WL(b+ (a+ c)9)) h:a,c— a, b b.
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Definition
Let X be an alphabet.

o XO = {u|u: X — N}, multisets.

o W: X* — X® W(w)(x) = |wlx is the Parikh map.

o For F={p1,...,un} S X®, let FO = {37  aju;i | a1,...,a, € N}
@ Sets of the form po + F® are called linear.
o

Finite unions of linear sets are called semilinear.

Semilinear constraints
Let C be a language class. SLI(C) denotes the class of languages

h(L A V7L(S))

for some L € C, a homomorphism h and a semilinear set S.

Example
h(a*bc* "W L(b+ (a+¢)®)) ={a"ba" | n> 0}, h: a,c+>a, b+ b.
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A hierarchy of language classes
Hierarchy

Fo = finite languages,
G; = Alg(Fi)7

Fir1 = SLI(G)),

F=|JF:

i=0
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In particular: Gg = CF.
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Hierarchy
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G; = Alg(F;), Fit1 = SLI(G)),

In particular: Gy = CF.

i=0
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A hierarchy of language classes
Hierarchy

Fo = finite languages,
G; = Alg(F)), Fir1 = SLI(G)), F=|JF:
i=0

In particular: Gy = CF.

FocGocFicG c---cF

Theorem
L(5(5(M))) = Alg(L(M))
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A hierarchy of language classes

Hierarchy
Fo = finite languages,
G; = Alg(F;), Fir1 = SLI(G;), F=|JF:
i>0
In particular: Gy = CF.
FocGocFicG c---cF

Theorem
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A hierarchy of language classes

Hierarchy
Fo = finite languages,
G; = Alg(F;), Fir1 = SLI(G;), F=|JF:
i>0
In particular: Gy = CF.
FocGocFicG c---cF

Theorem

L(S(S(M))) = Alg(L(M)),  Uizo L(C'(M)) = SLI(L(M)). J

Corollary J

Stacked counter automata accept precisely the languages in F.
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Ingredient |

van Leeuwen proved a stronger statement:

Theorem (van Leeuwen 1978)

If C is closed under regular intersections:
Downward closures computable for C = computable for Alg(C).
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Ingredient |

van Leeuwen proved a stronger statement:

Theorem (van Leeuwen 1978)

If C is closed under regular intersections:
Downward closures computable for C = computable for Alg(C).

Consequence
Algorithm for F; = Algorithm for G; = Alg(F;).
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].
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@ Replace each production A — L with A — L].

Case 1 J

Suppose there is only one nonterminal S.
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
> S$= x5 = xS x1%25y1Y2
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
» S= x5 = x10S5 = x1S»  x1xSy1y
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L].

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
» S = x5 = x105 = x10S5y = x1xSy1)>

@ If = 2 occurrences of S on some right-hand side:
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
» S = x5 = x105 = x10S5y = x1xSy1)>
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» SF(G)] = (XuYu{SH*
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*,
X: occur to the left of S; Y: occur to the right of S
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Suppose there is only one nonterminal S.

Case 1 J

@ Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*;
X: occur to the left of S; Y: occur to the right of S
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o If = 2 occurrences of S on some right-hand side:
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Suppose there is only one nonterminal S.

Case 1 J

@ Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (SS ¢ L] for S — L]):
» SF(G)| = X*{S,e} Y™,
X: occur to the left of S; Y: occur to the right of S
» S= x5 = X105 = x105y = x1xSy1 )
o If = 2 occurrences of S on some right-hand side:
» SF(G)] = (Xu Yu{S}H*
» $=55=5xS Sxiy
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Case 1 J

Suppose there is only one nonterminal S.

@ Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (SS ¢ L] for S — L]):
» SF(G)| = X*{S,e} Y™,
X: occur to the left of S; Y: occur to the right of S
> 5 = X15 = X1X25 = X1X25y2 = X1X25y1y2
o If = 2 occurrences of S on some right-hand side:
» SF(G)] = (XuYu{SH*
» §=855= 55 = 5x5S Sxiyr
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Case 1 J

Suppose there is only one nonterminal S.

@ Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (SS ¢ L] for S — L]):
» SF(G)| = X*{S,e} Y™,
X: occur to the left of S; Y: occur to the right of S
> 5 = X15 = X1X25 = X1X25y2 = X1X25y1y2
o If = 2 occurrences of S on some right-hand side:
» SF(G)] = (XuYu{SH*
» 5= 55=54q5=50q55= 545nS > San
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van Leeuwen’s Algorithm

@ Replace each production A — L with A — L|.

Case 1 J

Suppose there is only one nonterminal S.

e Wilog: S occurs on every right-hand side; compute SF(G)]|.
@ If <1 occurrences of S on right-hand sides (5SS ¢ L] for S — L]):
» SF(G)| = X*{S,e}Y*,
X: occur to the left of S; Y: occur to the right of S
» S = x5 = x105 = x10S5y = x1xSy1)>
@ If = 2 occurrences of S on some right-hand side:
» SF(G)] = (XuYu{SH*
» 5= 55=545=5455= 54q51S > Sxan
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van Leeuwen’s Algorithm

b S b
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van Leeuwen’s Algorithm
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van Leeuwen’s Algorithm

Algorithm
@ For nonterminals A # S,
construct grammar Ggu:

Start symbol A
S is now terminal
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Algorithm
@ For nonterminals A # S,
construct grammar Ga:
Start symbol A
S is now terminal
@ Gy has fewer
nonterminals
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van Leeuwen’s Algorithm

Algorithm
@ For nonterminals A # S,
construct grammar Ga:
Start symbol A
S is now terminal
@ Gy has fewer
nonterminals

o Compute L(Ga)l
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van Leeuwen’s Algorithm

Algorithm
@ For nonterminals A # S,
construct grammar Ga:
Start symbol A
S is now terminal
@ Gy has fewer
nonterminals

o Compute L(Ga)l

@ In each S — L, replace
each A by L(Ga)|

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 14 /21



van Leeuwen’s Algorithm

S — abSSbcSb
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Algorithm
@ For nonterminals A # S,
construct grammar Ga:
Start symbol A
S is now terminal
@ Gy has fewer
nonterminals

o Compute L(Ga)l

@ In each S — L, replace
each A by L(Ga)|
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van Leeuwen’s Algorithm

Algorithm
@ For nonterminals A # S,
construct grammar Ga:
Start symbol A
S is now terminal
@ Gy has fewer
nonterminals

o Compute L(Ga)l

@ In each S — L, replace
each A by L(Ga)|

@ Resulting grammar has
one nonterminal

S — abSSbcSb
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Ingredient Il

FogGogFlgGlg
Problem

e Computability preserved by Alg(-)
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Ingredient Il
FobcGocFicG c---cF
Problem
e Computability preserved by Alg(-)
@ No preservation for SLI(-)

Idea
e Given L € F;y1 = SLI(G;), construct L' € G; with L'| = L].
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o Wilog L = K nW1(S), KeG;, S semilinear
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Problem
e Computability preserved by Alg(-)
@ No preservation for SLI(-)

Idea
e Given L € F;y1 = SLI(G;), construct L' € G; with L'| = L].
o Wilog L = K nW1(S), KeG;, S semilinear
o Construct K’ € G; with K n W=1(S) € K' < (K n ¥~1(S))]

@ Plan: Use finite state transductions to stay within G;
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Ingredient Il
FocGocFicGic---CF
Problem
e Computability preserved by Alg(-)

@ No preservation for SLI(-)

Idea
e Given L € F;y1 = SLI(G;), construct L' € G; with L'| = L].
o Wilog L = K nW1(S), KeG;, S semilinear
o Construct K’ € G; with K n W=1(S) € K' < (K n ¥~1(S))]

@ Plan: Use finite state transductions to stay within G;

@ Annotate words with additional information )
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Ingredient Il
FocGocFicGic---CF
Problem
e Computability preserved by Alg(-)

@ No preservation for SLI(-)

Idea
e Given L € F;y1 = SLI(G;), construct L' € G; with L'| = L].
o Wilog L = K nW1(S), KeG;, S semilinear
o Construct K’ € G; with K n W=1(S) € K' < (K n ¥~1(S))]

@ Plan: Use finite state transductions to stay within G;

@ Annotate words with additional information

Theorem (Parikh)

For context-free L,
V(L) is semilinear.
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Ingredient Il
FocGocFic G c---cF
Problem
e Computability preserved by Alg(-)
@ No preservation for SLI(-)

Idea
e Given L € F;y1 = SLI(G;), construct L' € G; with L'| = L].
o Wilog L = K nW1(S), KeG;, S semilinear
o Construct K’ € G; with K n W=1(S) € K' < (K n ¥~1(S))]
@ Plan: Use finite state transductions to stay within G;

@ Annotate words with additional information

Theorem (Parikh) n o @ uj: constant vector
For context-free L, v(L) = U pi + F; @ F;: set of period
V(L) is semilinear. =1 vectors
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Example

L = (ab)*(ca® u db¥)

Parikh image: ¢ +{a+b,a}® U d+{a+ b,b}®.
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Example

L = (ab)*(ca® u db¥)

Parikh image: ¢ +{a+b,a}® U d+{a+ b,b}®.
1 ¢ 1 too1

(6% I 14 ,8 lod T
C= {O[,,B},
P= {M,V,O‘,T},
Py = {,u’al/}v
PB = {0-77—}’
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Example
L = (ab)*(ca® u db¥)
Parikh image: ¢ +{a+b,a}® U d+{a+ b,b}®.
1 ¢ 1 too1

(07 I v ,8 lod T
C = {a716}7
P={uv,o,r1}, p(a) = c, v(B) =d,
Po = {p, v}, o(u) = a+b, p(v) = a,
PB = {0-77—}’ 30(0-) =a-+ bv @(7—) = ba
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L = (ab)*(ca® u db¥)
Parikh image: ¢ +{a+ b,a}® U d+{a+b,b}®.
1 poog 1 too1

(07 I v ,8 lod T
C = {Oé,,B},
P={uv,o,r1}, p(a) = c, v(B) =d,
Po = {p, v}, o(u) =a+b, p(v) = a,
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Example

L = (ab)*(ca® u db¥)

Parikh image: ¢ +{a+b,a}® U d+{a+ b,b}®.
1 ¢ 1 to1

(e o 14 ,8 o
C= {aaﬁ}v
P ={p,v,0,7}, p(a) =c,
Po = {p, v}, o(u) = a+b,
PQZ{O',T}, 30(0-):3+ba

¢(B) =d,
p(v) = a,
o(T) = b,
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Example
L = (ab)*(ca® u db¥)
Parikh image: ¢ +{a+b,a}® U d+{a+ b,b}®.
1 ¢ 1 too1

(6% I 14 18 o T
C= {Oé,ﬁ},
P= {'u,y, UaT}v 90(0‘) =6 90(6) = d:
Po = {p, v}, ¢(u) = a+ b, e(v) = a,
Pg = {o, T}, o(o) = a+ b, o(T) = b,

K = a(pab)*c(va)* o B(cab)*d(rh)*
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Parikh annotations
@ New language in the same class
@ Additional symbols encode decomposition of Parikh image into
constant and period vectors
@ Adding period vectors by inserting at designated positions
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Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec, ¥)

V.
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Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec, ), where
e K C(XuP)*isinC,

V.
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Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)
Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec, ), where

e K C(XuP)*isinC,

o mx(K) =L,

V.
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Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)
Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec, ), where

e K C(XuP)*isinC,

e mx(K) =L,

o V(mx(w)) = p(mcup(w)) for each w € K,

v
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Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)
Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec, ), where

e K C(XuP)*isinC,

e mx(K) =L,

o V(mx(w)) = @(rcup(w)) for each w € K,

o V(rcup(K)) = Ucec € + PO,

v
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Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec, ), where

e K C(XuP)*isinC,

mx(K) = L,

V(rx(w)) = p(mcup(w)) for each w € K,
V(rcup(K)) =Ucecc+ Pe.

For cw € K and k € P9

v
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Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec, ), where

e K C(XuP)*isinC,

mx(K) = L,

V(rx(w)) = p(mcup(w)) for each w € K,
V(rcup(K)) =Ucecc+ Pe.

For cw € K and k € PP, there is a v € L with
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Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec, ), where

e K C(XuP)*isinC,

mx(K) = L,

V(rx(w)) = p(mcup(w)) for each w € K,

V(rcup(K)) =Ucecc+ Pe.

For cw € K and k € PP, there is a v € L with
V(v) = W(mx(ew)) + ¢(x)
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Parikh annotations
@ New language in the same class

@ Additional symbols encode decomposition of Parikh image into
constant and period vectors

@ Adding period vectors by inserting at designated positions

Definition (Parikh annotation)

Let C be a language class and L € C, L < X*. A Parikh annotation for L in
Cis a tuple (K, C, P, (Pc)cec, ), where

e K C(XuP)*isinC,
mx(K) = L,
V(rx(w)) = p(mcup(w)) for each w € K,
V(rcup(K)) =Ucecc+ Pe.
For cw € K and k € PP, there is a v € L with
V(v) = V(rx(ew)) + ¢(k), x(cw) < v.
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Theorem

For each level of the hierarchy, one can construct Parikh annotations.
@ Refinement of Parikh’s theorem
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Theorem J

For each level of the hierarchy, one can construct Parikh annotations.

@ Refinement of Parikh’'s theorem

e Direct construction for F; 1 = SLI(G;)
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Theorem J

For each level of the hierarchy, one can construct Parikh annotations.

@ Refinement of Parikh’'s theorem

e Direct construction for F;1 = SLI(G;)
o Series of steps for G; = Alg(F;)

» Decomposition similar to van Leeuwen’s algorithm
» Most involved step: substitute a by {a, b}
» Replace annotation symbols and ordinary symbols consistently
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Theorem
For each level of the hierarchy, one can construct Parikh annotations. J

@ Refinement of Parikh’s theorem
e Direct construction for F;1 = SLI(G;)
@ Series of steps for G; = Alg(F;)

» Decomposition similar to van Leeuwen’s algorithm

» Most involved step: substitute a by {a, b}

» Replace annotation symbols and ordinary symbols consistently
A morphism ¢: (N u T)* — Z is G-compatible if A =" w implies
P(A) =(w), for Ae N, we T*.
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Theorem

For each level of the hierarchy, one can construct Parikh annotations. J

@ Refinement of Parikh’s theorem
e Direct construction for F;1 = SLI(G;)
@ Series of steps for G; = Alg(F;)

» Decomposition similar to van Leeuwen’s algorithm
» Most involved step: substitute a by {a, b}
» Replace annotation symbols and ordinary symbols consistently

A morphism ¢: (N u T)* — Z is G-compatible if A =" w implies
P(A) =(w), for Ae N, we T*.

Lemma

Let G be a reduced C-grammar and v): T* — 7 a morphism such that
(w) = 0 for every w € L(G). Then 1 extends uniquely to a
G-compatible morphism ¢: (N v T)* — Z.
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Using Parikh annotations, one can show:

Corollary

Given L € G; and semilinear S, one can construct L' € G; with
Lov (S cl' c(Lnvi(S)].
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Given L € G; and semilinear S, one can construct L' € G; with
Lov (S cl' c(Lnvi(S)].

@ Select all words where adding period vectors leads into S
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Using Parikh annotations, one can show:

Corollary

Given L € G; and semilinear S, one can construct L' € G; with
Lov (S cl' c(Lnvi(S)].

@ Select all words where adding period vectors leads into S

@ Downward closed set of multisets of period vectors
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Using Parikh annotations, one can show:

Corollary

Given L € G; and semilinear S, one can construct L' € G; with
Lov (S cl' c(Lnvi(S)].

@ Select all words where adding period vectors leads into S
@ Downward closed set of multisets of period vectors

@ Recognizable by finite automaton
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Conclusion
@ Downward closure: promising abstraction of languages
@ Computability known for few language classes

@ Computable for stacked counter automata
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Future work
@ Applications of downward closures

@ Downward closures for other WQOs

@ Further classes of systems
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Conclusion
@ Downward closure: promising abstraction of languages
@ Computability known for few language classes

@ Computable for stacked counter automata

Future work
@ Applications of downward closures
@ Downward closures for other WQOs

@ Further classes of systems

Thank you for your attention!
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Why not K < CX*P*?
Then there would be no Parikh annotations for context-free languages!
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Then there would be no Parikh annotations for context-free languages!
@ Suppose L = {a"b" | n = 0}. Then L e CF.
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Why not K < CX*P*?
Then there would be no Parikh annotations for context-free languages!
@ Suppose L = {a"b" | n = 0}. Then L e CF.

o If L has a PA with K < CX*P* in CF, then there is one with
K< X*P*C.
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Why not K < CX*P*?
Then there would be no Parikh annotations for context-free languages!
@ Suppose L = {a"b" | n = 0}. Then L e CF.
o If L has a PA with K < CX*P* in CF, then there is one with
K < X*P*C.
o Let L’ be obtained from K by replacing every x € C u P by a#(¥)(a).
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Why not K < CX*P*?
Then there would be no Parikh annotations for context-free languages!
@ Suppose L = {a"b" | n = 0}. Then L e CF.
o If L has a PA with K < CX*P* in CF, then there is one with
K < X*P*C.
o Let L’ be obtained from K by replacing every x € C u P by a#(¥)(a).

@ Then L' = {a"b"a" | n = 0}, which is not context-free.

Georg Zetzsche (TU KL) Effectively Regular Downward Closures Seminar Cachan 21/21



	Appendix

