An approach to computing downward closures

Georg Zetzsche

Technische Universität Kaiserslautern

ICALP 2015

Georg Zetzsche (TU KL)

Computing Downward Closures

ICALP 2015 1 / 16

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

<ロト < 四ト < 三ト < 三ト

<ロト < 四ト < 三ト < 三ト

<u>aabcbbacbbaaab</u>

A D N A B N A B N A B N

<u>aabcbbacbbaaab</u>

Downward Closures

- $u \leq v$: *u* is a subsequence of *v*
- $L \downarrow = \{ u \in X^* \mid \exists v \in L \colon u \leq v \}$
- Observer sees precisely $L\downarrow$

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

• • = • • = •

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!

- E > - E >

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$

• Is a ever executed after b? $(ab \in L\downarrow)$

A B b A B b

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$
- Is a ever executed after b? $(ab \in L\downarrow)$
- Can the system run arbitrarily long? ($L\downarrow$ infinite)

• • = • • = •

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L\downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$
- Is a ever executed after b? $(ab \in L\downarrow)$
- Can the system run arbitrarily long? ($L\downarrow$ infinite)

Problem

- Finite automaton for $L\downarrow$ exists for every L.
- How can we compute it?

Theorem (Gruber, Holzer, Kutrib 2009)

Downward closures are not computable when infinity or emptiness are undecidable.

Theorem (Mayr 2003)

The reachability set of lossy channel systems is not computable.

A B A A B A

Georg Zetzsche (TU KL)

< □ > < □ > < □ > < □ > < □ >

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Image: A Image: A

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani, ICALP 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

• • = • • = •

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani, ICALP 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

Context-free rules $A \rightarrow w$, applied as: $Au \Rightarrow uw$

<日

<</p>

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani, ICALP 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

Context-free rules $A \rightarrow w$, applied as: $Au \Rightarrow uw$

Theorem (Habermehl, Meyer, Wimmel, ICALP 2010)

Downward closures are computable for Petri net languages.

<日

<</p>

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani, ICALP 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

Context-free rules $A \rightarrow w$, applied as: $Au \Rightarrow uw$

Theorem (Habermehl, Meyer, Wimmel, ICALP 2010)

Downward closures are computable for Petri net languages.

Theorem (Z., STACS 2015)

Downward closures are computable for stacked counter automata.

イロト 不得下 イヨト イヨト 二日

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani, ICALP 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

Context-free rules $A \rightarrow w$, applied as: $Au \Rightarrow uw$

Theorem (Habermehl, Meyer, Wimmel, ICALP 2010)

Downward closures are computable for Petri net languages.

Theorem (Z., STACS 2015)

Downward closures are computable for stacked counter automata.

- Weak form of stack nesting
- Adding Counters

Georg Zetzsche (TU KL)

イロト 不得 トイヨト イヨト 二日

A general approach

Example (Transducer)

(4) (日本)

A general approach

Example (Transducer)

$$T(A) = \{(x, u \# v \# w) \mid u, v, w, x \in \{a, b\}^*, v \leq x\}$$

< □ > < 同 > < 回 > < 回 > < 回 >

A general approach

Example (Transducer)

$$T(A) = \{ (x, u \# v \# w) \mid u, v, w, x \in \{a, b\}^*, v \leq x \}$$

Definition

- Rational transduction: set of pairs given by a finite state transducer.
- For rational transduction $T \subseteq X^* \times Y^*$ and language $L \subseteq Y^*$, let

$$TL = \{ y \in X^* \mid \exists x \in L : (x, y) \in T \}$$

Definition

C is a *full trio* if $LR \in C$ for each $L \in C$ and rational transduction R.

Theorem

If C is a full trio, then downward closures are computable for C if and only if the simultaneous unboundedness problem is decidable: Given A language $L \subseteq a_1^* \cdots a_n^*$ in C

Question Is $a_1^* \cdots a_n^*$ included in $L \downarrow ?$

• • = • • = •

Every language $L\downarrow$ can be written as a finite union of sets of the form

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

"Simple Regular Languages"

• • = • • = •

Every language $L\downarrow$ can be written as a finite union of sets of the form

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

<日

<</p>

Every language $L\downarrow$ can be written as a finite union of sets of the form

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

"Simple Regular Languages" ← Ideal decomposition!

Algorithm

Suppose $L \subseteq X^*$ is given. Enumerate simple regular languages R. Decide whether $L \downarrow = R$:

• • = • • = • =

Every language $L\downarrow$ can be written as a finite union of sets of the form

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

"Simple Regular Languages" \leftarrow Ideal decomposition!

Algorithm

Suppose $L \subseteq X^*$ is given. Enumerate simple regular languages R. Decide whether $L \downarrow = R$:

•
$$L \downarrow \subseteq R$$
 iff $L \downarrow \cap (X^* \backslash R) = \emptyset \rightsquigarrow$ emptiness.

くぼう くほう くほう しゅ

Every language $L\downarrow$ can be written as a finite union of sets of the form

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

"Simple Regular Languages" ← Ideal decomposition!

Every language $L\downarrow$ can be written as a finite union of sets of the form

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

"Simple Regular Languages" ← Ideal decomposition!

• It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.

A D N A B N A B N A B N

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- L↓ includes {a, b, c}* if and only if it contains (abc)*.

(4) (日本)

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- L↓ includes {a, b, c}* if and only if it contains (abc)*.

abc abc abc abc abc

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.

abc abc abc abc abc

bacca

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.

abc abc abc abc abc

bacca

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.

abc abc abc abc abc

bacca

A D N A B N A B N A B N
Observation

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^*$.

abc abc abc abc abc

bacca

 y_i : word containing each letter of Y_i once. Then:

$$T(L\downarrow)\downarrow = a_0^* \cdots a_n^* \quad \text{iff} \quad Y_0^*\{x_1,\varepsilon\}Y_1^* \cdots \{x_n,\varepsilon\}Y_n^* \subseteq L\downarrow$$

A D N A B N A B N A B N

Context-free grammars and stacked counter automata:

Corollary

If C is a full trio and has effectively semilinear Parikh images, then downward closures are computable for C.

Context-free grammars and stacked counter automata:

Corollary

If C is a full trio and has effectively semilinear Parikh images, then downward closures are computable for C.

Petri net languages \rightsquigarrow boundedness with one inhibitor arc (Czerwiński, Martens 2015), decidable by (Bonnet et. al. 2012)

Context-free grammars and stacked counter automata:

Corollary

If C is a full trio and has effectively semilinear Parikh images, then downward closures are computable for C.

Petri net languages \rightsquigarrow boundedness with one inhibitor arc (Czerwiński, Martens 2015), decidable by (Bonnet et. al. 2012)

Theorem

Downward closures are computable for matrix languages.

Natural generalization of context-free and Petri net languages.

• • = • • = •

Context-free grammars and stacked counter automata:

Corollary

If C is a full trio and has effectively semilinear Parikh images, then downward closures are computable for C.

Petri net languages \rightsquigarrow boundedness with one inhibitor arc (Czerwiński, Martens 2015), decidable by (Bonnet et. al. 2012)

Theorem

Downward closures are computable for matrix languages.

Natural generalization of context-free and Petri net languages.

Theorem

Downward closures are computable for indexed languages.

(Generalize 0L-systems)

・ 同 ト ・ ヨ ト ・ ヨ ト

Indexed Grammars

Idea: Each nonterminal carries a stack.

< □ > < 同 > < 回 > < 回 > < 回 >

Indexed Grammars

Idea: Each nonterminal carries a stack. Tuple G = (N, T, I, P, S), where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol

→ ∃ →

Indexed Grammars

Idea: Each nonterminal carries a stack. Tuple G = (N, T, I, P, S), where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol
- Productions *P* of the form
 - $A \rightarrow Bf$, push index $(f \in I)$
 - $Af \rightarrow B$, pop index $(f \in I)$
 - $A \rightarrow uBv$, generate terminals $(u, v \in T^*)$
 - $A \rightarrow BC$, split and duplicate index word
 - $A \rightarrow w$, generate only terminals $(w \in T^*)$

• • = • • = •

Indexed Grammars

Idea: Each nonterminal carries a stack. Tuple G = (N, T, I, P, S), where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol
- Productions *P* of the form
 - $A \rightarrow Bf$, push index $(f \in I)$
 - Af \rightarrow B, pop index ($f \in I$)
 - $A \rightarrow uBv$, generate terminals $(u, v \in T^*)$
 - $A \rightarrow BC$, split and duplicate index word
 - A \rightarrow w, generate only terminals ($w \in T^*$)

$$\begin{split} S \to Sf, & S \to Sg, \quad S \to UU, \quad U \to \varepsilon, \\ Uf \to A, & Ug \to B, \quad A \to Ua, \quad B \to Ub. \end{split}$$

 $N = \{S, T, A, B\}, I = \{f, g\}, T = \{a, b\}.$

A D F A B F A B F A B

Indexed Grammars

Idea: Each nonterminal carries a stack. Tuple G = (N, T, I, P, S), where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol
- Productions *P* of the form
 - $A \rightarrow Bf$, push index $(f \in I)$
 - $Af \rightarrow B$, pop index $(f \in I)$
 - $A \rightarrow uBv$, generate terminals $(u, v \in T^*)$
 - $A \rightarrow BC$, split and duplicate index word
 - $A \rightarrow w$, generate only terminals $(w \in T^*)$

$$S \to Sf$$
, $S \to Sg$, $S \to UU$, $U \to \varepsilon$,
 $Uf \to A$, $Ug \to B$, $A \to Ua$, $B \to Ub$.

 $N = \{S, T, A, B\}, I = \{f, g\}, T = \{a, b\}.$

No exact representation

Undeciable: Does $L \subseteq a^*b^*$ intersect with $\{a^nb^n \mid n \ge 0\}$?

イロト イポト イヨト イヨト 二日

No exact representation

Undeciable: Does $L \subseteq a^*b^*$ intersect with $\{a^nb^n \mid n \ge 0\}$?

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

イロト イポト イヨト イヨト 二日

No exact representation

Undeciable: Does $L \subseteq a^*b^*$ intersect with $\{a^nb^n \mid n \ge 0\}$?

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

• Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.

No exact representation

Undeciable: Does $L \subseteq a^*b^*$ intersect with $\{a^nb^n \mid n \ge 0\}$?

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.
- For each *a_i*, at least one of the following holds:

No exact representation

Undeciable: Does $L \subseteq a^*b^*$ intersect with $\{a^nb^n \mid n \ge 0\}$?

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.
- For each *a_i*, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*

<日

<</p>

No exact representation

Undeciable: Does $L \subseteq a^*b^*$ intersect with $\{a^nb^n \mid n \ge 0\}$?

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.
- For each *a_i*, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

くぼう くほう くほう しゅ

No exact representation

Undeciable: Does $L \subseteq a^*b^*$ intersect with $\{a^nb^n \mid n \ge 0\}$?

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.
- For each *a_i*, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset $D \subseteq \{a_1, \ldots, a_n\}$, construct G_D

No exact representation

Undeciable: Does $L \subseteq a^*b^*$ intersect with $\{a^nb^n \mid n \ge 0\}$?

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.
- For each *a_i*, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset $D \subseteq \{a_1, \ldots, a_n\}$, construct G_D :

- for $a_i \in D$, instead of deriving whole a_i -subtree, generate one a_i
- for $a_i \notin D$, derive only one of the a_i -subtrees

No exact representation

Undeciable: Does $L \subseteq a^*b^*$ intersect with $\{a^nb^n \mid n \ge 0\}$?

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.
- For each *a_i*, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset $D \subseteq \{a_1, \ldots, a_n\}$, construct G_D :

- for $a_i \in D$, instead of deriving whole a_i -subtree, generate one a_i
- for $a_i \notin D$, derive only one of the a_i -subtrees \leftarrow "indirect"

No exact representation

Undeciable: Does $L \subseteq a^*b^*$ intersect with $\{a^nb^n \mid n \ge 0\}$?

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.
- For each *a_i*, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset $D \subseteq \{a_1, \ldots, a_n\}$, construct G_D :

- for $a_i \in D$, instead of deriving whole a_i -subtree, generate one a_i
- for $a_i \notin D$, derive only one of the a_i -subtrees \leftarrow "indirect"

Then, $a_1^* \cdots a_n^* \subseteq L(G) \downarrow$ iff $a_1^* \cdots a_n^* \subseteq L(G_D) \downarrow$ for some *D*.

Only obstacle: a_i -subtrees for indirect a_i

Georg Zetzsche (TU KL)

Computing Downward Closures

▶ < ≧ ▶ ≧ ∽ < < ICALP 2015 13/16

< □ > < 同 > < 回 > < 回 > < 回 >

Only obstacle: a_i -subtrees for indirect a_i

• Consider the interval $a_i^* \cdots a_i^*$ for each occurring nonterminal

• • = • • = •

Only obstacle: a_i -subtrees for indirect a_i

• Consider the interval $a_i^* \cdots a_i^*$ for each occurring nonterminal

$a_1 S_{(1,2)} a_2 a_2 T_{(3)} U_{(4)} a_5 V_{(5,8)} a_7 a_8 a_8 W_{(9)}$

Indirect symbols: $\{a_3, a_4, a_9\}$

.

Only obstacle: a_i -subtrees for indirect a_i

- Consider the interval $a_i^* \cdots a_i^*$ for each occurring nonterminal
- Suppose: no unfolding of *a_i*-subtrees, indirect *a_i*

$a_1 S_{(1,2)} a_2 a_2 T_{(3)} U_{(4)} a_5 V_{(5,8)} a_7 a_8 a_8 W_{(9)}$

Only obstacle: a_i -subtrees for indirect a_i

- Consider the interval $a_i^* \cdots a_i^*$ for each occurring nonterminal
- Suppose: no unfolding of *a_i*-subtrees, indirect *a_i*
- Then the nonterminals have pairwise distinct intervals

$$a_1 S_{(1,2)} a_2 a_2 T_{(3)} U_{(4)} a_5 V_{(5,8)} a_7 a_8 a_8 W_{(9)}$$

Only obstacle: a_i -subtrees for indirect a_i

- Consider the interval $a_i^* \cdots a_i^*$ for each occurring nonterminal
- Suppose: no unfolding of *a_i*-subtrees, indirect *a_i*
- Then the nonterminals have pairwise distinct intervals
- \Rightarrow Bounded number of occurrences

$$a_1 S_{(1,2)} a_2 a_2 T_{(3)} U_{(4)} a_5 V_{(5,8)} a_7 a_8 a_8 W_{(9)}$$

Only obstacle: a_i -subtrees for indirect a_i

- Consider the interval $a_i^* \cdots a_i^*$ for each occurring nonterminal
- Suppose: no unfolding of *a_i*-subtrees, indirect *a_i*
- Then the nonterminals have pairwise distinct intervals
- \Rightarrow Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

$$a_1 S_{(1,2)} a_2 a_2 T_{(3)} U_{(4)} a_5 V_{(5,8)} a_7 a_8 a_8 W_{(9)}$$

Only obstacle: a_i -subtrees for indirect a_i

- Consider the interval $a_i^* \cdots a_i^*$ for each occurring nonterminal
- Suppose: no unfolding of *a_i*-subtrees, indirect *a_i*
- Then the nonterminals have pairwise distinct intervals
- \Rightarrow Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

$$a_1 S_{(1,2)} a_2 a_2 T_{(3)} U_{(4)} a_5 V_{(5,8)} a_7 a_8 a_8 W_{(9)}$$

Indirect symbols: $\{a_3, a_4, a_9\}$

Idea

Instead of unfolding a_i -subtree with root Au, $u \in I^*$, apply transducer to u

• • = • • =

Only obstacle: a_i -subtrees for indirect a_i

- Consider the interval $a_i^* \cdots a_i^*$ for each occurring nonterminal
- Suppose: no unfolding of *a_i*-subtrees, indirect *a_i*
- Then the nonterminals have pairwise distinct intervals
- \Rightarrow Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

$$a_1 S_{(1,2)} a_2 a_2 T_{(3)} U_{(4)} a_5 V_{(5,8)} a_7 a_8 a_8 W_{(9)}$$

Indirect symbols: $\{a_3, a_4, a_9\}$

Idea

Instead of unfolding a_i -subtree with root Au, $u \in I^*$, apply transducer to uHowever: Precise simulation not possible

• • = • • =

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G \colon NI^* \to \mathbb{N} \cup \{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (Au, v) \in T\}$$

$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, Au \Rightarrow_G^* v\}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G \colon NI^* \to \mathbb{N} \cup \{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (Au, v) \in T\}$$

$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, Au \Rightarrow_G^* v\}$$

Proposition

For each indexed grammar G, one can construct a rational transduction T with $f_T \approx f_G$.

 $f \approx g$: f is unbounded on the same subsets as g(\rightarrow regular cost functions)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G \colon NI^* \to \mathbb{N} \cup \{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (Au, v) \in T\}$$

$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, Au \Rightarrow_G^* v\}$$

Proposition

For each indexed grammar G, one can construct a rational transduction T with $f_T \approx f_G$.

 $f \approx g$: f is unbounded on the same subsets as g(\rightarrow regular cost functions)

Step 2: Apply transducer

Only one nonterminal occurrence for transducer

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G \colon NI^* \to \mathbb{N} \cup \{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (Au, v) \in T\}$$

$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, Au \Rightarrow_G^* v\}$$

Proposition

For each indexed grammar G, one can construct a rational transduction T with $f_T \approx f_G$.

 $f \approx g$: f is unbounded on the same subsets as g(\rightarrow regular cost functions)

Step 2: Apply transducer

- Only one nonterminal occurrence for transducer
- \Rightarrow Bound on nonterminal occurrences, "breadth-bounded"

イロト イヨト イヨト 一日

Remaining problem

- Given: Breadth-bounded indexed grammar G, $L(G) \subseteq a_1^* \cdots a_n^*$
- Is $a_1^* \cdots a_n^*$ included in $L(G) \downarrow$?

イロト イポト イヨト イヨト 二日

Remaining problem

- Given: Breadth-bounded indexed grammar G, $L(G) \subseteq a_1^* \cdots a_n^*$
- Is $a_1^* \cdots a_n^*$ included in $L(G) \downarrow$?

Step 3:

Proposition

Breadth-bounded indexed grammars have effectively semilinear Parikh images.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Thank you for your attention!

< □ > < □ > < □ > < □ > < □ >