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System Observer

Downward Closures

u ď v : u is a subsequence of v

LÓ “ tu P X ˚ | Dv P L : u ď vu

Observer sees precisely LÓ
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Downward Closures

Theorem (Higman/Haines)

For every language L Ď X ˚, LÓ is regular.

Applications

Given an automaton for LÓ, many things are decidable:

Inclusion of behavior under lossy observation (KÓ Ď LÓ)
Ordinary inclusion almost always undecidable!

Which actions occur arbitrarily often? (a˚ Ď LÓ)

Is a ever executed after b? (ab P LÓ)

Can the system run arbitrarily long? (LÓ infinite)

Problem

Finite automaton for LÓ exists for every L.

How can we compute it?

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 3 / 16



Downward Closures

Theorem (Higman/Haines)

For every language L Ď X ˚, LÓ is regular.

Applications

Given an automaton for LÓ, many things are decidable:

Inclusion of behavior under lossy observation (KÓ Ď LÓ)
Ordinary inclusion almost always undecidable!

Which actions occur arbitrarily often? (a˚ Ď LÓ)

Is a ever executed after b? (ab P LÓ)

Can the system run arbitrarily long? (LÓ infinite)

Problem

Finite automaton for LÓ exists for every L.

How can we compute it?

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 3 / 16



Downward Closures

Theorem (Higman/Haines)

For every language L Ď X ˚, LÓ is regular.

Applications

Given an automaton for LÓ, many things are decidable:

Inclusion of behavior under lossy observation (KÓ Ď LÓ)
Ordinary inclusion almost always undecidable!

Which actions occur arbitrarily often? (a˚ Ď LÓ)

Is a ever executed after b? (ab P LÓ)

Can the system run arbitrarily long? (LÓ infinite)

Problem

Finite automaton for LÓ exists for every L.

How can we compute it?

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 3 / 16



Downward Closures

Theorem (Higman/Haines)

For every language L Ď X ˚, LÓ is regular.

Applications

Given an automaton for LÓ, many things are decidable:

Inclusion of behavior under lossy observation (KÓ Ď LÓ)
Ordinary inclusion almost always undecidable!

Which actions occur arbitrarily often? (a˚ Ď LÓ)

Is a ever executed after b? (ab P LÓ)

Can the system run arbitrarily long? (LÓ infinite)

Problem

Finite automaton for LÓ exists for every L.

How can we compute it?

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 3 / 16



Downward Closures

Theorem (Higman/Haines)

For every language L Ď X ˚, LÓ is regular.

Applications

Given an automaton for LÓ, many things are decidable:

Inclusion of behavior under lossy observation (KÓ Ď LÓ)
Ordinary inclusion almost always undecidable!

Which actions occur arbitrarily often? (a˚ Ď LÓ)

Is a ever executed after b? (ab P LÓ)

Can the system run arbitrarily long? (LÓ infinite)

Problem

Finite automaton for LÓ exists for every L.

How can we compute it?

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 3 / 16



Downward Closures

Theorem (Higman/Haines)

For every language L Ď X ˚, LÓ is regular.

Applications

Given an automaton for LÓ, many things are decidable:

Inclusion of behavior under lossy observation (KÓ Ď LÓ)
Ordinary inclusion almost always undecidable!

Which actions occur arbitrarily often? (a˚ Ď LÓ)

Is a ever executed after b? (ab P LÓ)

Can the system run arbitrarily long? (LÓ infinite)

Problem

Finite automaton for LÓ exists for every L.

How can we compute it?

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 3 / 16



Downward Closures

Theorem (Higman/Haines)

For every language L Ď X ˚, LÓ is regular.

Applications

Given an automaton for LÓ, many things are decidable:

Inclusion of behavior under lossy observation (KÓ Ď LÓ)
Ordinary inclusion almost always undecidable!

Which actions occur arbitrarily often? (a˚ Ď LÓ)

Is a ever executed after b? (ab P LÓ)

Can the system run arbitrarily long? (LÓ infinite)

Problem

Finite automaton for LÓ exists for every L.

How can we compute it?

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 3 / 16



Negative results

Theorem (Gruber, Holzer, Kutrib 2009)

Downward closures are not computable when infinity or emptiness are
undecidable.

Theorem (Mayr 2003)

The reachability set of lossy channel systems is not computable.
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Positive results

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani, ICALP 2001)

Downward closures are computable for context-free FIFO rewriting
systems/0L-systems.

Context-free rules AÑ w , applied as: Au ñ uw

Theorem (Habermehl, Meyer, Wimmel, ICALP 2010)

Downward closures are computable for Petri net languages.

Theorem (Z., STACS 2015)

Downward closures are computable for stacked counter automata.

Weak form of stack nesting
Adding Counters
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A general approach

Example (Transducer)

q0 q1 q2
ε|# ε|#

ε|a, ε|b a|a, b|b

a|ε, b|ε

ε|a, ε|b

T pAq “ tpx , u#v#wq | u, v ,w , x P ta, bu˚, v ď xu

Definition

Rational transduction: set of pairs given by a finite state transducer.

For rational transduction T Ď X ˚ ˆ Y ˚ and language L Ď Y ˚, let

TL “ ty P X ˚ | Dx P L : px , yq P T u
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Definition

C is a full trio if LR P C for each L P C and rational transduction R.

Theorem

If C is a full trio, then downward closures are computable for C if and only
if the simultaneous unboundedness problem is decidable:

Given A language L Ď a˚1 ¨ ¨ ¨ a
˚
n in C

Question Is a˚1 ¨ ¨ ¨ a
˚
n included in LÓ?
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Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language LÓ can be written as a finite union of sets of the form

Y ˚0 tx1, εuY
˚
1 ¨ ¨ ¨ txn, εuY

˚
n ,

where x1, . . . , xn are letters and Y0, . . . ,Yn are alphabets.

“Simple Regular Languages”

Ð Ideal decomposition!

Algorithm

Suppose L Ď X ˚ is given.
Enumerate simple regular languages R.
Decide whether LÓ “ R:

LÓ Ď R iff LÓ X pX ˚zRq “ H  emptiness.

R Ď LÓ  Y ˚0 tx1, εuY
˚
1 ¨ ¨ ¨ txn, εuY

˚
n Ď LÓ

Observation

LÓ is in C:

px , εq

px , xq
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Observation

It suffices to check whether Y ˚0 tx1, εuY
˚
1 ¨ ¨ ¨ txn, εuY

˚
n Ď LÓ.

LÓ includes ta, b, cu˚ if and only if it contains pabcq˚.

abc abc abc abc abc

bacca

Transduction T

q0 q1 ¨ ¨ ¨ qn
x1|ε x2|ε xn|ε

y0|a0 y1|a1 yn|an

yi : word containing each letter of Yi once.

Then:

T pLÓqÓ “ a˚0 ¨ ¨ ¨ a
˚
n iff Y ˚0 tx1, εuY

˚
1 ¨ ¨ ¨ txn, εuY

˚
n Ď LÓ
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New algorithm for each known positive case

Context-free grammars and stacked counter automata:

Corollary

If C is a full trio and has effectively semilinear Parikh images, then
downward closures are computable for C.

Petri net languages  boundedness with one inhibitor arc (Czerwiński,
Martens 2015), decidable by (Bonnet et. al. 2012)

Theorem

Downward closures are computable for matrix languages.

Natural generalization of context-free and Petri net languages.

Theorem

Downward closures are computable for indexed languages.

(Generalize 0L-systems)
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Indexed Grammars

Indexed Grammars

Idea: Each nonterminal carries a stack.

Tuple G “ pN,T , I ,P,Sq, where

N,T , I are nonterminal, terminal, index alphabet,

S P N start symbol

Productions P of the form
§ AÑ Bf , push index (f P I )
§ Af Ñ B, pop index (f P I )
§ AÑ uBv , generate terminals (u, v P T˚)
§ AÑ BC , split and duplicate index word
§ AÑ w , generate only terminals (w P T˚)

S Ñ Sf , S Ñ Sg , S Ñ UU, U Ñ ε,

Uf Ñ A, Ug Ñ B, AÑ Ua, B Ñ Ub.

N “ tS ,T ,A,Bu, I “ tf , gu,T “ ta, bu.

S

Sf

Sgf

Ugf

Bf

bUf

A

aU

ε

Ugf

Bf

bUf

A

aU

ε
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Application to Indexed Languages

No exact representation

Undeciable: Does L Ď a˚b˚ intersect with tanbn | n ě 0u?

Given: indexed grammar G with L “ LpG q Ď a˚1 ¨ ¨ ¨ a
˚
n , wlog L “ LÓ.

Observation

Consider the derivations for ak1 ¨ ¨ ¨ a
k
n , k ě 0.

For each ai , at least one of the following holds:

§ there is an unbounded number subtrees with yield in a˚
i

§ the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset D Ď ta1, . . . , anu, construct GD

:

for ai P D, instead of deriving whole ai -subtree, generate one ai

for ai R D, derive only one of the ai -subtrees

Ð “indirect”

Then, a˚1 ¨ ¨ ¨ a
˚
n Ď LpG qÓ iff a˚1 ¨ ¨ ¨ a

˚
n Ď LpGDqÓ for some D.
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Goal: bound nonterminal occurrences

Only obstacle: ai -subtrees for indirect ai

Consider the interval a˚i ¨ ¨ ¨ a
˚
j for each occurring nonterminal

Suppose: no unfolding of ai -subtrees, indirect ai

Then the nonterminals have pairwise distinct intervals

ñ Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

a1Sp1,2qa2a2Tp3qUp4qa5Vp5,8qa7a8a8Wp9q

Indirect symbols: ta3, a4, a9u

Idea

Instead of unfolding ai -subtree with root Au, u P I ˚, apply transducer to u

However: Precise simulation not possible

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 13 / 16



Goal: bound nonterminal occurrences

Only obstacle: ai -subtrees for indirect ai

Consider the interval a˚i ¨ ¨ ¨ a
˚
j for each occurring nonterminal

Suppose: no unfolding of ai -subtrees, indirect ai

Then the nonterminals have pairwise distinct intervals

ñ Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

a1Sp1,2qa2a2Tp3qUp4qa5Vp5,8qa7a8a8Wp9q

Indirect symbols: ta3, a4, a9u

Idea

Instead of unfolding ai -subtree with root Au, u P I ˚, apply transducer to u

However: Precise simulation not possible

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 13 / 16



Goal: bound nonterminal occurrences

Only obstacle: ai -subtrees for indirect ai

Consider the interval a˚i ¨ ¨ ¨ a
˚
j for each occurring nonterminal

Suppose: no unfolding of ai -subtrees, indirect ai

Then the nonterminals have pairwise distinct intervals

ñ Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

a1Sp1,2qa2a2Tp3qUp4qa5Vp5,8qa7a8a8Wp9q

Indirect symbols: ta3, a4, a9u

Idea

Instead of unfolding ai -subtree with root Au, u P I ˚, apply transducer to u

However: Precise simulation not possible

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 13 / 16



Goal: bound nonterminal occurrences

Only obstacle: ai -subtrees for indirect ai

Consider the interval a˚i ¨ ¨ ¨ a
˚
j for each occurring nonterminal

Suppose: no unfolding of ai -subtrees, indirect ai

Then the nonterminals have pairwise distinct intervals

ñ Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

a1Sp1,2qa2a2Tp3qUp4qa5Vp5,8qa7a8a8Wp9q

Indirect symbols: ta3, a4, a9u

Idea

Instead of unfolding ai -subtree with root Au, u P I ˚, apply transducer to u

However: Precise simulation not possible

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 13 / 16



Goal: bound nonterminal occurrences

Only obstacle: ai -subtrees for indirect ai

Consider the interval a˚i ¨ ¨ ¨ a
˚
j for each occurring nonterminal

Suppose: no unfolding of ai -subtrees, indirect ai

Then the nonterminals have pairwise distinct intervals

ñ Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

a1Sp1,2qa2a2Tp3qUp4qa5Vp5,8qa7a8a8Wp9q

Indirect symbols: ta3, a4, a9u

Idea

Instead of unfolding ai -subtree with root Au, u P I ˚, apply transducer to u

However: Precise simulation not possible

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 13 / 16



Goal: bound nonterminal occurrences

Only obstacle: ai -subtrees for indirect ai

Consider the interval a˚i ¨ ¨ ¨ a
˚
j for each occurring nonterminal

Suppose: no unfolding of ai -subtrees, indirect ai

Then the nonterminals have pairwise distinct intervals

ñ Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

a1Sp1,2qa2a2Tp3qUp4qa5Vp5,8qa7a8a8Wp9q

Indirect symbols: ta3, a4, a9u

Idea

Instead of unfolding ai -subtree with root Au, u P I ˚, apply transducer to u

However: Precise simulation not possible

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 13 / 16



Goal: bound nonterminal occurrences

Only obstacle: ai -subtrees for indirect ai

Consider the interval a˚i ¨ ¨ ¨ a
˚
j for each occurring nonterminal

Suppose: no unfolding of ai -subtrees, indirect ai

Then the nonterminals have pairwise distinct intervals

ñ Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

a1Sp1,2qa2a2Tp3qUp4qa5Vp5,8qa7a8a8Wp9q

Indirect symbols: ta3, a4, a9u

Idea

Instead of unfolding ai -subtree with root Au, u P I ˚, apply transducer to u

However: Precise simulation not possible

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 13 / 16



Goal: bound nonterminal occurrences

Only obstacle: ai -subtrees for indirect ai

Consider the interval a˚i ¨ ¨ ¨ a
˚
j for each occurring nonterminal

Suppose: no unfolding of ai -subtrees, indirect ai

Then the nonterminals have pairwise distinct intervals

ñ Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

a1Sp1,2qa2a2Tp3qUp4qa5Vp5,8qa7a8a8Wp9q

Indirect symbols: ta3, a4, a9u

Idea

Instead of unfolding ai -subtree with root Au, u P I ˚, apply transducer to u

However: Precise simulation not possible

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 13 / 16



Goal: bound nonterminal occurrences

Only obstacle: ai -subtrees for indirect ai

Consider the interval a˚i ¨ ¨ ¨ a
˚
j for each occurring nonterminal

Suppose: no unfolding of ai -subtrees, indirect ai

Then the nonterminals have pairwise distinct intervals

ñ Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

a1Sp1,2qa2a2Tp3qUp4qa5Vp5,8qa7a8a8Wp9q

Indirect symbols: ta3, a4, a9u

Idea

Instead of unfolding ai -subtree with root Au, u P I ˚, apply transducer to u
However: Precise simulation not possible

Georg Zetzsche (TU KL) Computing Downward Closures ICALP 2015 13 / 16



Preserving a˚1 ¨ ¨ ¨ a
˚
n Ď LpG qÓ

For transduction T Ď NI ˚ ˆ a˚i , let fT , fG : NI ˚ Ñ NY t8u be

fT pAuq “ supt|v | | pAu, vq P T u

fG pAuq “ supt|v | | v P a˚i , Au ñ˚
G vu

Proposition

For each indexed grammar G , one can construct a rational transduction T
with fT « fG .

f « g : f is unbounded on the same subsets as g
(Ñ regular cost functions)

Step 2: Apply transducer

Only one nonterminal occurrence for transducer

ñ Bound on nonterminal occurrences, “breadth-bounded”
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Remaining problem

Given: Breadth-bounded indexed grammar G , LpG q Ď a˚1 ¨ ¨ ¨ a
˚
n

Is a˚1 ¨ ¨ ¨ a
˚
n included in LpG qÓ?

Step 3:

Proposition

Breadth-bounded indexed grammars have effectively semilinear Parikh
images.
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Thank you for your attention!
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