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Example (Pushdown automaton)

q0 q1

a, λ,A

b, λ,B

c , λ, λ

a,A, λ

λ,A,λ
λ,B,λ

b,B, λ

L “ tucv rev | u P ta, bu˚, v ď uu

Example (Blind counter automaton)

q0 q1 q2
λ, 0, 0, 0 λ, 0, 0, 0

a, 1, 0, 0

λ,´1,´1,´1

b, 0, 1, 0

λ,´1,´1,´1

c , 0, 0, 1

λ,´1,´1,´1

L “ tanbncn | n ě 0u
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Example (Partially blind counter automaton)

q0 q1

a, 1

b,´1

λ, 0

λ,´1

L “ tw P ta, bu˚ | |p|a ě |p|b for any prefix p of wu
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Silent Transitions

A transition that reads no input is called silent transition or λ-transition.

Important problem

When can silent transitions be eliminated?

Without silent transitions, decide membership using exponential
number of storage computations.

Elimination can be regarded as a precomputation.

Question

For which storage mechanisms can we avoid silent transitions?

Known so far

Pushdown automata (Greibach 1965)

Blind counter automata (Greibach 1978)

Partially blind counter automata (Greibach 1978 / Jantzen 1979)
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Valence automata

Definition

A monoid is a set M together with a binary associative operation and
neutral element 1 P M.

Common generalization: Valence Automata

Valence automaton over M:

Finite automaton with edges p
w |m
ÝÝÑq, w P Σ˚, m P M.

Run q0
w1|m1
ÝÝÝÑq1

w2|m2
ÝÝÝÑ¨ ¨ ¨

wn|mn
ÝÝÝÝÑqn is accepting for w1 ¨ ¨ ¨wn if

§ q0 is the initial state,
§ qn is a final state, and

§ m1 ¨ ¨ ¨mn “ 1.

Language class

VApMq languages accepted by valence automata over M.

VA`pMq languages accepted by VA over M without silent transitions
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Monoids defined by graphs
By graphs, we mean undirected graphs with loops allowed.

Let Γ “ pV ,E q be a graph. Let

XΓ “ tav , āv | v P V u

RΓ “ tav āv “ 1 | v P V u

Y txy “ yx | x P tau, āuu, y P tav , āvu, tu, vu P Eu

MΓ “ X ˚Γ {RΓ

Intuition

B: bicyclic monoid, B “ ta, āu˚{taā “ 1u.

Z: group of integers

For each unlooped vertex, we have a copy of B
For each looped vertex, we have a copy of Z
MΓ consists of sequences of such elements

An edge between vertices means that elements can commute
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Examples

Z3

Blind multicounter

B ˚ B ˚ B

Pushdown

B3

Partially blind multicounter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters
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Theorem

Let Γ be a graph such that

any two looped vertices are adjacent

no two unlooped vertices are adjacent

Then VApMΓq “ VA`pMΓq if and only if Γ does not contain

as an induced subgraph.
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Negative case

By reduction to an undecidable problem from group theory (Lohrey,
Steinberg 2008), we obtain:

Lemma

Let Γ be a graph with

as an induced subgraph. Then VApMΓq contains an undecidable language.
Hence, VA`pMΓq Ĺ VApMΓq.

Georg Zetzsche (TU KL) Silent Transitions ICALP 2013 9 / 20



Positive case

Definition

Let C be the smallest class of monoids such that

1 P C
if M P C, then M ˆ Z P C
if M P C, then M ˚ B P C

Lemma

Let Γ be a graph such that

any two looped vertices are adjacent

no two unlooped vertices are adjacent

does not appear as an induced subgraph

Then, MΓ P C.
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Positive case

Definition

Let C be the smallest class of monoids such that

1 P C
if M P C, then M ˆ Z P C
if M P C, then M ˚ B P C

Interpretation of C
C corresponds to the class of storage mechanisms obtained by

adding a blind counter (M ˆ Z) and

building stacks (M ˚ B).
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λ-Elimination I

Lemma

For M P C, every language in VApMq has semilinear Parikh image.

M ÞÑ M ˆ Z, M ÞÑ M ˚ B preserve semilinearity

Georg Zetzsche (TU KL) Silent Transitions ICALP 2013 12 / 20



λ-Elimination I

Definition

Let F be a family. An F-grammar is a quadruple G “ pN,T ,P,Sq where

N, T are disjoint alphabets,

P is a finite set of pairs AÑ M, with A P N and M Ď pN Y T q˚,
M P F ,

S P N.

x ñG y : if x “ uAv and y “ uwv for some u, v ,w P pN Y T q˚ and
AÑ M P P with w P M.

LpG q “ tw P T ˚ | S ñ˚
G wu.

L is called algebraic over F if there is an F-grammar G such that
L “ LpG q.

Georg Zetzsche (TU KL) Silent Transitions ICALP 2013 13 / 20



λ-Elimination I

Theorem (van Leeuwen 1974)

Let F be a family of semilinear languages. Then any language that is
algebraic over F is also semilinear.

Lemma

Every language in VApM ˚M 1q is algebraic over VApMq Y VApM 1q.
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λ-Elimination II

Proceed by induction w.r.t. the definition of C

Stronger hypothesis:

Definition

VTpM,C q Transductions T Ď X ˚ ˆ C by valence transducers over M

VT`pM,C q performed by λ-free transducers

M is called strongly λ-independent if

VTpM,C q “

Φp

VT`pM,

SLp

C

q

q

q

for every commutative monoid C .

Observation

If M is strongly λ-independent, then VA`pMq “ VApMq.
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M is called strongly λ-independent if

VTpM,C q “

Φp

VT`pM,

SLp

C

q

q

q

for every commutative monoid C .
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Elimination of λ-transitions III

Definition

A subset S Ď M is called rational if it is the homomorphic image of a
regular language.

Rational subsets of M ˆ C

For a given pair of non-λ-transitions, the set of pm, cq P M ˆ C
applied in between is a rational set.

Normal form for rational subsets of M ˆ C : first pop
(+counter+output), then push (+counter+output)

Modification of well-known technique for monadic rewriting systems

Gluing in automata accepting semilinear sets
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Elimination of λ-transitions IV

Construction for VA`pMΓq “ VApMΓq

Separate constructions for B, M ˆ Z, and M ˚ B.

Transform the automaton so as to simulate the application of a
rational set in one step.

Representations of rational sets are encoded into the state or the
monoid elements.

When simulating cancellations, output semilinear sets.
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Theorem

Let Γ be a graph such that between any two distinct vertices, there is an
edge.

Then VApMΓq “ VA`pMΓq if and only if the number of unlooped
nodes is ď 1. In other words:

VApBr ˆ Zsq “ VA`pBr ˆ Zsq iff r ď 1.
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Observation

VApBˆ Zsq “ VA`pBˆ Zsq already follows from the first theorem.

Proving VA`pBr ˆ Zsq Ĺ VApBr ˆ Zsq for r ě 2

Use Greibach’s and Jantzen’s language

L1 “ twc
n | w P t0, 1u˚, n ď binpwqu,

binpv0q “ 2 ¨ binpvq, binpv1q “ 2 ¨ binpvq ` 1, binpλq “ 0.

Known that L1 P VApB2q.

Show L1 R VA`pBr ˆ Zsq for r , s P N.

Count fooling sets, concept from state complexity.

Languages in VA`pBr ˆ Zsq have polynomially many fooling sets

L1 has exponential number of fooling sets
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Thank you for your attention!
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