Silent Transitions in Automata with Storage

Georg Zetzsche

Technische Universität Kaiserslautern

ICALP 2013

Georg Zetzsche (TU KL)

Silent Transitions

ICALP 2013 1 / 20

(4) (3) (4) (4) (4)

< □ > < □ > < □ > < □ > < □ >

$$L = \{ucv^{\mathsf{rev}} \mid u \in \{a, b\}^*, v \leq u\}$$

< □ > < □ > < □ > < □ > < □ >

Georg Zetzsche (TU KL)

$$L = \{ucv^{\mathsf{rev}} \mid u \in \{a, b\}^*, v \leqslant u\}$$

Example (Blind counter automaton)

$$L = \{ucv^{\mathsf{rev}} \mid u \in \{a, b\}^*, v \leqslant u\}$$

Example (Blind counter automaton)

Example (Partially blind counter automaton)

 $L = \{w \in \{a, b\}^* \mid |p|_a \ge |p|_b \text{ for any prefix } p \text{ of } w\}$

Georg Zetzsche (TU KL)

Silent Transitions

→ 注 ▶ 注 少 Q ペ ICALP 2013 3/20

イロト イヨト イヨト イヨト

A transition that reads no input is called *silent transition* or λ -transition.

(日) (四) (日) (日) (日)

A transition that reads no input is called *silent transition* or λ -transition.

Important problem

- When can silent transitions be eliminated?
- Without silent transitions, decide membership using exponential number of storage computations.
- Elimination can be regarded as a precomputation.

★ ∃ ►

A transition that reads no input is called *silent transition* or λ -transition.

Important problem

- When can silent transitions be eliminated?
- Without silent transitions, decide membership using exponential number of storage computations.
- Elimination can be regarded as a precomputation.

Question

For which storage mechanisms can we avoid silent transitions?

A transition that reads no input is called *silent transition* or λ -transition.

Important problem

- When can silent transitions be eliminated?
- Without silent transitions, decide membership using exponential number of storage computations.
- Elimination can be regarded as a precomputation.

Question

For which storage mechanisms can we avoid silent transitions?

Known so far

- Pushdown automata (Greibach 1965)
- Blind counter automata (Greibach 1978)
- Partially blind counter automata (Greibach 1978 / Jantzen 1979)

Definition

A monoid is a set M together with a binary associative operation and neutral element $1 \in M$.

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• < = • < = •

Definition

A monoid is a set M together with a binary associative operation and neutral element $1 \in M$.

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• Run $q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$ is accepting for $w_1 \cdots w_n$ if

- q_0 is the initial state,
- q_n is a final state, and

• • = • • = •

Definition

A monoid is a set M together with a binary associative operation and neutral element $1 \in M$.

Common generalization: Valence Automata

Valence automaton over M:

Finite automaton with edges p^{w|m}→q, w ∈ Σ*, m ∈ M.
Run q₀ w₁|m₁→q₁ w₂|m₂→··· w_n|m_n→q_n is accepting for w₁··· w_n if q₀ is the initial state, q_n is a final state, and m₁··· m_n = 1.

Definition

A monoid is a set M together with a binary associative operation and neutral element $1 \in M$.

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• Run $q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$ is accepting for $w_1 \cdots w_n$ if

- q_0 is the initial state,
- q_n is a final state, and

$$m_1\cdots m_n=1.$$

Language class

VA(M) languages accepted by valence automata over M.

Definition

A monoid is a set M together with a binary associative operation and neutral element $1 \in M$.

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• Run $q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$ is accepting for $w_1 \cdots w_n$ if

- q_0 is the initial state,
- q_n is a final state, and

$$m_1 \cdots m_n = 1.$$

Language class

VA(M) languages accepted by valence automata over M.

 $\mathsf{VA}^+(\mathit{M})$ languages accepted by VA over M without silent transitions

By graphs, we mean undirected graphs with loops allowed.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{\nu}, \bar{a}_{\nu} \mid \nu \in V\}$$

(日) (四) (日) (日) (日)

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{v}, \bar{a}_{v} \mid v \in V\}$$
$$R_{\Gamma} = \{a_{v}\bar{a}_{v} = 1 \mid v \in V\}$$

イロト イポト イヨト イヨト

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{v}, \bar{a}_{v} \mid v \in V\}$$
$$R_{\Gamma} = \{a_{v}\bar{a}_{v} = 1 \mid v \in V\}$$
$$\cup \{xy = yx \mid x \in \{a_{u}, \bar{a}_{u}\}, y \in \{a_{v}, \bar{a}_{v}\}, \{u, v\} \in E\}$$

(日) (四) (日) (日) (日)

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{v}, \bar{a}_{v} \mid v \in V\}$$

$$R_{\Gamma} = \{a_{v}\bar{a}_{v} = 1 \mid v \in V\}$$

$$\cup \{xy = yx \mid x \in \{a_{u}, \bar{a}_{u}\}, y \in \{a_{v}, \bar{a}_{v}\}, \{u, v\} \in E\}$$

$$\mathbb{M}\Gamma = X_{\Gamma}^{*}/R_{\Gamma}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{v}, \bar{a}_{v} \mid v \in V\}$$

$$R_{\Gamma} = \{a_{v}\bar{a}_{v} = 1 \mid v \in V\}$$

$$\cup \{xy = yx \mid x \in \{a_{u}, \bar{a}_{u}\}, y \in \{a_{v}, \bar{a}_{v}\}, \{u, v\} \in E\}$$

$$\mathbb{M}\Gamma = X_{\Gamma}^{*}/R_{\Gamma}$$

Intuition

- \mathbb{B} : bicyclic monoid, $\mathbb{B} = \{a, \bar{a}\}^* / \{a\bar{a} = 1\}.$
- \mathbb{Z} : group of integers
- $\bullet\,$ For each unlooped vertex, we have a copy of $\mathbb B$
- \bullet For each looped vertex, we have a copy of $\mathbb Z$
- $\bullet~\ensuremath{\mathbb{M}\Gamma}$ consists of sequences of such elements
- An edge between vertices means that elements can commute

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

Blind multicounter

< □ > < □ > < □ > < □ > < □ >

Blind multicounter

< □ > < □ > < □ > < □ > < □ >

< □ > < □ > < □ > < □ > < □ >

Blind multicounter

< □ > < □ > < □ > < □ > < □ >

Blind multicounter

Pushdown

Pushdown

< □ > < □ > < □ > < □ > < □ >

< □ > < □ > < □ > < □ > < □ >

Blind multicounter

Blind multicounter

Partially blind multicounter

Georg Zetzsche (TU KL)

.

Blind multicounter

A D N A B N A B N A B N

Pushdown

Partially blind multicounter

Georg Zetzsche (TU KL)

Blind multicounter

A D N A B N A B N A B N

Pushdown

Partially blind multicounter

Georg Zetzsche (TU KL)

Blind multicounter

Pushdown

Georg Zetzsche (TU KL)

Silent Transitions

Pushdown

Blind multicounter

Pushdown

Let Γ be a graph such that

- any two looped vertices are adjacent
- no two unlooped vertices are adjacent

Let Γ be a graph such that

- any two looped vertices are adjacent
- no two unlooped vertices are adjacent

・ロト ・日 ・ ・ ヨ ・ ・

Let Γ be a graph such that

- any two looped vertices are adjacent
- no two unlooped vertices are adjacent

Then $VA(\mathbb{M}\Gamma) = VA^+(\mathbb{M}\Gamma)$ if and only if Γ does not contain

as an induced subgraph.

< 3 >

Let Γ be a graph such that

- any two looped vertices are adjacent
- no two unlooped vertices are adjacent

Then $VA(\mathbb{M}\Gamma) = VA^+(\mathbb{M}\Gamma)$ if and only if Γ does not contain

as an induced subgraph.

< 3 >

Negative case

By reduction to an undecidable problem from group theory (Lohrey, Steinberg 2008), we obtain:

as an induced subgraph. Then $VA(\mathbb{M}\Gamma)$ contains an undecidable language. Hence, $VA^+(\mathbb{M}\Gamma) \subsetneq VA(\mathbb{M}\Gamma)$.

.

Positive case

Definition

Let $\ensuremath{\mathcal{C}}$ be the smallest class of monoids such that

- $1 \in \mathcal{C}$
- if $M \in \mathcal{C}$, then $M \times \mathbb{Z} \in \mathcal{C}$
- if $M \in \mathcal{C}$, then $M * \mathbb{B} \in \mathcal{C}$

→ Ξ →

Positive case

Definition

Let $\ensuremath{\mathcal{C}}$ be the smallest class of monoids such that

- $1 \in \mathcal{C}$
- if $M \in \mathcal{C}$, then $M \times \mathbb{Z} \in \mathcal{C}$
- if $M \in \mathcal{C}$, then $M * \mathbb{B} \in \mathcal{C}$

Lemma

Let Γ be a graph such that

- any two looped vertices are adjacent
- no two unlooped vertices are adjacent
- • • does not appear as an induced subgraph

Then, $\mathbb{M}\Gamma \in \mathcal{C}$.

→ ∃ →

Positive case

Definition

Let $\ensuremath{\mathcal{C}}$ be the smallest class of monoids such that

- $1 \in \mathcal{C}$
- if $M \in \mathcal{C}$, then $M \times \mathbb{Z} \in \mathcal{C}$
- if $M \in \mathcal{C}$, then $M * \mathbb{B} \in \mathcal{C}$

Interpretation of $\ensuremath{\mathcal{C}}$

- $\ensuremath{\mathcal{C}}$ corresponds to the class of storage mechanisms obtained by
 - adding a blind counter $(M \times \mathbb{Z})$ and
 - building stacks $(M * \mathbb{B})$.

(4) (5) (4) (5)

$\lambda\text{-}\mathsf{Elimination}\ \mathsf{I}$

Lemma

For $M \in C$, every language in VA(M) has semilinear Parikh image.

• $M \mapsto M \times \mathbb{Z}$, $M \mapsto M * \mathbb{B}$ preserve semilinearity

< □ > < 同 > < 回 > < 回 > < 回 >

λ -Elimination I

Definition

Let \mathcal{F} be a family. An \mathcal{F} -grammar is a quadruple G = (N, T, P, S) where

- N, T are disjoint alphabets,
- P is a finite set of pairs $A \rightarrow M$, with $A \in N$ and $M \subseteq (N \cup T)^*$, $M \in \mathcal{F}$,
- $S \in N$.

 $x \Rightarrow_G y$: if x = uAv and y = uwv for some $u, v, w \in (N \cup T)^*$ and $A \rightarrow M \in P$ with $w \in M$.

$$L(G) = \{ w \in T^* \mid S \Rightarrow^*_G w \}.$$

L is called *algebraic over* \mathcal{F} if there is an \mathcal{F} -grammar *G* such that L = L(G).

• • = • • = •

λ -Elimination I

Theorem (van Leeuwen 1974)

Let \mathcal{F} be a family of semilinear languages. Then any language that is algebraic over \mathcal{F} is also semilinear.

・ 同 ト ・ ヨ ト ・ ヨ

λ -Elimination I

Theorem (van Leeuwen 1974)

Let \mathcal{F} be a family of semilinear languages. Then any language that is algebraic over \mathcal{F} is also semilinear.

Lemma

Every language in VA(M * M') is algebraic over $VA(M) \cup VA(M')$.

・ 何 ト ・ ヨ ト ・ ヨ ト

$\lambda\text{-}\mathsf{Elimination}\ \mathsf{II}$

 \bullet Proceed by induction w.r.t. the definition of ${\cal C}$

• • • • • • • • • • • •

λ -Elimination II

- \bullet Proceed by induction w.r.t. the definition of ${\cal C}$
- Stronger hypothesis:

Definition

VT(M, C) Transductions $T \subseteq X^* \times C$ by valence transducers over M

 $VT^+(M, C)$ performed by λ -free transducers

M is called *strongly* λ *-independent* if

$$VT(M,C) = VT^+(M, C)$$

for every commutative monoid C.

(4) (3) (4) (4) (4)

λ -Elimination II

- \bullet Proceed by induction w.r.t. the definition of ${\cal C}$
- Stronger hypothesis:

Definition

VT(M, C) Transductions $T \subseteq X^* \times C$ by valence transducers over M

 $VT^+(M, C)$ performed by λ -free transducers

M is called *strongly* λ *-independent* if

$$VT(M, C) = VT^+(M, SL(C))$$

for every commutative monoid C.

(4) (3) (4) (4) (4)

λ -Elimination II

- \bullet Proceed by induction w.r.t. the definition of ${\cal C}$
- Stronger hypothesis:

Definition

VT(M, C) Transductions $T \subseteq X^* \times C$ by valence transducers over M

 $VT^+(M, C)$ performed by λ -free transducers

M is called *strongly* λ *-independent* if

$$VT(M,C) = \Phi(VT^+(M,SL(C)))$$

for every commutative monoid C.

Observation

If *M* is strongly λ -independent, then VA⁺(*M*) = VA(*M*).

Georg Zetzsche (TU KL)

A D N A B N A B N A B N

Elimination of λ -transitions III

Definition

A subset $S \subseteq M$ is called *rational* if it is the homomorphic image of a regular language.

Rational subsets of $M \times C$

- For a given pair of non-λ-transitions, the set of (m, c) ∈ M × C applied in between is a rational set.
- Normal form for rational subsets of $M \times C$: first pop (+counter+output), then push (+counter+output)
- Modification of well-known technique for monadic rewriting systems
- Gluing in automata accepting semilinear sets

• • = • • = •

Elimination of $\lambda\text{-transitions}$ IV

Construction for $VA^+(\mathbb{M}\Gamma) = VA(\mathbb{M}\Gamma)$

- Separate constructions for \mathbb{B} , $M \times \mathbb{Z}$, and $M * \mathbb{B}$.
- Transform the automaton so as to simulate the application of a rational set in one step.
- Representations of rational sets are encoded into the state or the monoid elements.
- When simulating cancellations, output semilinear sets.

Let Γ be a graph such that between any two distinct vertices, there is an edge.

A (10) × A (10) × A (10)

Let Γ be a graph such that between any two distinct vertices, there is an edge.

< □ > < 同 > < 回 > < Ξ > < Ξ

Let Γ be a graph such that between any two distinct vertices, there is an edge. Then $VA(\mathbb{M}\Gamma) = VA^+(\mathbb{M}\Gamma)$ if and only if the number of unlooped nodes is ≤ 1 .

• • = • • =

Let Γ be a graph such that between any two distinct vertices, there is an edge. Then $VA(\mathbb{M}\Gamma) = VA^+(\mathbb{M}\Gamma)$ if and only if the number of unlooped nodes is ≤ 1 .

• • = • • =

Let Γ be a graph such that between any two distinct vertices, there is an edge. Then $VA(\mathbb{M}\Gamma) = VA^+(\mathbb{M}\Gamma)$ if and only if the number of unlooped nodes is ≤ 1 . In other words:

$$VA(\mathbb{B}^r \times \mathbb{Z}^s) = VA^+(\mathbb{B}^r \times \mathbb{Z}^s)$$
 iff $r \leq 1$.

• • = • • =

$VA(\mathbb{B} \times \mathbb{Z}^{s}) = VA^{+}(\mathbb{B} \times \mathbb{Z}^{s})$ already follows from the first theorem.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $VA(\mathbb{B} \times \mathbb{Z}^{s}) = VA^{+}(\mathbb{B} \times \mathbb{Z}^{s})$ already follows from the first theorem.

Proving $VA^+(\mathbb{B}^r \times \mathbb{Z}^s) \subsetneq VA(\mathbb{B}^r \times \mathbb{Z}^s)$ for $r \ge 2$

• Use Greibach's and Jantzen's language

$$L_1 = \{wc^n \mid w \in \{0, 1\}^*, n \leq bin(w)\},\$$

$$bin(v0) = 2 \cdot bin(v), \quad bin(v1) = 2 \cdot bin(v) + 1, \quad bin(\lambda) = 0.$$

イロト 不得 トイヨト イヨト 二日

 $VA(\mathbb{B} \times \mathbb{Z}^{s}) = VA^{+}(\mathbb{B} \times \mathbb{Z}^{s})$ already follows from the first theorem.

Proving $VA^+(\mathbb{B}^r \times \mathbb{Z}^s) \subsetneq VA(\mathbb{B}^r \times \mathbb{Z}^s)$ for $r \ge 2$

• Use Greibach's and Jantzen's language

$$L_1 = \{wc^n \mid w \in \{0, 1\}^*, n \leq bin(w)\},\$$

$$bin(v0) = 2 \cdot bin(v), \quad bin(v1) = 2 \cdot bin(v) + 1, \quad bin(\lambda) = 0$$

- Known that $L_1 \in VA(\mathbb{B}^2)$.
- Show $L_1 \notin VA^+(\mathbb{B}^r \times \mathbb{Z}^s)$ for $r, s \in \mathbb{N}$.

イロト イポト イヨト イヨト 二日

 $VA(\mathbb{B} \times \mathbb{Z}^{s}) = VA^{+}(\mathbb{B} \times \mathbb{Z}^{s})$ already follows from the first theorem.

Proving $VA^+(\mathbb{B}^r \times \mathbb{Z}^s) \subsetneq VA(\mathbb{B}^r \times \mathbb{Z}^s)$ for $r \ge 2$

Use Greibach's and Jantzen's language

$$L_1 = \{wc^n \mid w \in \{0, 1\}^*, n \leq bin(w)\},\$$

$$bin(v0) = 2 \cdot bin(v), \quad bin(v1) = 2 \cdot bin(v) + 1, \quad bin(\lambda) = 0$$

- Known that $L_1 \in VA(\mathbb{B}^2)$.
- Show $L_1 \notin VA^+(\mathbb{B}^r \times \mathbb{Z}^s)$ for $r, s \in \mathbb{N}$.
- Count fooling sets, concept from state complexity.

< □ > < □ > < □ > < □ > < □ > < □ >

 $VA(\mathbb{B} \times \mathbb{Z}^{s}) = VA^{+}(\mathbb{B} \times \mathbb{Z}^{s})$ already follows from the first theorem.

Proving $VA^+(\mathbb{B}^r \times \mathbb{Z}^s) \subsetneq VA(\mathbb{B}^r \times \mathbb{Z}^s)$ for $r \ge 2$

Use Greibach's and Jantzen's language

$$L_1 = \{wc^n \mid w \in \{0, 1\}^*, n \leq bin(w)\},\$$

 $bin(v0) = 2 \cdot bin(v), \quad bin(v1) = 2 \cdot bin(v) + 1, \quad bin(\lambda) = 0.$

- Known that $L_1 \in VA(\mathbb{B}^2)$.
- Show $L_1 \notin VA^+(\mathbb{B}^r \times \mathbb{Z}^s)$ for $r, s \in \mathbb{N}$.
- Count *fooling sets*, concept from state complexity.
- Languages in $VA^+(\mathbb{B}^r \times \mathbb{Z}^s)$ have polynomially many fooling sets
- L₁ has exponential number of fooling sets

イロト 不得下 イヨト イヨト 二日

Thank you for your attention!

・ロト ・日 ・ ・ ヨ ・ ・