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Rational sets in arbitrary monoids: Definition 1

Let M be a monoid.

For L ⊆ M let L∗ denote the submonoid of M generated by L.
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Rational sets in arbitrary monoids: Definition 1

Let M be a monoid.

For L ⊆ M let L∗ denote the submonoid of M generated by L.

The set Rat(M) ⊆ 2M of all rational subsets of M is the smallest
set such that:

Every finite subset of M belongs to Rat(M).

If L1, L2 ∈ Rat(M), then also L1 ∪ L2, L1L2 ∈ Rat(M).

If L ∈ Rat(M), then also L∗ ∈ Rat(M).
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Rational sets in arbitrary monoids: Definition 2

A finite automaton over M is a tuple A = (Q,∆, q0,F ) where

Q is a finite set of states,

q0 ∈ Q, F ⊆ Q, and

∆ ⊆ Q ×M × Q is finite.

The subset L(A) ⊆ M is the set of all products m1m2 · · ·mk such
that there exist q1, . . . , qk ∈ Q with

(qi−1,mi , qi ) ∈ ∆ for 1 ≤ i ≤ k and qk ∈ F .

Then:

L ∈ Rat(M) ⇐⇒ ∃ finite automaton A over M : L(A) = L
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Rational sets in groups

In this talk: M will be always a finitely generated (f.g.) group G .
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Rational sets in groups

In this talk: M will be always a finitely generated (f.g.) group G .

Let Σ be a finite (group) generating set for G .

Elements of G can be represented by finite words over Σ ∪ Σ−1.

The rational subset membership problem for G (RatMP(G )) is the
following computational problem:

INPUT: A finite automaton A over G and g ∈ G

QUESTION: g ∈ L(A)?
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Membership in submonoids/subgroups

The submonoid membership problem for G is the following
computational problem:

INPUT: A finite subset A ⊆ G and g ∈ G

QUESTION: g ∈ A∗?

The subgroup membership problem for G (or generalized word
problem for G ) is the following computational problem:

INPUT: A finite subset A ⊆ G and g ∈ G

QUESTION: g ∈ 〈A〉 (= (A ∪ A−1)∗)?

The generalized word problem is a widely studied problem in
combinatorial group theory.
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Wreath products

Let A and B be groups and let

K =
⊕

b∈B

A

be the direct sum of copies of A.
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Elements of K : mappings k : B → A with finite support (i.e.,
k−1(A \ 1) is finite).
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Wreath products

Let A and B be groups and let

K =
⊕

b∈B

A

be the direct sum of copies of A.

Elements of K : mappings k : B → A with finite support (i.e.,
k−1(A \ 1) is finite).

The wreath product A ≀ B is the set of all pairs K × B with the
following multiplication, where (k1, b1), (k2, b2) ∈ K × B :

(k1, b1)(k2, b2) = (k , b1b2) with ∀b ∈ B : k(b) = k1(b)k2(b
−1
1 b).
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Wreath product Z2 ≀ F (a, b) with Z2 = 〈c | c2 = 1〉
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Rational subsets in wreath products: Undecidability

Lohrey, Steinberg 2009

For every nontrivial group H, RatMP(H ≀ (Z× Z)) is undecidable.
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Rational subsets in wreath products: Undecidability

Lohrey, Steinberg 2009

For every nontrivial group H, RatMP(H ≀ (Z× Z)) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of Z× Z

allows to encode a tiling problem.

Theorem

The submonoid membership problem for the wreath product Z ≀ Z
is undecidable.

Proof is based on reduction from 2-counter machines:

. . . . . .
0−1−2−3 1 2 3
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Rational subsets in wreath products: Undecidability

Lohrey, Steinberg 2009

For every nontrivial group H, RatMP(H ≀ (Z× Z)) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of Z× Z

allows to encode a tiling problem.

Theorem

The submonoid membership problem for the wreath product Z ≀ Z
is undecidable.

Proof is based on reduction from 2-counter machines:

. . . . . .
0n0m00 0 0 0

︸ ︷︷ ︸

counters at t = 0
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Rational subsets in wreath products: Undecidability

Lohrey, Steinberg 2009

For every nontrivial group H, RatMP(H ≀ (Z× Z)) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of Z× Z

allows to encode a tiling problem.

Theorem

The submonoid membership problem for the wreath product Z ≀ Z
is undecidable.

Proof is based on reduction from 2-counter machines:

. . . . . .
m1000 n1 0 0
︸ ︷︷ ︸

counters at t = 1
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Rational subsets in wreath products: Undecidability

Lohrey, Steinberg 2009

For every nontrivial group H, RatMP(H ≀ (Z× Z)) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of Z× Z

allows to encode a tiling problem.

Theorem

The submonoid membership problem for the wreath product Z ≀ Z
is undecidable.

Proof is based on reduction from 2-counter machines:

. . . . . .
0000 0 m2 n2

︸ ︷︷ ︸

counters at t = 2
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Rational subsets in wreath products: Decidability

Theorem

RatMP(H ≀ V ) is decidable for every finite group H and virtually

free group V .
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free group V .
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G = H ≀ F (a, b)

with H finite and F (a, b) the free group generated by a and b.
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Rational subsets in wreath products: Decidability

Theorem

RatMP(H ≀ V ) is decidable for every finite group H and virtually

free group V .

We only consider a wreath product

G = H ≀ F (a, b)

with H finite and F (a, b) the free group generated by a and b.

G is generated as a monoid by H ∪ {a, b, a−1, b−1}.

Fix an automaton A = (Q,∆, q0,F ) over the finite alphabet
H ∪ {a, b, a−1, b−1}.

We want to check whether there is a w ∈ L(A) with w = 1 in G .
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Loops

Let p, q ∈ Q, d ∈ {a, b, a−1, b−1}. A (p, d , q)-loop is an A-path

π = (p = p0
d
−→ p1

α1−→ p2
α2−→ p3 · · ·

αn−1
−−−→ pn

d−1

−−→ pn+1 = q)

with the following properties, where α1 · · ·αi = (ki , ui ) ∈ H ≀ F2 for
1 ≤ i ≤ n − 1:
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Loops

Let p, q ∈ Q, d ∈ {a, b, a−1, b−1}. A (p, d , q)-loop is an A-path

π = (p = p0
d
−→ p1

α1−→ p2
α2−→ p3 · · ·

αn−1
−−−→ pn

d−1

−−→ pn+1 = q)

with the following properties, where α1 · · ·αi = (ki , ui ) ∈ H ≀ F2 for
1 ≤ i ≤ n − 1:

For all 1 ≤ i ≤ n− 1, the unique reduced word for ui does not
start with d−1.
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Loops

Let p, q ∈ Q, d ∈ {a, b, a−1, b−1}. A (p, d , q)-loop is an A-path

π = (p = p0
d
−→ p1

α1−→ p2
α2−→ p3 · · ·

αn−1
−−−→ pn

d−1

−−→ pn+1 = q)

with the following properties, where α1 · · ·αi = (ki , ui ) ∈ H ≀ F2 for
1 ≤ i ≤ n − 1:

For all 1 ≤ i ≤ n− 1, the unique reduced word for ui does not
start with d−1.

un−1 = 1 in F2.
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Loops

Let p, q ∈ Q, d ∈ {a, b, a−1, b−1}. A (p, d , q)-loop is an A-path

π = (p = p0
d
−→ p1

α1−→ p2
α2−→ p3 · · ·

αn−1
−−−→ pn

d−1

−−→ pn+1 = q)

with the following properties, where α1 · · ·αi = (ki , ui ) ∈ H ≀ F2 for
1 ≤ i ≤ n − 1:

For all 1 ≤ i ≤ n− 1, the unique reduced word for ui does not
start with d−1.

un−1 = 1 in F2.

We define

depth(π) = max{|ui |+ 1 | 1 ≤ i ≤ n − 1}
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Loops

Let p, q ∈ Q, d ∈ {a, b, a−1, b−1}. A (p, d , q)-loop is an A-path

π = (p = p0
d
−→ p1

α1−→ p2
α2−→ p3 · · ·

αn−1
−−−→ pn

d−1

−−→ pn+1 = q)

with the following properties, where α1 · · ·αi = (ki , ui ) ∈ H ≀ F2 for
1 ≤ i ≤ n − 1:

For all 1 ≤ i ≤ n− 1, the unique reduced word for ui does not
start with d−1.

un−1 = 1 in F2.

We define

depth(π) = max{|ui |+ 1 | 1 ≤ i ≤ n − 1}

effect(π) = dα1 · · ·αn−1d
−1 ∈ K .

Lohrey, Steinberg, Zetzsche Wreath Products



Loops

For all types t ∈ {1, a, a−1, b, b−1} define

Ct = {a, a−1, b, b−1} \ {t−1}

a

a
−1

b
−1

b

a−1 b−1

b
a b−1

b a
a−1

b
b−1a−1

a

Cb = {a−1, b, a}
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Loops

For all types t ∈ {1, a, a−1, b, b−1} define

Ct = {a, a−1, b, b−1} \ {t−1}

Xt = {(p, d , q) | d ∈ Ct , ∃(p, d , q)-loop}

a

a
−1

b
−1

b

a−1 b−1

b
a b−1

b a
a−1

b
b−1a−1

a

Cb = {a−1, b, a}
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Loops

For all types t ∈ {1, a, a−1, b, b−1} define

Ct = {a, a−1, b, b−1} \ {t−1}

Xt = {(p, d , q) | d ∈ Ct , ∃(p, d , q)-loop}

a

a
−1

b
−1

b

a−1 b−1

b
a b−1

b a
a−1

b
b−1a−1

a

Cb = {a−1, b, a}

Observation

The alphabet Xt can be computed.
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Loop patterns

Let t ∈ {1, a, a−1, b, b−1} be a type.
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Loop patterns

Let t ∈ {1, a, a−1, b, b−1} be a type.

A loop pattern at t is a word

w = (p1, d1, q1)(p2, d2, q2) · · · (pn, dn, qn) ∈ X ∗
t .

such that for every 1 ≤ i ≤ n there exists a (pi , di , qi )-loop πi with

effect(π1)effect(π2) · · · effect(πn) = 1 in K .
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Loop patterns

Let t ∈ {1, a, a−1, b, b−1} be a type.

A loop pattern at t is a word

w = (p1, d1, q1)(p2, d2, q2) · · · (pn, dn, qn) ∈ X ∗
t .

such that for every 1 ≤ i ≤ n there exists a (pi , di , qi )-loop πi with

effect(π1)effect(π2) · · · effect(πn) = 1 in K .

The depth of this loop pattern is min(max1≤i≤n depth(πi )), where
the min is taken over all π1, . . . , πn as above.
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Loop patterns

Let t ∈ {1, a, a−1, b, b−1} be a type.

A loop pattern at t is a word

w = (p1, d1, q1)(p2, d2, q2) · · · (pn, dn, qn) ∈ X ∗
t .

such that for every 1 ≤ i ≤ n there exists a (pi , di , qi )-loop πi with

effect(π1)effect(π2) · · · effect(πn) = 1 in K .

The depth of this loop pattern is min(max1≤i≤n depth(πi )), where
the min is taken over all π1, . . . , πn as above.

Let Pt be the set of all loop patterns at t.
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Loop patterns

Let t ∈ {1, a, a−1, b, b−1} be a type.

A loop pattern at t is a word

w = (p1, d1, q1)(p2, d2, q2) · · · (pn, dn, qn) ∈ X ∗
t .

such that for every 1 ≤ i ≤ n there exists a (pi , di , qi )-loop πi with

effect(π1)effect(π2) · · · effect(πn) = 1 in K .

The depth of this loop pattern is min(max1≤i≤n depth(πi )), where
the min is taken over all π1, . . . , πn as above.

Let Pt be the set of all loop patterns at t.

We will show:

Pt is regular and

an automaton for Pt can be computed.
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A well quasi order

A WQO (well quasi order) is a reflexive and transitive relation �
(on a set A) such that for every infinite sequence a1, a2, a3, . . .

there exist i < j with ai � aj .
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A well quasi order

A WQO (well quasi order) is a reflexive and transitive relation �
(on a set A) such that for every infinite sequence a1, a2, a3, . . .

there exist i < j with ai � aj .

For a group H, we define a partial order �H on X ∗ (X any finite
alphabet) as follows: u �H v iff there exist factorizations

u = x1x2 · · · xn (xi ∈ X )

v = v0x1v1x2 · · · vn−1xnvn

such that for every homomorphism ϕ : X ∗ → H we have
ϕ(v0) = ϕ(v1) = · · ·ϕ(vn) = 1.
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A well quasi order

A WQO (well quasi order) is a reflexive and transitive relation �
(on a set A) such that for every infinite sequence a1, a2, a3, . . .

there exist i < j with ai � aj .

For a group H, we define a partial order �H on X ∗ (X any finite
alphabet) as follows: u �H v iff there exist factorizations

u = x1x2 · · · xn (xi ∈ X )

v = v0x1v1x2 · · · vn−1xnvn

such that for every homomorphism ϕ : X ∗ → H we have
ϕ(v0) = ϕ(v1) = · · ·ϕ(vn) = 1.

Lemma

For every finite group H, �H is a WQO.
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The set of loop patterns is regular

Lemma

For every t ∈ {1, a, a−1, b, b−1}, the set of loop patterns Pt is

upward closed w.r.t. �H .
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The set of loop patterns is regular

Lemma

For every t ∈ {1, a, a−1, b, b−1}, the set of loop patterns Pt is

upward closed w.r.t. �H .

This implies that Pt is regular, but can we compute an NFA for Pt?
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A fixpoint characterization of Pt

For i ∈ N, let P
(i)
t ⊆ X ∗

t be the set of loop patterns of depth ≤ i .

Observation

There is an operator Φ with

Φ
[

(P
(i)
t )t∈T

]

= (P
(i+1)
t )t∈T

such that Φ is effectively regularity perserving: For regular sets Rt ,
the languages in the tuple Φ [(Rt)t∈T ] are effectively regular.
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A fixpoint characterization of Pt

For i ∈ N, let P
(i)
t ⊆ X ∗

t be the set of loop patterns of depth ≤ i .

Observation

There is an operator Φ with

Φ
[

(P
(i)
t )t∈T

]

= (P
(i+1)
t )t∈T

such that Φ is effectively regularity perserving: For regular sets Rt ,
the languages in the tuple Φ [(Rt)t∈T ] are effectively regular.

Lemma

(Pt)t∈T is the smallest fixpoint of Φ containing ({λ})t∈T .
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Algorithm

1: U
(0)
t := {λ}↑H for each t ∈ T .

2: while ∃w ∈ Φ
[

(U
(i)
t )t∈T

]

t
\ U

(i)
t for some t ∈ T do

3: U
(i+1)
t := U

(i)
t ∪ {w}↑H

4: i := i + 1
5: end while

The sets U
(i)
t are upward closed w.r.t. �H .
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Algorithm

1: U
(0)
t := {λ}↑H for each t ∈ T .

2: while ∃w ∈ Φ
[

(U
(i)
t )t∈T

]

t
\ U

(i)
t for some t ∈ T do

3: U
(i+1)
t := U

(i)
t ∪ {w}↑H

4: i := i + 1
5: end while

The sets U
(i)
t are upward closed w.r.t. �H .

Hence (U
(k+1)
t )t∈T = (U

(k)
t )t∈T for some k .
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Algorithm

1: U
(0)
t := {λ}↑H for each t ∈ T .

2: while ∃w ∈ Φ
[

(U
(i)
t )t∈T

]

t
\ U

(i)
t for some t ∈ T do

3: U
(i+1)
t := U

(i)
t ∪ {w}↑H

4: i := i + 1
5: end while

The sets U
(i)
t are upward closed w.r.t. �H .

Hence (U
(k+1)
t )t∈T = (U

(k)
t )t∈T for some k .

Then Φ
[

(U
(k)
t )t∈T

]

= (U
(k)
t )t∈T .
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Algorithm

1: U
(0)
t := {λ}↑H for each t ∈ T .

2: while ∃w ∈ Φ
[

(U
(i)
t )t∈T

]

t
\ U

(i)
t for some t ∈ T do

3: U
(i+1)
t := U

(i)
t ∪ {w}↑H

4: i := i + 1
5: end while

The sets U
(i)
t are upward closed w.r.t. �H .

Hence (U
(k+1)
t )t∈T = (U

(k)
t )t∈T for some k .

Then Φ
[

(U
(k)
t )t∈T

]

= (U
(k)
t )t∈T .

Thus U
(k)
t = Pt .
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Open problems

Complexity of RatMP(H ≀ V ) for H finite and V virtually-free.
Is RatMP(Z2 ≀ Z) primitive recursive?
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Rational subset membership problem for wreath products
H ≀ V with V virtually free and H a f.g. infinite torsion group.
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H ≀ G with H 6= 1 and G not virtually-free.
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Is RatMP(Z2 ≀ Z) primitive recursive?

Rational subset membership problem for wreath products
H ≀ V with V virtually free and H a f.g. infinite torsion group.

Rational subset membership problem for wreath products
H ≀ G with H 6= 1 and G not virtually-free.

Conjecture: Whenever H is non-trivial and G is not
virtually-free, then RatMP(H ≀ G ) is undecidable.
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Open problems

Complexity of RatMP(H ≀ V ) for H finite and V virtually-free.
Is RatMP(Z2 ≀ Z) primitive recursive?

Rational subset membership problem for wreath products
H ≀ V with V virtually free and H a f.g. infinite torsion group.

Rational subset membership problem for wreath products
H ≀ G with H 6= 1 and G not virtually-free.

Conjecture: Whenever H is non-trivial and G is not
virtually-free, then RatMP(H ≀ G ) is undecidable.

Is there a (necessarily one-ended) group G , for which the
submonoid membership problem is decidable but RatMP(G )
is undecidable?
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