
Presburger arithmetic with stars,
rational subsets of graph groups,

and nested zero tests
Christoph Haase

University of Oxford
United Kingdom

Email: christoph.haase@cs.ox.ac.uk

Georg Zetzsche
Max Planck Institute for Software Systems (MPI-SWS)

Germany
Email: georg@mpi-sws.org

Abstract—We study the computational complexity of existential
Presburger arithmetic with (possibly nested occurrences of) a
Kleene-star operator. In addition to being a natural extension
of Presburger arithmetic, our investigation is motivated by two
other decision problems.

The first problem is the rational subset membership problem
in graph groups. A graph group is an infinite group specified
by a finite undirected graph. While a characterisation of graph
groups with a decidable rational subset membership problem
was given by Lohrey and Steinberg [J. Algebra, 320(2) (2008)],
it has been an open problem (i) whether the decidable fragment
has elementary complexity and (ii) what is the complexity for
each fixed graph group. The second problem is the reachability
problem for integer vector addition systems with states and
nested zero tests.

We prove that the satisfiability problem for existential Pres-
burger arithmetic with stars is NEXP-complete and that all three
problems are polynomially inter-reducible. Moreover, we consider
for each problem a variant with a fixed parameter: We fix the star-
height in the logic, the group for the membership problem, and
the number of distinct zero-tests in the integer vector addition
systems. We establish NP-completeness of all problems with fixed
parameters.

In particular, this enables us to obtain a complete description
of the complexity landscape of the rational subset membership
problem for fixed graph groups: If the graph is a clique, the
problem is NL-complete. If the graph is a disjoint union of cliques,
it is P-complete. If it is a transitive forest (and not a union of
cliques), the problem is NP-complete. Otherwise, the problem is
undecidable.

I. INTRODUCTION

Presburger arithmetic is the first-order theory of the nat-
ural numbers with addition and order. Shown decidable by
Presburger in 1929 [48], Presburger arithmetic has become
a standard tool for showing decidability and complexity
results in many areas of computer science such as automata
theory, database theory, formal verification and knowledge
representation; see also [27].

In many domains, both in theory and practice, the existential
fragment of Presburger arithmetic is of particular interest
for a variety of reasons. With an NP-complete satisfiability
problem [8], this fragment is computationally rather light-
weight. Furthermore, highly-optimised decision procedures
for existential Presburger arithmetic have been developed and
integrated into SMT-solvers such as CVC4 [2] and Z3 [13],
which in practice enables solving a variety of problems via a

reduction into existential Presburger arithmetic. Finally, existen-
tial Presburger arithmetic is expressively-complete: A seminal
result due to Ginsburg and Spanier [23] established that the sets
of integer vectors definable in Presburger arithmetic coincide
with the semi-linear sets, which arise as higher-dimensional
generalisations of ultimately periodic sets. Since arbitrary semi-
linear sets are definable in existential Presburger arithmetic,
additional quantifiers do not lead to more expressiveness and
only contribute succinctness.

Besides Presburger arithmetic, another classical represen-
tation for these sets is available in rational expressions over
vectors [20], which consist of vectors, unions, (Minkowski)
sums, and Kleene stars. Since each of these representations
suits certain applications, it is not only natural, but also useful
to consider representations that accommodate both rational
expressions and existential Presburger arithmetic.

This is one of the reasons why we investigate the com-
putational complexity of ∃PA∗, the existential fragment of
Presburger arithmetic enriched with a Kleene-star operator
(subsequently star operator for brevity). Since existential
Presburger arithmetic readily expresses (Minkowski) sums and
unions, this encompasses the expressiveness of rational expres-
sions. Given a formula φ(x), the star operator additionally
allows for formulas of the form φ∗(x) such that φ∗(v) holds
if there are v1, . . . ,vk ∈ Nd such that v = v1 + · · ·+ vk and
φ(vi) holds for all 1 ≤ i ≤ k. Of course, the star-operator
may occur in φ(x) itself; we refer to the maximum number of
nested star operators occurring in a formula φ as the star-height
of φ. Thus, existential Presburger arithmetic is the fragment
of ∃PA∗ of star-height 0. The fragment of ∃PA∗ of star-height
one was studied by Piskac and Kunčak [46]. They showed
NP-completeness of the satisfiability problem, and furthermore
natural applications of ∃PA∗ to reasoning about multi-sets with
cardinality constraints and a class of integer vector addition
systems with states with semi-linear transition updates. One
of our contributions is to show that ∃PA∗ is NEXP-complete
in general, and NP-complete for any arbitrary but fixed star-
height. While being an interesting result in its own right, our
main motivation for studying ∃PA∗ emerges from two other
problems, the computational complexity of the rational subset
membership problem in graph groups and of reachability in
integer vector addition systems with nested zero tests.

3acb2a05 2019-01-12 04:52:29 +0000

Rational subsets of graph groups

Graph groups (also known as right-angled Artin groups or
free partially commutative groups) are infinite groups that are
specified by an undirected simple graph. Here, each vertex
represents a generator and an edge dictates that a pair of
generators commute. This class of groups has received growing
attention in the last decades, from computer science as well
as from mathematics. In computer science, this is due to their
close connection to Mazurkiewicz traces [17, 18, 19] and
their prominent role in a general framework for infinite-state
systems [9, 12, 56, 57, 58]. In mathematics, graph groups are
currently an area of intense investigation because of their rich
subgroup structure [53]: The class of virtually special groups,
i.e. finite extensions of subgroups of graph groups, recently
turned out to encompass an abundant array of groups, namely
Coxeter groups [29], one-relator groups with torsion [54],
fully residually free groups [54], and fundamental groups of
hyperbolic 3-manifolds [33].

In a tradition initiated by Dehn [14] to consider groups
together with their decision problems, there has been substantial
interest in algorithmic questions for graph groups, such as the
word problem [15, 55], solving equations [17, 18, 43], and
membership in subgroups [36, 37] and submonoids [36, 41].

A decision problem that been attracting attention in the last
decades is the membership problem for rational subsets, i.e.
those accepted by a finite automaton (e.g. [36, 41, 42] and
[40] for a survey). This is because they naturally generalise
subgroups and submonoids, and have been an important tool
for solving equations [16] and other problems [3].

An important contribution in this context is a result of Lohrey
and Steinberg [41]. It characterises those graphs for which the
corresponding graph group has a decidable rational subset
membership problem. However, the procedure they provide has
non-elementary complexity and it has remained open until now
whether there is an elementary one. The precise complexity
has been open both in the case (i) where the graph (from the
decidable class) is part of the input and (ii) for each fixed
group. We denote problem (ii) as RatMPtf .

As we show, this problem is polynomially inter-reducible
with satisfiability of ∃PA∗. Therefore, our results imply that the
problem is NEXP-complete if the graph (and hence group) is
part of the input. Moreover, the NP upper bound for fixed star
height leads to a complete description of the complexity for
each fixed graph group: If the graph is a clique, the problem
is NL-complete. If the graph is a disjoint union of at least
two cliques, then it is P-complete. If the graph is a transitive
forest (and not a disjoint union of cliques), the problem is
NP-complete. In all other cases, Lohrey and Steinberg have
established undecidability.

Integer VASS with nested zero tests

Vector addition systems with states (VASS), equivalently
known as Petri nets, are a fundamental model of computation. A
VASS comprises a finite-state controller with a finite number of
counters ranging over the non-negative integers. When taking
a transition, counters can be incremented and decremented

provided that resulting counter values are all non-negative.
VASS find a plethora of applications, primarily for modelling
and reasoning about concurrent systems, but also, for example,
in formal language theory, logic, process calculi, see e.g. [51,
Sec. 5]. While control-state reachability as well as configuration
reachability are decidable for VASS, additionally allowing
for testing counters for zero along transitions renders both
problems undecidable [44]. A decidable extension of VASS
with zero tests has been given by Reinhardt [50]. He showed
that reachability in VASS extended with nested zero tests (also
called hierarchical zero tests) is decidable. Nested zero tests
constraint arbitrary zero tests such that the k-th counter can
only be tested for zero if at the same time the first up to the
(k − 1)-th counters are tested for zero. An alternative proof of
Reinhardt’s result has been given by Bonnet [7].

Leaving aside decidability issues, one major obstacle in the
automated analysis of VASS is the high computational complex-
ity of decidable decision problems: control-state reachability
is EXPSPACE-complete [39, 49], and a non-elementary lower
bound for the configuration-reachability problem has recently
been established [11]. To the best of the authors’ knowledge,
no dedicated complexity results have been given for VASS with
nested zero tests. For overcoming those high computational
costs, relaxations of VASS and their extensions have been
investigated with the goal of finding computationally more
tractable models that can be used to over-approximate reacha-
bility sets of VASS and their extensions, for intance allowing
counters to range over the integers, the resulting model being
commonly known as integer VASS (Z-VASS) [28] or blind
counter automata [25]. Configuration and a fortiori control-state
reachability for Z-VASS are only NP-complete [28]. Z-VASS
and related relaxations have successfully been used to enable
the scalable analysis of concurrent programs, see e.g. [1, 5, 22].
Furthermore, integer over-approximations of VASS extended
with, for instance, affine transformations [6], and ordered and
unordered data [30, 31] have also been studied.

A further contribution of this paper is to show that
configuration reachability in Z-VASS extended with nested
zero tests (Z-VASSnz) is inter-reducible with satisfiability
in ∃PA∗. As a consequence, we obtain NEXP-completeness
of configuration reachability in Z-VASSnz. Furthermore, our
reduction preserves fixed-parameter properties, enabling us
to show that configuration reachability is NP-complete when
fixing the number of distinct zero-tests.

Main technical tools

We briefly comment on the main ideas and tools that our
results rely on. For the NEXP and NP upper bounds for ∃PA∗,
just as in [46], we rely on a Carathéodory-type theorem [21] for
decomposing semi-linear sets into semi-linear sets whose sets
of period vectors have polynomial cardinality. We additionally
exploit that this decomposition, together with results on the
descriptional complexity of Boolean operations on semi-linear
sets [10], also enables us to witness that a linear set is contained
in the solutions of φ∗(x) by providing only a polynomial
number of linear sets contained in the solutions of φ(x) as a

2

3acb2a05 2019-01-12 04:52:29 +0000

certificate. For the NEXP lower bound, we reduce the succinct
circuit satisfiability problem to satisfiability of ∃PA∗. To this
end, we show that one can define 22n

in an ∃PA∗ formula
of size polynomial in n. Moreover, we express a universal
quantifier ranging over [1, 2n]. This allows us to guess an
evaluation of the succinct circuit as a number in [1, 22n

] and
express consistency with the gates using the quantifier.

In the translation of RatMPtf to ∃PA∗, we avoid the non-
elementary blow up as follows. The procedure of Lohrey and
Steinberg [41] builds semi-linear sets by alternating two opera-
tions: (i) intersections and (ii) building context-free grammars
(out of semi-linear representations) and taking their Parikh
image. Since Parikh images of context-free grammars may
require exponential semi-linear representations [38], this results
in non-elementary complexity. Here, we adapt a construction by
Verma, Seidl, and Schwentick [52], which builds an existential
Presburger formula for a given context-free grammar. Our
modification uses the Kleene star to accommodate grammars
that have infinite (but semi-linear) sets of productions. For the
remaining reductions, we use ad-hoc constructions.

II. PRELIMINARIES

A. General notation

We denote by ‖·‖ the `∞-norm. Given an m × n integer
matrix A, as usual ‖A‖1,∞ = max1≤i≤m

∑n
j=1|aij |. Through-

out the paper, we interchangeably treat finite sets of vectors
Q ⊆ Zn as matrices (e.g. by lexicographically ordering the
elements of Q), and vice versa.

B. Semi-linear sets

Let b ∈ Nn be a base vectors and P = {p1, . . . ,pk} ⊆
Nn be a finite set of period vectors. The linear set L(b, P)
generated by b and P is defined as

L(b, P) = b+

{
k∑
i=1

λi · pi : λi ∈ N, 1 ≤ i ≤ k

}
.

A semi-linear set is a finite union of linear sets. Given a
linear set N = L(b, P), we denote by ‖N‖ = max{‖b‖, ‖p‖ :
p ∈ P}. For a semi-linear set M =

⋃
i∈I Ni, we denote by

‖M‖ = max{‖Ni‖ : i ∈ I}. Given v ∈ Nn and a semi-linear
set M , deciding whether v ∈M is NP-complete [32].

For a linear set N = L(b, P) ⊆ Nn, we can a priori only
derive |P | ≤ (‖N‖ + 1)n as a bound on the cardinality of
P . The following paraphrased result due to Eisenbrand and
Shmonin shows that N is equivalent to a semi-linear set in
which the cardinality of all sets of period vectors is small.

Proposition II.1 (Thm. 1 in [21]). Let N = L(b, P) ⊆ Nn
be a linear set. Then N =

⋃
i∈I L(b, Pi) such that Pi ⊆ P

and |Pi| ≤ 2n log(4n‖N‖) for all i ∈ I .

In particular, Proposition II.1 enables us to assume that sets
of period vectors of semi-linear sets have small cardinality.

Corollary II.2. Let M ⊆ Nn be a semi-linear set. Then M =
M ′ such that ‖M‖ = ‖M ′‖, M ′ =

⋃
i∈I L(bi, Pi) and |Pi| ≤

2n log(4n‖M‖) for all i ∈ I .

Given a system of linear Diophantine inequalities S : A ·x ≥
c for some m × n integer matrix A, denote by JSK = {u ∈
Nn : A · u ≥ c} the set of solutions of S. We will use the
following bound on the semi-linear representation of the set
of solutions of S, which follows from [47] and [10].

Proposition II.3. Let S : A · x ≥ c be a system of linear
Diophantine inequalities. Then M = JSK =

⋃
i∈I L(bi, P),

‖M‖ ≤ (n · ‖A‖+ ‖c‖+ 2)m+n, and A · bi ≥ c for all i ∈ I
and A · p ≥ 0 for all p ∈ P .

Let M ⊆ Nd, the Kleene-star of M is defined as

M∗ :=
⋃
k≥0

{
k∑
i=1

vi : vi ∈M

}
.

Here, the empty sum denotes 0. For linear sets, we often write
L∗(b, P) instead of (L(b, P))∗.

C. Presburger arithmetic with stars

Let x,y be tuples of first-order variables, and let z = (x,y)
be an n-tuple consisting of the first-order variables of x and y.
A formula of existential Presburger arithmetic of star height 0
is of the form

φ(x) = ∃y : ψ(z), (1)

where ψ(z) is a (possibly nested) conjunction and disjunction
of linear Diophantine inequalities of the form a · z ≥ c for
aᵀ ∈ Zn and c ∈ Z. A formula of existential Presburger
arithmetic of star height k + 1 is of the form of Eq. (1) and
additionally allows for atomic formulas ϑ∗(z) of star height
at most k. Existential Presburger arithmetic with stars (∃PA∗)
is the set of all formulas of existential Presburger arithmetic
of star height k for any k ≥ 0.

The semantics JφK of an ∃PA∗ formula is given in terms of
of subsets of Nd by structural induction. By Proposition II.3,
Ja · z ≥ cK is a semi-linear set, for the remaining cases we
define
• Jφ(z) ∧ ψ(z)K = Jφ(z)K ∩ Jψ(z)K
• Jφ(z) ∨ ψ(z)K = Jφ(z)K ∪ Jψ(z)K
• Jϑ∗(z)K = Jϑ(z)K∗
• J∃y : ψ(z)K = πxJψ(z)K, where πx denotes the projec-

tion onto the variables x.
It is not difficult to see, and will more formally be discussed
in Section IV, that the sets definable in ∃PA∗ are semi-linear
sets. A formula φ(x) is satisfiable if JφK 6= ∅. (Thus, if φ has
no free variables, then satisfiability means JφK = {∅}).

Remark II.4. We do not allow negation in our formulas
in order to avoid complementing semi-linear sets. Atomic
formulas of the form a · z ≥ c can, however, be negated since
¬(a · z ≥ c) ≡ a · z ≤ c− 1.

The length |φ| of a ∃PA∗ formula φ is defined as the number
of symbols required to write down φ, and ‖φ‖ denotes the
absolute value of the largest constant occurring in φ. Without
loss of generality we assume unary encoding of numbers, and
that |φ| ≥ 2 for any φ.

3

3acb2a05 2019-01-12 04:52:29 +0000

D. Rational subsets of graph groups

A graph is a pair (A, I), where A is an alphabet and I ⊆
P2(A). Here, Pk(S) denotes the set of k-element subsets of
a set S. We will also use terminology from Mazurkiewicz
traces [19], where I is called an independence relation. For
an alphabet A, let A−1 = {a−1 : a ∈ A} be the alphabet of
formal inverses of A and A±1 = A ∪A−1. The graph group
defined by (A, I), denoted G(A, I), is the group presented by
〈a ∈ A : ab = ba ({a, b} ∈ I)〉. We will work with a definition
of G(A, I) as a monoid as follows. For u, v ∈ (A±1)∗, let
u → v if there are words x, y ∈ (A±1)∗ and a pair (r, s) ∈
{(ab, ba) : {a, b} ∈ I)} ∪ {(aa−1, ε), (a−1a, ε) : a ∈ A}
such that u = xry and v = xsy. Then, let ≡A,I be the
symmetric, reflexive, transitive closure of →. We can then
define G(A, I) = (A∪A−1)∗/ ≡A,I . In other words, G(A, I)
consists of ≡A,I congruence classes [w] for w ∈ (A±1)∗ that
are multiplied by way of [u][v] = [uv]. Let |A| = n. Observe
that if (A, I) is a clique, i.e. I = P2(A), then G(A, I) ∼= Zn. If
I = ∅, then G(A, I) is called the free group (over n generators)
and is also denoted Fn.

For a subset B ⊆ A, let IB = I∩P2(B) and πB : (A±1)∗ →
(B±1)∗ be the morphism with πB(b) = πB(b−1) = b for
b ∈ B and πB(a) = πB(a−1) = ε for a /∈ B. Then u ≡A,I v
implies πB(u) ≡B,IB πB(v), so that πB induces a morphism
G(A, I)→ G(B, IB), [u] 7→ [πB(u)], also denoted πB .

Let G be a group. An automaton over G is a tuple A =
(Q,E, q0, qf), where Q is a finite set of states, E ⊆ Q×G×Q
is a finite set of edges, and q0, qf ∈ Q are its initial and final
state, respectively. A configuration of A is a pair (p, g) ∈
Q × G and we write (p, g) →A (p′, g′) if there is an edge
(p, h, p′) ∈ E with g′ = gh. Such an automaton describes a
subset of G, namely L(A) = {g ∈ G : (q0, 1) →∗A (qf , g)},
where →∗A denotes the reflexive transitive closure of →A. The
subsets of G of the form L(A) are called rational subsets.

In algorithms over automata over groups, one usually
considers finitely generated (short f.g.) groups, i.e. ones with a
finite subset Σ ⊆ G so that every element of G can be written
as a product of members of Σ. In that case, the elements of G,
and hence edge inscriptions, can be encoded by words over
Σ. Since we will work with graph groups, we always assume
that automata over G(A, I) are represented with the generating
set A±1 (neither decidability nor complexity of the problems
considered here depend on the chosen generating set). The
rational subset membership problem for G is the following
problem: Given an automaton A over G and an element g ∈ G,
decide whether g ∈ L(A).

An important concept in the context of rational subsets of
graph groups is that of transitive forests. By a forest, we mean
a cycle-free graph where every connected component has a
distinguished root vertex. A graph (A, I) is a transitive forest
if it can be obtained from a forest by adding an edge between
any two nodes that lie on a path between a root and a leaf.
The rational subset membership problem for graph groups has
been studied by Lohrey and Steinberg [41], who obtained a
complete characterisation of those graph groups where the

problem is decidable.

Theorem II.5 ([41]). Let (A, I) be a graph. The rational
subset membership problem is decidable for G(A, I) if and
only if (A, I) is a transitive forest.

E. Integer VASS with nested zero-tests

A d-dimensional Z-VASS with k nested zero-tests (Z-VASSnzk
for short) is a tuple V = (Q,Z,E), where Q is a finite set
of states, Z ⊆ [0, d] is its set of zero tests with |Z| = k, and
E ⊆ Q× [−1, 1]d×Z ×Q is its set of edges. A configuration
is a pair (q,v) ∈ Q×Zd. We write (q,v)→V (q′,v′) if there
is an edge (q,u, `, q′) such that (i) v′ = v+u and (ii) vi = 0
for every i ∈ [0, `], where v = (v1, . . . , vd).

Note that a Z-VASSnzk can have more than k counters.
However, there are at most k elements ` of [0, d] for which
we can check whether all counters 1, . . . , ` are zero. Moreover,
these tests can be performed arbitrarily often during a run. A
Z-VASSnz is a Z-VASSnzk for some k ≥ 0.

III. RESULTS

In this section, we present the main results of this work. Let
us begin with the decision problems we study. The first is the
satisfiability problem for ∃PA∗:
Given An ∃PA∗ formula φ.
Question Does φ have a satisfying assignment, i.e. is JφK 6= ∅?
Slightly abusing notation, we denote this problem also as ∃PA∗.
If we restrict the input to ∃PA∗ formulas of star-height k, then
we denote the problem by ∃PA∗k.

The second problem concerns rational subsets of graph
groups. For the fixed-parameter version, we introduce the
branching number of transitive forests. Note that every non-
empty transitive forest is either (i) a disjoint union of connected
transitive forests, or (ii) has a universal vertex, i.e. a vertex that
is adjacent to all other vertices (take the root of the underlying
tree). This induces a successive decomposition of the transitive
forest into smaller transitive forests: For a disjoint union, take
the disjoint connected transitive forests. If there is a universal
vertex, remove that vertex to obtain a smaller transitive forest.

The decomposition is unique up to isomorphism: This is
obvious in the case of a disjoint union. In the case of several
universal vertices, note that all possible removals result in
isomorphic graphs. This allows us to define the branching
number β(A, I) of a transitive forest (A, I): If A = ∅, then
β(A, I) = 0. If (A, I) is a disjoint union of connected transitive
forests (A1, I1), . . . , (An, In), then β(A, I) = max{β(Ai, Ii) :
i ∈ [1, n]} + (n − 1). If (A, I) has a universal vertex u and
removing u leaves (A′, I ′), then β(A, I) = β(A′, I ′).

The rational subset membership problem for graph groups
defined by transitive forests, denoted RatMPtf , is the following:
Given A transitive forest (A, I), an automaton A over G(A, I),

and a word w ∈ (A±1)∗.
Question Does [w] ∈ L(A) hold?
If we restrict the input to transitive forests (A, I) with
β(A, I) ≤ k, then the problem is denoted RatMPtf

k .

4

3acb2a05 2019-01-12 04:52:29 +0000

Finally, the reachability problem for Z-VASSnz is the
following:
Given A Z-VASSnz A and configurations (q,v), (r,w).
Question Does (q,v)→∗A (r, w) hold?
If the input is restricted to Z-VASSnz with k nested zero-tests,
we write Z-VASSnzk . The following is our first main result.

Theorem III.1. The problem ∃PA∗ is NEXP-complete and for
every fixed k ∈ N, ∃PA∗k is NP-complete.

We will prove Theorem III.1 in Section IV. Our second main
result is that the problems ∃PA∗, RatMPtf and Z-VASSnz are
polynomial-time inter-reducible.

Theorem III.2. The three problems ∃PA∗, RatMPtf and
Z-VASSnz are polynomially inter-reducible. Moreover, for each
fixed k ∈ N, the reductions translate among ∃PA∗k, RatMPtf

k ,
and Z-VASSnzk .

Theorem III.2 will be shown in Sections V to VII. As obvious
consequences, we have:

Corollary III.3. RatMPtf and Z-VASSnz are NEXP-complete.
RatMPtf

k and Z-VASSnzk are NP-complete for every k ∈ N.

In particular, this implies that if we restrict the input of
RatMPtf to a fixed transitive forest (A, I), then the problem
is always in NP. With this piece of the puzzle, we can show:

Theorem III.4. Let (A, I) be a graph. Then the rational subset
membership problem for G(A, I) is

1) NL-complete if (A, I) is a clique,
2) P-complete if (A, I) is a disjoint union of at least two

cliques,
3) NP-complete if (A, I) is a transitive forest and not a

disjoint union of cliques, and
4) undecidable if (A, I) is not a transitive forest.

IV. THE COMPLEXITY OF EXISTENTIAL PRESBURGER
ARITHMETIC WITH STARS

This section proves NEXP-completeness of ∃PA∗ respec-
tively NP-completeness of ∃PA∗k for k ≥ 0. We first establish
some technical results on semi-linear sets before we provide
a bound on the descriptional complexity of the semi-linear
representation of the set of solutions of an ∃PA∗ formula φ.
This bound then gives rise to a decision procedure with the
desired upper bounds. We close this section by establishing a
matching NEXP lower bound for ∃PA∗.

A. Properties of the Kleene star on semi-linear sets

As a preparatory step, we analyse the effects on the
descriptional complexity of the application of the Kleene star
on semi-linear sets. The facts derived below are paraphrased
or indirectly stated in [46]; for that reason we only state the
results and defer all proofs to the appendix.

The following identities hold for any finite P,Q ⊆ Nd:

L∗(0, P) + L∗(0, Q) = L∗(0, P ∪Q)

= L(0, P ∪Q) = L(0, P) + L(0, Q)
(2)

Based on those identities, one can show that semi-linear sets
are closed under the star operator.

Lemma IV.1. Let M =
⋃
j∈J L(cj , Qj) be a semi-linear set.

Then M∗ =
⋃
K⊆J L(bK , PK), where

bK :=
∑
k∈K

ck CK :=
⋃
k∈K

{ck}

QK :=
⋃
k∈K

Qk PK := CK ∪QK .

For our purposes, this lemma is too weak: there is no bound
on the cardinality of the PK , and the magnitude of bK depends
on |J |, which may be doubly-exponential in ‖M‖. Building
upon Lemma IV.1, we can derive the following lemma whose
statement and proof are adapted from [46, Thm. 2].

Lemma IV.2. Let M =
⋃
j∈J L(cj , Qj) ⊆ Nn be a

semi-linear set, and let c = 2n log(4n‖M‖). Then M∗ =⋃
i∈I L(bi, Pi) such that for every i ∈ I ,
• bi =

∑
k∈K ck for some K ⊆ J with |K| ≤ c,

• Pi ⊆
⋃
j∈J{cj} ∪

⋃
k∈K Qk with |Pi| ≤ c, and

• ‖M∗‖ ≤ c · ‖M‖.

B. Properties of intersections of linear sets

We also need a bound on the descriptional complexity of
intersecting k linear sets, which are provided by the following
lemma. Its proof is analogous to the proof of Theorem 6 in [10]
and deferred to the appendix.

Lemma IV.3. Let Mj = L(cj , Qj) ⊆ Nn such that ‖Mj‖ ≤
s and |Qj | ≤ m, 1 ≤ j ≤ k. Then L :=

⋂
1≤j≤kMj =⋃

i∈I L(bi, P) such that

• ‖L‖ ≤ (k ·m · s+ 1)O(k·n)

• for every bi and 1 ≤ j ≤ k there is some d ≥ 0 such
that bi = cj +Qj · d, and

• for every 1 ≤ j ≤ k there is some non-negative matrix R
such that P = Qj ·R.

C. Bounds on the semi-linear representation of ∃PA∗ solutions

We are now fully prepared to give an estimation on the
descriptional complexity of the semi-linear representation of
the set of solutions of an ∃PA∗ formula. To this end, we first
prove a technical lemma that establishes bounds for conjunctive
∃PA∗ formulas in which the maximum constants of the semi-
linear representation of the top-level φi formulas is bounded.

Lemma IV.4. Let φ(x) = ∃y :
∧

1≤i≤j φi(x,y) ∧∧
j<i≤k φ

∗
i (x,y) be an ∃PA∗ formula, L = JφK and Mi =

JφiK such that ‖Mi‖ ≤ s for all 1 ≤ i ≤ k. Then
‖L‖ ≤ sO(|φ|3).

Proof. We first estimate ‖M∗i ‖ for j < i ≤ k. By Lemma IV.2,
we have ‖M∗i ‖ ≤ c · s with c ≤ 2|φ| log(4|φ|s) ≤ O(|φ|2 · s).
Hence ‖M∗i ‖ ≤ O(|φ|2 · s2). Likewise, we use Corol-
lary II.2 to derive that the cardinality of the period vectors
in the semi-linear representation of ‖M∗i ‖ is bounded by

5

3acb2a05 2019-01-12 04:52:29 +0000

Algorithm 1 Decision procedure for ∃PA∗

1: procedure VERIFY(L(b, P), φ)
2: if φ = a · x ≥ c then
3: check a · b ≥ c and a · p ≥ 0 for all p ∈ P
4: else if φ = ψ∗(x) then
5: guess Li(ci, Qi), i ∈ [m] and K ⊆ [m]
6: VERIFY(Li(ci, Qi), ψ) for all 1 ≤ i ≤ m
7: check b =

∑
k∈K ck

8: check P ⊆
⋃

1≤i≤m{ci} ∪
⋃
k∈K Qk

9: else
10: guess top-level subformulas φi(x), i ∈ [m] of φ
11: making φ propositionally true
12: guess L1(c1, Q1), . . . , Lm(cm, Qm)
13: VERIFY(Li(ci, Qi), φi) for all 1 ≤ i ≤ m
14: check b = ci +Qi · di some di for all i ∈ [m]
15: check P = Qi ·Ri for some Ri for all i ∈ [m]

2|φ| log(4|φ|3s2) ≤ O(|φ|2 · s). Lemma IV.3 implies that for
M :=

⋂
1≤i≤jMi ∩

⋂
j<i≤kM

∗
i , we have

‖M‖ ≤ (|φ| ·O(|φ|2 · s) ·O(|φ|2 · s2))O(|φ|2) ≤ sO(|φ|3).

The statement follows since ‖L‖ = ‖M‖.

As an immediate consequence, we have:

Proposition IV.5. For any ∃PA∗ formula φ of star-height k
and L = JφK, we have ‖L‖ ≤ ‖φ‖|φ|O(k)

.

Proof. We show the statement by induction on k. The statement
follows for k = 0 from Proposition II.3. For the induction step,
apply Lemma IV.4.

D. A decision procedure for ∃PA∗

We now derive one of the main results of this paper:

Proposition IV.6. ∃PA∗ is in NEXP, and ∃PA∗k is in NP for
any k ≥ 0.

From Proposition II.3, we know that the constants in the
semi-linear representation of the set of solutions of an ∃PA∗
formula φ(x) are doubly-exponentially bounded for arbitrary
star height, and singly-exponentially bounded for fixed star
height. However, checking satisfiability of φ is not possible
by merely guessing some small v ∈ JφK. While we can easily
verify whether a · v ≥ c, for subformulas of the form ψ∗(x)
of φ there is no obvious way to check whether v ∈ JψK∗.

Instead, the non-deterministic procedure VERIFY (Algo-
rithm 1) proceeds as follows: On input L(b, P) and φ, VERIFY
recursively determines whether L(b, P) ⊆ JφK. The recursion is
on the star height of φ. In the base case, φ is a linear inequality
a · x ≥ c and according to Proposition II.3, it is sufficient in
Line 3 to check whether a · b ≥ c and a ·p ≥ 0 for all p ∈ P .
In the recursion step, if φ = ψ∗(x), the algorithm guesses m
linear sets Li = L(ci, Qi) in Line 5. The magnitude of each Li
can be bounded according to Proposition IV.5, and every |Qi|
can also be bounded according to Corollary II.2. The algorithm
then verifies in Line 6 whether Li ⊆ JψK for every 1 ≤ i ≤ m.

If that is the case the algorithm determines L(b, P) ⊆ Jψ∗K
according to Lemma IV.2 via the previously guessed Li. Finally,
if φ is a Boolean combination of subformulas of strictly smaller
star height, VERIFY guesses subformulas φi that make φ true
when viewing φ as a formula of propositional logic. Those φi
could be some ψ∗ or a linear inequality. As in the previous
step, in Line 12 the algorithm attempts to guess linear sets
Li such that Li ⊆ JφiK, and subsequently checks in Lines 14
and 15 whether L(b, P) ⊆

⋂
1≤i≤m Li via Lemma IV.3.

In order to decide whether φ of star height k is satisfiable,
we guess some L such that ‖L‖ ≤ ‖φ‖|φ|

O(k)

and invoke
VERIFY(L, φ). The depth of the recursion tree of VERIFY
is bounded by O(k), and due to Corollary II.2 and Proposi-
tion IV.5 in every call VERIFY guesses at most |φ|O(k) linear
sets of magnitude at most ‖φ‖|φ|

O(k)

. Consequently, VERIFY
is an NEXP procedure for arbitrary star height, and an NP
procedure for fixed star height.

E. Lower bound

Here, we show the NEXP lower bound for the satisfiability
problem of ∃PA∗ via a reduction from succinct circuit satisfia-
bility (SC-SAT), which is known to be NEXP-complete [45].

Before we discuss the reduction, we illustrate a key idea by
showing that ∃PA∗ formulas may require solutions of doubly
exponential magnitude. Suppose φ is a Presburger formula that
defines a single number, i.e., φ(x) is satisfied for exactly one
x ∈ N. Consider the formula

φ′ ≡ ∃y, y′, z, z′ :
(
φ(x) ∧ y + z = 1 ∧ y′ + z′ = x ∧

(y = 1→ y′ = x)∧ (z = 1→ z′ = x)
)∗
∧ y = 1∧ z = y′.

The formula under the star has two satisfying assignments: x
always has the same value and either (y, y′, z, z′) = (1, x, 0, 0)
or (y, y′, z, z′) = (0, 0, 1, x). Since a satisfying assignment of
φ′ has to be a sum of such satisfying assignments, imposing
y = 1 means the first case occurred exactly once, thus y′ = x.
Moreover, z = y′ means the second case occurred exactly
y′ = x times, hence z′ = x2. Further, φ′ only adds constant (i.e.
independent of φ) length to φ. Thus, repeating this construction
n times, starting with φ ≡ (x = 2), leads to an ∃PA∗ formula
of size linear in n that has 22n

as its only solution.
In order to encode an instance of SC-SAT, we will

implement a universal quantifier in ∃PA∗, stating that a certain
assertion φ(x, i) holds for all i. To this end, we will sum
up assignments related to φ, but then we need finer control
over which assignments occurred how many times. Moreover,
this has to be achieved via conditions on the sums. Here, the
following observation will be crucial.

Lemma IV.7. Let a0, . . . , am ∈ N and b0, . . . , bm ∈ {0, 1}
with

∑m
i=0 ai =

∑m
i=0 bi. Then

∑m
i=0 ai2

i =
∑m
i=0 bi2

i if and
only if ai = bi for every i ∈ [0,m].

Proof. Let X be a formal variable and consider the ring Z[X]
of polynomials over the variable X with integer coefficients.
In Z[X], consider the polynomials p(X) =

∑m
i=0 aiX

i and

6

3acb2a05 2019-01-12 04:52:29 +0000

q(X) =
∑m
i=0 biX

i. We show that p(1) = q(1) and p(2) =
q(2) implies p(X) = q(X). If ai ≥ 2 for some i ∈ [0,m],
then we modify p0(X) := p(X) to obtain p1(X) = p0(X)−
2Xi+Xi+1. Then, p1 has non-negative coefficients and verifies
p1(2) = p0(2) and pr(1) = p0(1)−1 for every r. If we repeat
this process, the image at 1 strictly decreases in each step, so the
process must terminate, say after s steps. Then the polynomial
ps(x) has coefficients in {0, 1}. It satisfies ps(2) = p(2) and
ps(1) = p(1)− s. This implies ps(2) = p(2) = q(2) and since
binary representations are unique, this implies ps(X) = q(X).
However, that also means p(1) − s = ps(1) = q(1) = p(1),
hence s = 0 and thus q(X) = ps(X) = p(X).

Note that Lemma IV.7 does not hold without the assumption
b0, . . . , bm ∈ {0, 1}: Without it, the lemma would say that a
non-zero polynomial in Z[X] cannot have 1 and 2 as a root,
but (X − 1)(X − 2) is an obvious counter-example to that.

Let us now show how to encode SC-SAT by successively
defining predicates. Here, m,n, k are fixed parameters for each
formula, which will have size polynomial in m,n, k:

1) We start with some auxiliary predicates expressible in ∃PA.
In what follows, we will use y = 〈y0, . . . , yn−1〉 as a shorthand
for y0, . . . , yn−1 ∈ {0, 1} and y =

∑n−1
i=0 yi2

i. Note that
y =

∑n−1
i=0 yi2

i is easily expressed in an ∃PA formula of size
quadratic in n. Moreover, recall that there is an ∃PA formula µn
such that µn(u, v, w) states u, v < 2n and w = u ·v: The latter
is equivalent to u = 〈u0, . . . , un−1〉∧w =

∑n−1
i=0 ui·2i·v. Here,

we can express multiplication with ui because ui ∈ {0, 1};
and with 2i using i-fold doubling.
2) Our first predicate in ∃PA∗ can define a power 2y if
y < 2n and y is given as bits y0, . . . , yn−1. Formally,
p̂own(x, y0, . . . , yn−1) means that y0, . . . , yn−1 ∈ {0, 1} and
x = 2

∑n−1
i=0 yi2

i

. We define the formula inductively. We can
express p̂ow1(x) just by x = 2. Once we have a formula for
n− 1, we define one for n:

y0 ∈ {0, 1} ∧ · · · ∧ yn−1 ∈ {0, 1}∧(
p̂own−1(x′, y′1, . . . , y

′
n−1) ∧ z = 1 ∧ u+ v = 1

∧ ū+ v̄ = x′ ∧ (u = 1→ ū = x′) ∧ (v = 1→ v̄ = x′)
)∗

∧
n−1∧
i=1

y′i = yi · z ∧ u = 1 ∧ v = ū ∧ x = 2y0 · v̄.

Note that we can easily express y′i = yi · z and x = 2y0 · v̄
in Presburger arithmetic because yi ∈ {0, 1} for i ∈ [0, n− 1].
For the same reason, y′i = yi · z implies that in each satisfying
assignment of the formula under the star, we have y′i = yi
for each i ∈ [0, n − 1]. The remaining reasoning is similar
to our example for 22n

. Instead of producing x2, we use

2
∑n−1

i=0 yi2
i

=
(

2
∑n−1

i=1 yi2
i−1
)2

· 2y0 .
3) Employing p̂own, we can now express powering by a
number that is not given in bits, but by a variable. The predicate
pown(x, y) below holds whenever y < 2n and x = 2y. Here,
we can just use y = 〈y0, . . . , yn−1〉 ∧ p̂own(x, y0, . . . , yn−1).

4) We now introduce a type of predicates that can be
instantiated using other ∃PA∗ formulas. It allows us to
sum up a sequence of 2n tuples, each of which satisfies
some given predicate. Moreover, the given predicate has
access to a loop variable i (which assumes the values
1, . . . , 2n) and to parameters y1, . . . , yk < 2n. Suppose
φ(i, x1, . . . , xm, y1, . . . , yk) is an ∃PA∗ formula. Then, the
predicate

∑
i<2n(x1, . . . , xm) : φ(i, x1, . . . , xm, y1, . . . , yk)

states that y1, . . . , yk < 2n and xj =
∑2n−1
i=0 ai,j for some

numbers ai,j such that φ(i, ai,1, . . . , ai,m, y1, . . . , yk) for
every i ∈ [0, 2n − 1]. The variables before the colon designate
which variables are to be added up (namely x1, . . . , xm)
and which are parameters that should be the same in every
summand (namely y1, . . . , yk).(

φ(i, x1, . . . , xm, y
′
1, . . . , y

′
m)∧

∧
j∈[1,m]

y′j = 〈y′j,1, . . . , y′j,n〉 ∧ u = 1 ∧ v = 2i

)∗
∧

u = 2n ∧ v = 22n

− 1 ∧
∧

j∈[1,m]

yj = 〈yj,1, . . . , yj,n〉

∧
∧

j∈[1,m],`∈[1,n]

y′j,` = yj,` · u.

As in p̂own, we guarantee that in each satisfying assignment
under the star, we have y′j,` = yj,`, which in turn means
y′j = yj . This gives the formula under the star access to the
parameters yj . To see that i assumes each value in [0, 2n − 1]
exactly once, we use Lemma IV.7: Since we impose v =
22n − 1 and u = 2n outside the star and 22n − 1 =

∑2n−1
i=0 2i,

the lemma tells us that v has to assume each value 2j for
j ∈ [0, 2n − 1] exactly once. This implies the constraint on i.
5) Using the last step, we can access individual bits of large
numbers. bitn(x, y, z) states that x < 22n

, y < 2n, z ∈ {0, 1},
and the y-th bit in the binary expansion of x is z:

y < 2n ∧ z ∈ {0, 1} ∧
∑
i<2n

x :
(
(x = 2i ∨ x = 0)∧(

i = y → x = z · 2i
))

Here, we say that x has to be a sum of powers of 2 such that
the y-th power has to occur if and only if z = 1.
6) Our next predicate multpown(x, y, z) says that x = 2y · z,
y < 2n, and z < 22n

.∑
i<22n

(x, z) :
(
((i < y → x = z = 0)∧

(i ≥ y → ∃b ∈ {0, 1} : x = b · 2i ∧ z = b · 2i−y
)

For x = b · 2i and z = b · 2i−y , we use the fact that b ∈ {0, 1}
and pow2n to define 2i and 2i−y .
7) Let us now express that the binary expansion of x < 22m+n

has a one at precisely those positions that are divisible by 2n.
Hence, onesn,m(x) says that x =

∑2m−1
i=0 2i·2

n

.∑
i<2m

(x, y) : (x = 2i·2
n

)

7

3acb2a05 2019-01-12 04:52:29 +0000

In x = 2i·2
n

, we use the formula µn mentioned above and the
predicate pow2n.
8) We are now able to state that the bit representation of x
is a concatenation of 2m copies of the binary representation
y < 22n

. Thus, repeatn,m(x, y) says that y < 22n

and x =∑2m−1
i=0 y · 2i·2n

.∑
i<2m

(x, y) : (∃b ∈ {0, 1}, z < 22m+n

: y = b · 2i

∧ onesn,m(z) ∧ x = b · 2i · z)

Note that each summand corresponds to one bit in the binary
representation of y. Since we sum up shifts of numbers
produced by onesn,m, that sum consists of 2m copies of that
representation. Note that we guarantee that the used bits are
the ones of y because the sum of the b · 2i has to be y outside
of the sum. We can define 2i ·z using multpown and then also
multiply by b because b ∈ {0, 1}.
9) We are finally ready to express a (restricted) universal
quantifier. Hence, we have again a predicate that is instantiated
by another predicate φ. By ∀n,mi : φ(x, i) we express that
x < 22n

and for every i ∈ [0, 2m − 1], we have φ(x, i). We
can realise that as follows:

∃y :

σ︷ ︸︸ ︷∑
i<2m

y :
(
∃z < 22n

: φ(z, i) ∧ y = 2i·2
n

· z
)

∧ repeatn,m(y, x).

Note that the sum formula σ expresses that the binary
representation of y is a concatenation of representations of
numbers x0, . . . , x2m−1 such that for each i ∈ [0, 2m − 1], we
have φ(xi, i) and xi < 22n

. Using repeatn,m, we then make
sure that x0 = · · · = x2m−1 = x.

Let us now provide a suitable definition of SC-SAT. A
circuit (V, v0, C,N) consists of a finite set V of nodes, a
distinguished output node v0 ∈ V , and three sets of hyper-
edges: the conjunctive edges C ⊆ V × V × V and the the
negation edges N ⊆ V × V . Edges are also called gates.
We say that the circuit is satisfiable if there is an assignment
η : V → {0, 1} such that 1) η(v0) = 1 and 2) for every
(u, v, w) ∈ C, we have η(w) = min(η(u), η(v)) and 3) for
every (u, v) ∈ N , we have η(v) = 1− η(u).

A succinct circuit representation (n, α, ν) consists
of a number n (given in unary) and Boolean
formulas α(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) and
ν(x1, . . . , xn, y1, . . . , yn). The succinct circuit representation
(n, α, ν) describes the circuit C(n, α, ν) = (V, v0, C,N),
which is defined as follows. We have V = {0, 1}n,
v0 = (0, . . . , 0), and C = {(x, y, z) ∈ V ×V ×V : α(x, y, z)}
and N = {(x, y) ∈ V ×V : ν(x, y)}. Here, x, y, and z is short
for x1, . . . , xn and y1, . . . , yn, and z1, . . . , zn, respectively.

The problem succinct circuit satisfiability (SC-SAT) is
defined as follows:
Given A succinct circuit representation (n, α, ν).
Question Is the circuit C(n, α, ν) satisfiable?

We show that satisfiability of ∃PA∗ is NEXP-hard by reduc-
ing SC-SAT, which is NEXP-complete [45]. Suppose (n, α, ν)
is a given succinct circuit. First, we turn α and ν into formulas
ᾱ and ν̄ in ∃PA so that α(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn)
if and only if ᾱ(

∑n
i=1 xi ·2i−1,

∑n
i=1 yi ·2i−1,

∑n
i=1 zi ·2i−1)

does not hold; analogously for ν̄. Then the following statement
is expressible in an ∃PA∗ formula of size polynomial in n:

∃x < 22n

:

∀n,3ni :
(
∃u, v, w < 2n : i = u+ 2n · v + 22n · w (3)

∧ bitn(x, u, u′) ∧ bitn(x, v, v′) (4)
∧ bitn(x,w,w′) (5)

∧ (ᾱ(u, v, w) ∨ w′ = min(u′, v′))
)

(6)

∧ ∀n,2ni :
(
∃u, v < 2n : i = u+ 2n · v (7)

∧ bitn(x, u, u′) ∧ bitn(x, v, v′) (8)

∧ (ν̄(u, v) ∨ v′ = 1− u′)
)

(9)

∧ bitn(x, 0, 1) (10)

Let us explain why it is equivalent to satisfiability of C(n, α, ν).
We encode the assignment of the 2n nodes in C(n, α, ν) in
the number x < 22n

. In Eqs. (3) to (6), we express that
the assignment is consistent with all the conjunctive gates.
Note that we cannot directly use a formula of the form
∀n,ni1 : ∀n,ni2 : ∀n,ni3 : . . ., because we would need to use
the value of i1 (and i2) in the inner formula (but our quantifier
∀n,m allows only two free variables). Therefore, i ranges over
[0, 23n − 1] and is decomposed into u, v, w ∈ [0, 2n − 1] in
Eq. (3). In Eqs. (4) and (5), we extract the bits at the nodes
identified by u, v and w, and in Eq. (6), we require that if
there is a conjunctive gate with input nodes u,v and output
node w, then the node w carries the conjunction of nodes u
and v. In Eqs. (7) to (9), we do the same for the negation gates.
Finally, in Eq. (10), we state that the output node is indeed
assigned value 1.

V. TRANSLATING ∃PA∗ TO Z-VASSnz

We now give a polynomial-time reduction from the ∃PA∗
satisfiability problem to reachability in Z-VASSnz. In fact, we
prove a slightly stronger statement and show that sets of natural
numbers definable in ∃PA∗ are definable by Z-VASSnz. Given
M ⊆ Nd, we say that M is Z-VASSnz-definable if there is
a Z-VASSnz V in dimension m + d with designated control
states q, r such that v ∈M if and only if (q,0)

∗−→ (r, (0,v)).
We moreover require that V only performs zero-tests on the
first m counters.

Proposition V.1. There is a polynomial-time reduction from
∃PA∗ to Z-VASSnz, i.e., for any ∃PA∗ formula φ, JφK is
definable by a Z-VASSnz V . If φ has star height k then V has
k nested zero tests.

We prove Proposition V.1 by structural induction on φ. The
idea is inspired by the proof of the coNEXP lower bound
for the inclusion problem for Z-VASS [28, Lem. 12]. First,

8

3acb2a05 2019-01-12 04:52:29 +0000

by renaming variables if necessary, we may with no loss of
generality assume that no existential quantifiers occur in φ.

For the induction base case, let φ ≡ a · x ≥ c
be a linear inequality such that aᵀ = (a1, . . . , ad) ∈
Zd. For i ∈ [d], define ai = (ai, ei) ∈ Zd+1,
where ei denotes the i-th unit vector in dimension d.

q r

a1

ai

(−c,0)

(−1,0)

Fig. 1. Z-VASSnz defining the
solutions of a linear inequality.

Consider the Z-VASSnz depicted
in Fig. 1. In state q, V has d self-
loops adding ai to the counters.
Thus V guesses values for x in the
last d counters and stores a · x in
the first counter. In order to verify
a · x ≥ c, V removes a value of
at least c from the first counter. It
follows that V defines JφK.

In order to deal with Boolean
connectives, we first provide a gadget in dimension 3d that
checks for i ∈ [d] whether the contents of the counters i and
d + i coincide, and at the same time copies the contents of
counter i to counter 2d + i. For i ∈ [d], let vi ∈ Z3d be all
zero except for the i-th and (d+ i)-th components which both
equal −1, and the (2d+ i)-th component which equals 1. The
Z-VASSnz C depicted in Fig. 2 achieves the desiderata, i.e.,
(q, (x1,x2,0))

∗−→ (r, (0,0,x)) if and only if x = x1 = x2.

q · · · r

v1

−v1

vd

−vd

Fig. 2. Gadget C used for handling conjunctions.

For a
conjunction
φ ≡ φ1 ∧ φ2,
let V1 and V2

be Z-VASSnz

with at most
k different
zero tests
defining Jφ1K
and Jφ2K,
respectively.

Let V̂1 = (Q1, Z1, E1) and V̂2 = (Q2, Z2, E2) be obtained
from V1 and V2 such that V̂1 is equivalent to V1, V̂2 is
equivalent to V2, Z1 = Z2, |Z1| = |Z2| = k, and counters not
tested for zero in V1 and V2 do not overlap in V̂1 and V̂2.
The Z-VASS V defining JφK now sequentially composes V̂1,
V̂2 and Ĉ. The correctness of the construction is easily seen.
Observe that a disjunction φ ≡ φ1 ∨ φ2 can be dealt with
analogously, by non-deterministically branching into V̂1 and
V̂2, and by adapting the gadget C appropriately. Note that the
construction ensures that any ∃PA∗ formula of star height
zero is definable by a Z-VASS.

Finally, we provide a construction for formulas of the form
φ∗. Let Vφ in dimension m + d define JφK, and let V̂φ be
equivalent to V working in dimension m+ 2d. Furthermore,
for i ∈ [d] let wi ∈ Zm+2d be all zero except for the (m+i)-th
component which equals −1, and the (m+d+i)-th component
which equals 1. Then V depicted in Fig. 3 defines Jφ∗K. First, V
traverses V̂φ thereby pushing some v ∈ JφK onto the counters
[m + 1,m + d]. Next, V adds the contents of the counters
[m + 1,m + d] to the counters [m + d + 1,m + 2d], similar
to the gadget C above. When reaching r, V can repeat this

q V · · · r

••

••
w1

−w1

wd

−wd

zerom+d

Fig. 3. Z-VASS defining JφK∗, where JφK is defined by V .

process an arbitrary number of times (and also zero times as
required by the definition of the star operator).

Observe that this construction ensures that the Z-VASSnz

V = (Q,Z,E) defining an ∃PA∗ formula φ has |Z| = k if
and only if φ has star height k.

VI. TRANSLATING Z-VASSnz TO RatMPtf

In this section, we show the following.

Proposition VI.1. There is a polynomial reduction from
Z-VASSnz to RatMPtf . Moreover, this reduction maps instances
from Z-VASSnzk to RatMPtf

k .

We describe the construction, but defer the correctness proof
to Appendix B. Let V = (Q,Z,E) be a given d-dimensional
Z-VASS with k nested zero-tests and let (q,v), (q′,v′) be
configurations. We may assume that v = v′ = 0. To define
the graph group, let A = {a1, . . . , ad} ∪ {bi : i ∈ Z} and I =
{{ai, bj}, {ai, aj} ∈ P2(A) : i > j}. This is a transitive forest,
because with I ′ = {{aj+1, bj}, {aj+1, aj} : j ∈ [1, d − 1]},
the graph (A, I ′) is a forest that yields (A, I) (see Fig. 4).
Moreover, we have β(A, I) = k: If Z = {m1, . . . ,mk}, then
we can build (A, I) by m1 times adding a universal vertex, then
a disjoint union with bm1 , then m2 times adding a universal
vertex, etc. In the end, we have taken k disjoint unions.

The idea is that since the ai commute pairwise, they generate
a group isomorphic to Zd, realises the counters. Since bmi

commutes with ami+1, . . . , ad but not with a1, . . . , ami
, each

generator bmi serves to zero-test counters a1, . . . , ami : It
cannot be moved past a non-zero product of them.

From V , we construct the automaton A over G(A, I) as
follows. It has states Q′ = Q∪{q0} and an edge (q0, bi, q0) for
each i ∈ [1, d] and one edge (q0, ε, q). Moreover, it has an edge
(p, b−1

` au1
1 au2

2 · · · a
ud

d , p
′) for each (p, (u1, . . . , ud), `, p

′) ∈ E.

a1 a2 a3 a4 a5

b1 b3 b4 b5

Fig. 4. Independence alphabet used in the proof of Proposition VI.1 in the
case of d = 5 and Z = {1, 3, 4, 5}. Solid edges are those in I′, dotted edges
are those only in I .

9

3acb2a05 2019-01-12 04:52:29 +0000

VII. TRANSLATING RatMPtf TO ∃PA∗

In this section, we show the following:

Proposition VII.1. There is a polynomial-time reduction from
RatMPtf to ∃PA∗. Moreover, this reduction maps instances of
RatMPtf

k to ∃PA∗ formulas with star-height ≤ k.

The central notion in our translation is that of valence
automata. What distinguishes them from automata over groups
is that they have an input alphabet. This turns out to be
convenient for our recursive algorithm.

Let G be a group. A valence automaton over G is a tuple
A = (Q,Σ, E), where Q is a finite set of states, Σ is an
alphabet, and E ⊆ Q×G×Σ∗ ×Q is a finite set of edges. A
configuration of A is a triple (q, g, w) ∈ Q×G×Σ∗. The step
relation is defined as follows. We have (q, g, w)→A (q′, g′, w′)
if there is an edge (q, h, u, q′) such that g′ = gh and w′ = wu.
This induces a language for each pair of states:

L(A, p, q) = {w ∈ Σ∗ : (p, 1, ε)→∗A (q, 1, w)}.

The non-emptiness problem for a valence automaton asks,
given a valence automaton A and states p, q ∈ Q, whether
L(A, p, q) 6= ∅.

As observed in [36], one can reduce the rational subset
membership problem for G to the non-emptiness problem
of valence automata over G: Given an automaton A over G
and g ∈ G, one can easily construct an automaton Ag over
G with L(A′) = L(A)g−1. Then, 1 ∈ L(A′) if and only if
g ∈ L(A). Moreover, we can turn A′ into a valence automaton
A′′ by adding a label, say, the letter a to every edge. Then,
L(A′′, q0, qf) 6= ∅ if and only if g ∈ L(A). We will therefore
reduce non-emptiness of valence automata to ∃PA∗.

Remark VII.2. Note that (unlike, e.g. [56]), we do not use
initial and final states in valence automata. This is because we
will construct an ∃PA∗ formula that describes the Parikh image
of a valence automaton for any choice of an initial and a final
state. This will allow us to recurse into fewer subinstances in
our translation.

Let Σ be an alphabet. The Parikh map Ψ: Σ∗ → NΣ assigns
each word w ∈ Σ∗ the vector Ψ(w) with Ψ(w)(a) = |w|a,
where |w|a is the number of occurrences of a in w. The Parikh
image of a language L ⊆ Σ∗ is Ψ(L) = {Ψ(w) : w ∈ L},
hence Ψ(L) ⊆ NΣ. We will also use a notion of Parikh images
of valence automata, which encodes the Parikh image for every
choice of initial and final state. For any two states p, q ∈ Q,
let 4qp be a fresh symbol and let ∆ = {4qp : p, q ∈ Q}. The
Parikh image of A, denoted Ψ(A), is defined as

⋃
p,q∈Q4qp +

Ψ(L(A, p, q). Hence, we have Ψ(A) ⊆ N∆∪Σ. Our reduction
consists in the following.

Proposition VII.3. Given a transitive forest (A, I) and a
valence automaton A over G(A, I), one can construct in
polynomial time an ∃PA∗ formula Φ with JΦK = Ψ(A) and
star height at most β(A, I).

Note that if this is established, we can reduce non-emptiness
of valence automata over G(A, I) to ∃PA∗: Given a valence

automaton A over G(A, I), construct an ∃PA∗ formula Φ
with JΦK = Ψ(A). Then L(A, q0, qf) 6= ∅ iff the formula
Φ ∧ 4qfq0 > 0 is satisfiable. The remainder of this section
is devoted to proving Proposition VII.3. The construction is
recursive with respect to the decomposition of transitive forests
described in Section III. Hence, we need to treat three cases:
(A, I) has a universal vertex, (A, I) is a disjoint union, or
(A, I) is empty.

Clearly, we may assume that in A, every edge is of the form
(p, [a], x, q) with a ∈ A±1 ∪ {ε} and x ∈ Σ.

A. Universal vertex

We first consider the case that the independence alphabet
(A, I) has a universal vertex. Suppose there is u ∈ A such
that {u, a} ∈ I for every a ∈ A. Let A′ = A \ {u} and
I ′ = I∩P2(A′). Then the morphism G(A, I)→ G(A′, I ′)×Z,
[w] 7→ ([πA′(w)], [π{u}(w)]), is an isomorphism. This means
we may regard A as a valence automaton over G(A′, I ′)
with an additional integer counter. Therefore, we construct
a formula for Ψ(A) by first computing a formula for a valence
automaton over G(A′, I ′) and then imposing the condition that
the additional counter be zero at the end.

We construct the valence automaton A′ = (Q′,Σ′, E′) over
G(A′, I ′). We modify Σ slightly so as to encode the effect of
the additional counter: For each x ∈ Σ and e ∈ {−1, 0, 1}, let
xe be a fresh symbol. Recall that all edges in A are of the
form (p, [a], x, q) with a ∈ A±1 ∪ {ε} and x ∈ Σ. We obtain
A′ from A by replacing 1) each edge of the form (p, [ue], x, q),
e ∈ {−1, 1}, with the edge (p, 1, xe, q) and 2) each edge of the
form (p, [a], x, q), a ∈ A′±1∪{ε}, with the edge (p, [a], x0, q).
The alphabet Σ′ of course consists of the symbols xe that
occur in these edges. Then, A′ is indeed over G(A′, I ′).

Suppose Φ′ is a formula for Ψ(A′). Consider the formula

Φ ≡ ∃{xe ∈ Σ′ : x ∈ Σ} : Φ′ ∧
∑
x1∈Σ′

x1 =
∑

x−1∈Σ′

x−1

∧
∧
x∈Σ

x = x−1 + x0 + x1. (11)

Slightly abusing notation, if in the sum x−1 + x0 + x1, one
of the symbols is not in Σ′, then it is meant not to occur in
the sum. Then we clearly have JΦK = Ψ(A):

Step I. Suppose (A, I) has a universal vertex u ∈ A.
1) Construct A′ and recursively compute Φ′ for Ψ(A′).
2) Define Φ as in Eq. (11) and return Φ.

B. Disjoint union

We now treat the case that (A, I) is a disjoint union of
(A0, I0) and (A1, I1) (we do not assume that (A0, I0) and
(A1, I1) are connected).
Modified automata. In order to build the formula for A, we
apply our translation recursively to two automata A0 and A1

over (A0, I0) and (A1, I1), respectively. For each p, q ∈ Q,
let �qp be a fresh symbol and let � = {�qp : p, q ∈ Q}.
The automaton Ai is obtained by removing in A all edges

10

3acb2a05 2019-01-12 04:52:29 +0000

labelled with A1−i and then adding, for each p, q ∈ Q, an
edge (p, 1,�qp, q). Hence, �∪Σ is the input alphabet for both.
Grammars. Let C be a language class. A C-grammar is a
tuple G = (N,T, P), where N is a finite set of nonterminals,
T is a finite set of terminals, and P is a finite set of pairs
(B,L), where B ∈ N and L is from C. A pair (B,L) is also
denoted B → L. We write u ⇒G v if there is a pair (B,L)
and words x, y, w ∈ (N ∪ T)∗ such that u = xBy, v = xwy,
and w ∈ L. Whenever B → L ∈ P and w ∈ L, we say that
the pair B → w is a production of G. If G has finitely many
productions, we call it context-free.

The grammar GA is constructed as follows. It has Q = �
as its set of nonterminals and for every p, q ∈ Q, we have the
productions �qp → L(Ai, p, q) for i ∈ {0, 1}.

Proposition VII.4. For every p, q ∈ Q, we have L(GA,�qp) =
L(A, p, q).

Presburger formulas. Now that we have expressed the
languages of A in terms of grammars, we can build upon
methods for translating grammars into Presburger formulas.

The Parikh image of G is defined as Ψ(G) =
⋃
B∈N B̂ +

Ψ(L(G,B)). Note that Ψ(G) ⊆ NN̄∪T . Our construction will
build an ∃PA∗ formula for Ψ(G) from an ∃PA∗ formula
describing the right-hand sides in G as follows. The production
Parikh image of G is defined as Ψ→(G) =

⋃
B→L∈P B̄+Ψ(L).

Hence, we have Ψ→(G) ⊆ NN̄∪N∪T .
To build an ∃PA∗ formula for the Parikh image of G, we

extend a construction by Verma, Seidl, and Schwentick [52],
which yields an existential Presburger formula for a context-free
grammar. We recall the latter in a slightly adapted fashion.

Suppose G = (N,T, P) is context-free with productions
B1 → w1, . . . , B` → w`. For each symbol x ∈ N ∪ T , the
formula has a variable that counts how often that symbol is
produced during a derivation. For each B ∈ N , it also has a
variable B̄ counting how often B is consumed. It has variables
p1, . . . , p` that count how often each production is applied.
The variables B̂ for B ∈ N signal which nonterminal is used
as the start symbol. In the construction, we use two shorthands:
First, δB,C stands for 1 if B and C are the same variable (i.e.
not only carrying the same value) and 0 otherwise. Second,
we use a ternary operator to construct the term L?t1:t2, where
L is a literal and t1 and t2 are ordinary terms. The value of
this term is t1 if L is true and t2 otherwise.

The formula has three conjuncts, λ, κ, and χ. The conjunct
λ expresses that the number of times each nonterminal is
produced and consumed is consistent with the number of
applications of each production:

λ ≡ ∃p1, . . . , p` :
∧
B∈N

B̄ =
∑
i∈JB

pi

∧
∧

x∈N∪T
x =

∑
i∈[1,`]

Ψ(wi)(x) · pi

∧
∧

B,C∈N
XB,C =

∑
i∈JB

Ψ(wi)(C) · pi. (12)

Here, we use JB = {i ∈ [1, `] : Bi = B}. Moreover, for each
B,C ∈ N , λ stores in the variable XB,C whether there is a
production with B on the left-hand side and C on the right-hand
side. (XB,C even records the number of such occurrences.)

The formula κ selects exactly one of the nonterminals B as
the start symbol, i.e. sets B̂ = 1 and Ĉ = 0 for every C 6= B.
Moreover, it requires each nonterminal to be consumed (C̄) as
many times as it is produced (C). Except for the start symbol,
which is consumed once more:

κ ≡
∨
B∈N

∧
C∈N

Ĉ = δB,C ∧ C̄ = C + Ĉ

The formula χ states that every nonterminal is reachable from
the start symbol: In the directed graph (N ′, E), whose vertices
N ′ ⊆ N are the used nonterminals, and with an edge B → C
if XB,C > 0, every vertex is reachable from the start symbol.
To this end, we assign to every nonterminal B a distance dB so
that the start symbol has dB = 0 and every used nonterminal
B is directly reachable from some C with dB = dC + 1:

χ ≡ ∃{dB : B ∈ N} :
∧
B∈N

(
B̄ = 0 ∨ (B̂ = 1 ∧ dB = 0)

∨

(
B̂ = 0 ∧

∨
C∈N

XC,B > 0 ∧ dB = dC + 1

))
. (13)

The complete formula is then Φ ≡ ∃B,C∈NXB,C∃B∈NB : λ∧
κ ∧ χ. The conditions in λ, κ, χ are clearly necessary and
Verma, Seidl, and Schwentick [52] have shown sufficiency.

Theorem VII.5 ([52]). If G is context-free as above, then
Ψ(G) = JΦK.

The key observation in our reduction is that using the Kleene
star, we can modify Φ to build an ∃PA∗ formula when G is
not necessarily context-free, and in particular for Ψ(A). As a
first step, note that λ is equivalent to the following:

λ∗ ≡

(∨
i∈[1,`]

 ∧
j∈[1,`]

B̄j = δi,j ∧
∧

x∈N∪T
x = Ψ(wi)(x)


∧

∧
B,C∈N

XB,C = (B̄ = 1) ? C : 0

)∗
. (14)

This is because each satisfying assignment of the formula under
the star assigns variables as λ would, if only one production
were applied. With the star, we generate all satisfying assign-
ments of λ. Hence, with Φ∗ ≡ ∃B,C∈NXB,C∃B∈NB : λ∗∧κ∧
χ, we also have JΦ∗K = Ψ(G). Since this formulation does not
require a separate variable per production, it can be modified
for infinite sets of productions. Suppose ϕ is a formula with
JϕK = Ψ→(G) and consider the formula

λϕ∗ ≡

ϕ ∧ ∧
B,C∈N

XB,C = (B̄ = 1 ? C : 0)

∗

and let Φϕ ≡ ∃B,C∈NXB,C∃B∈NB : λϕ∗ ∧ κ ∧ χ. Now the
following is an easy consequence of Theorem VII.5.

11

3acb2a05 2019-01-12 04:52:29 +0000

Proposition VII.6. If JϕK = Ψ→(G), then JΦϕK = Ψ(G).

Proof. Suppose µ ∈ JΦϕK. Then, finitely many satisfying
assignments of ϕ justify the satisfaction of Φϕ. These satisfying
assignments stem from finitely many productions in G. Hence,
if we build the formula Φ′∗ for the context-free grammar G′

that consists of just these productions, then µ must satisfy Φ′∗.
However, every derivation in G′ is in particular possible in G,
which means µ ∈ Ψ(G). For the converse, suppose µ ∈ Ψ(G).
Then µ stems from a derivation in G, which can only involve
a finite set of productions. Hence, µ ∈ Ψ(G′) for the context-
free grammar G′ that contains only these productions. If we
construct Φ′∗ as above for G′, then we have µ ∈ JΦ′∗K. However,
since then every satisfying assignment of the λ∗ conjunct in
Φ′∗ also satisfies λϕ∗ , this implies µ ∈ JΦϕK.

We have thus built a formula for Ψ(GA) and hence Ψ(A).
If we have a formula Φi for Ψ(Ai), then renaming the free
variables 4qp into �̄qp yields formulas Φ̄i with JΦ̄0 ∨ Φ̄1K =
Ψ→(GA). By Proposition VII.6, we can proceed as follows:

Step II. Let (A, I) be a disjoint union of (A0, I0) and (A1, I1).
1) For i ∈ {0, 1}, compute Ai and recursively compute ∃PA∗

formula Φi for Ψ(Ai).
2) For i ∈ {0, 1}, obtain Φ̄i from Φi by renaming variables
4qp to �qp and set ϕ ≡ Φ̄0 ∨ Φ̄1.

3) Obtain ΦA from Φϕ by renaming variables �̂qp to 4qp.

C. Empty graph

If (A, I) is the empty graph, then valence automata over
G(A, I) are just finite automata, for which we can build a
Presburger formula using known methods. We construct the
context-free grammar GA with a productions �qp → x�qr for
each edge (p, x, 1, r) and �pp → ε for every p ∈ Q. Then, we
construct the formula Φ for GA as in Theorem VII.5.

Step III. Suppose (A, I) is empty.
1) Convert A into context-free grammar GA.
2) Compute Presburger formula for GA as in Theorem VII.5.

A detailed complexity analysis of Steps I to III can be
found in Appendix C-A. Since before invoking recursion, the
automata are expanded in their alphabets (Step I) or set of
edges (Step II), we have to show that these remain polynomial
during the linear-depth recursion. We argue that the number
n of states is never changed, the alphabet size is at most the
number of edges, and we add at most n2 edges in each step.
Hence, every automaton occurring in the algorithm has at most
|A| · n2 edges more than the initial one.

VIII. REMAINING COMPLEXITIES FOR RatMPtf

In this section, we prove Theorem III.4. The following
Lemma is essentially due to Kambites, Silva, and Steinberg,
who stated a version about decidability.

Lemma VIII.1 ([36]). For f.g. groups G, the following prob-
lems are logspace inter-reducible: rational subset membership
for G and non-emptiness for valence automata over G.

We begin with the case that (A, I) is a clique. Then
G(A, I) ∼= Z|A|. NL-hardness is trivially inherited from
reachability in directed graphs. For membership in NL, we
apply Lemma VIII.1 and observe that a valence automaton over
Zk is a blind k-counter automaton, which can be transformed
into a 1-reversal-bounded (k+1)-counter automaton [34]. Since
k is fixed here, reachability is known to be in NL [26].

Now consider the case that (A, I) is a disjoint union of
(at least two) cliques. Since (A, I) is not a clique, it contains
two non-adjacent vertices. Thus, F2 is a subgroup of G(A, I).
Hence the following version of the Chomsky-Schützenberger
theorem [4, 35], together with Lemma VIII.1 tells us that
the P-hard problem of deciding non-emptiness for context-
free languages (CFL) [24] reduces to membership of rational
subsets of G(A, I).

Lemma VIII.2 ([4, 35]). Given a CFL L, one can construct
in logspace a valence automaton over F2 that accepts L.

For a P algorithm, it suffices to decide non-emptiness of a
valence automaton A over a disjoint union of cliques. Let k be
the size of the largest clique. Observe that Proposition VII.4
tells us that given A, we can construct a C-grammar grammar
for A, where C is the class of languages accepted by valence
automata over Zk. As shown above, non-emptiness for C is
in NL. Due to closure under regular intersection, we can even
decide in NL whether a given language from C intersects a
given regular language. Under these conditions, one can decide
non-emptiness of C-grammars in polynomial time with a simple
saturation procedure as for context-free grammars [56, p. 25].

In light of Corollary III.3, the only remaining piece is NP-
hardness of RatMPtf in case (A, I) is not a disjoint union
of cliques. Observe that the latter is equivalent to saying that
the adjacency relation is not transitive. In particular, (A, I)
contains the graph as an induced subgraph. This
means G(A, I) has F2×Z as a subgroup, so that it suffices to
show NP-hardness of rational subset membership for F2 × Z.

To this end, we reduce the subset sum problem to
non-emptiness of valence automata over F2 × Z. Given
x1, . . . , xn, y ∈ N in binary, one readily constructs a
context-free grammar for the language S = {ax1 , ε} ·
{ax2 , ε} · · · {axn , ε} · {by}. With Lemma VIII.2 we build a
valence automaton A over F2 accepting S. From that, one
easily obtains a valence automaton B over F2 × Z accepting
S′ = {w ∈ S : |w|a = |w|b}. Then the subset sum instance is
positive if and only if S′ 6= ∅. Thus, non-emptiness of valence
automata over F2 × Z is NP-hard.

ACKNOWLEDGEMENTS

This research was initiated during the Gregynog 71717
workshop. We would like to thank the organisers Ranko
Lazić and Patrick Totzke, as well as the EPSRC for their
generous support. We are indebted to Markus Lohrey for fruitful
discussions about graph groups, some of which provided key
insights that found their way into the present paper.

12

3acb2a05 2019-01-12 04:52:29 +0000

REFERENCES

[1] K. Athanasiou, P. Liu, and T. Wahl. “Unbounded-Thread Program
Verification using Thread-State Equations”. In: Automated Reasoning,
IJCAR. Vol. 9706. Lect. Notes Comp. Sci. Springer, 2016, pp. 516–531.

[2] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi’c,
T. King, A. Reynolds, and C. Tinelli. “CVC4”. In: Computer Aided
Verification, CAV. Vol. 6806. Lect. Notes Comp. Sci. Springer, 2011,
pp. 171–177.

[3] L. Bartholdi and P. V. Silva. “Rational subsets of groups”. In: (2010).
arXiv: 1012.1532.

[4] J. Berstel. Transductions and Context-Free Languages. Stuttgart:
Teubner, 1979.

[5] M. Blondin, A. Finkel, C. Haase, and S. Haddad. “The Logical View
on Continuous Petri Nets”. In: ACM Trans. Comput. Log. 18.3 (2017),
24:1–24:28.

[6] M. Blondin, C. Haase, and F. Mazowiecki. “Affine Extensions of
Integer Vector Addition Systems with States”. In: Concurrency Theory,
CONCUR. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018,
14:1–14:17.

[7] R. Bonnet. “Theory of Well-Structured Transition Systems and
Extended Vector-Addition Systems”. Thèse de doctorat. Laboratoire
Spécification et Vérification, ENS Cachan, France, 2013.

[8] I. Borosh and L. B. Treybing. “Bounds on positive integral solutions
of linear Diophantine equations”. In: Proc. Am. Math. Soc. 55 (1976),
pp. 299–304.

[9] P. Buckheister and G. Zetzsche. “Semilinearity and Context-Freeness
of Languages Accepted by Valence Automata”. In: MFCS. Ed. by
K. Chatterjee and J. Sgall. Vol. 8087. Lecture Notes in Computer
Science. Berlin/Heidelberg: Springer, 2013, pp. 231–242.

[10] D. Chistikov and C. Haase. “The Taming of the Semi-Linear Set”.
In: Automata, Languages, and Programming, ICALP. Vol. 55. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, 128:1–
128:13. ISBN: 978-3-95977-013-2.

[11] W. Czerwinski, S. Lasota, R. Lazic, J. Leroux, and F. Mazowiecki.
“The Reachability Problem for Petri Nets is Not Elementary (Extended
Abstract)”. In: (2018). arXiv: 1809.07115.

[12] E. D’Osualdo, R. Meyer, and G. Zetzsche. “First-order logic with
reachability for infinite-state systems”. In: Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, New York, NY, USA, July 5-8, 2016. 2016, pp. 457–466.

[13] L. M. de Moura and N. Bjørner. “Z3: An Efficient SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems,
TACAS. Ed. by C. R. Ramakrishnan and J. Rehof. Vol. 4963. Lecture
Notes in Computer Science. Springer, 2008, pp. 337–340.

[14] M. Dehn. “Über unendliche diskontinuierliche Gruppen”. In: Mathe-
matische Annalen 71 (1 1911). In German, pp. 116–144.

[15] V. Diekert. “Word Problems Over Traces which are Solvable in Linear
Time”. In: Theoretical Computer Science 74.1 (1990), pp. 3–18.

[16] V. Diekert, C. Gutierrez, and C. Hagenah. “The existential theory
of equations with rational constraints in free groups is PSPACE -
complete”. In: Information and Computation 202.2 (2005), pp. 105–
140. ISSN: 0890-5401.

[17] V. Diekert, A. Jez, and M. Kufleitner. “Solutions of Word Equa-
tions Over Partially Commutative Structures”. In: 43rd International
Colloquium on Automata, Languages, and Programming (ICALP
2016). Vol. 55. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2016, 127:1–127:14.

[18] V. Diekert and A. Muscholl. “Solvability of Equations in Free Partially
Commutative Groups Is decidable”. In: Automata, Languages and
Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 543–554.

[19] V. Diekert and G. Rozenberg, eds. The Book of Traces. Singapore:
World Scientific, 1995.

[20] S. Eilenberg and M.-P. Schützenberger. “Rational sets in commutative
monoids”. In: Journal of Algebra 13.2 (1969), pp. 173–191.

[21] F. Eisenbrand and G. Shmonin. “Carathéodory bounds for integer
cones”. In: Oper. Res. Lett. 34.5 (2006), pp. 564–568.

[22] J. Esparza, R. Ledesma-Garza, R. Majumdar, P. Meyer, and F. Nikšić.
“An SMT-Based Approach to Coverability Analysis”. In: Computer
Aided Verification, CAV. Vol. 8559. Lect. Notes Comp. Sci. Springer,
2014, pp. 603–619.

[23] S. Ginsburg and E. H. Spanier. “Bounded ALGOL-like languages”.
In: T. Am. Math. Soc. (1964), pp. 333–368.

[24] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel
Computation: P-completeness Theory. Oxford University Press, 1995.

[25] S. A. Greibach. “Remarks on blind and partially blind one-way
multicounter machines”. In: Theoretical Computer Science 7.3 (1978),
pp. 311–324.

[26] E. M. Gurari and O. H. Ibarra. “The complexity of decision problems
for finite-turn multicounter machines”. In: Journal of Computer and
System Sciences 22.2 (1981), pp. 220–229.

[27] C. Haase. “A survival guide to Presburger arithmetic”. In: SIGLOG
News 5.3 (2018), pp. 67–82.

[28] C. Haase and S. Halfon. “Integer Vector Addition Systems with States”.
In: Reachability Problems - 8th International Workshop, RP 2014,
Oxford, UK, September 22-24, 2014. Proceedings. 2014, pp. 112–124.

[29] F. Haglund and D. T. Wise. “Coxeter groups are virtually special”. In:
Advances in Mathematics 224.5 (2010), pp. 1890–1903.

[30] P. Hofman and S. Lasota. “Linear Equations with Ordered Data”. In:
Concurrency Theory, CONCUR. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018, 24:1–24:17.

[31] P. Hofman, J. Leroux, and P. Totzke. “Linear combinations of
unordered data vectors”. In: Logic in Computer Science, LICS. IEEE
Computer Society, 2017, pp. 1–11.

[32] T. Huynh. “The Complexity of Semilinear Sets”. In: Elektronische
Informationsverarbeitung und Kybernetik 18.6 (1982), pp. 291–338.

[33] I. Agol. “The virtual Haken conjecture. With an appendix by Agol,
Daniel Groves, and Jason Manning”. In: Documenta Mathematica 18
(2013), pp. 1045–1087.

[34] M. Jantzen and A. Kurganskyy. “Refining the hierarchy of blind
multicounter languages and twist-closed trios”. In: Information and
Computation 185.2 (2003), pp. 159–181.

[35] M. Kambites. “Formal Languages and Groups as Memory”. In:
Communications in Algebra 37 (1 2009), pp. 193–208.

[36] M. Kambites, P. V. Silva, and B. Steinberg. “On the rational subset
problem for groups”. In: Journal of Algebra 309 (2007), pp. 622–639.

[37] I. Kapovich, R. Weidmann, and A. G. Myasnikov. “Foldings, Graphs
of Groups and the Membership Problem”. In: International Journal
of Algebra and Computation 15.1 (2005), pp. 95–128.

[38] E. Kopczynski and A. W. To. “Parikh Images of Grammars: Complexity
and Applications”. In: Proceedings of the 25th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS 2010). 2010, pp. 80–89.

[39] R. J. Lipton. The Reachability Problem Requires Exponential Space.
Tech. rep. 63. Department of Computer Science, Yale University, 1976.

[40] M. Lohrey. “The rational subset membership problem for groups:
a survey”. In: Groups St Andrews 2013. Ed. by C. M. Campbell,
M. R. Quick, E. F. Robertson, and C. M. Roney-Dougal. Vol. 422.
London Mathematical Society Lecture Note Series. Cambridge, United
Kingdom: Cambridge University Press, 2016, pp. 368–389.

[41] M. Lohrey and B. Steinberg. “The submonoid and rational subset
membership problems for graph groups”. In: Journal of Algebra 320.2
(2008), pp. 728–755.

[42] M. Lohrey, B. Steinberg, and G. Zetzsche. “Rational subsets and
submonoids of wreath products”. In: Information and Computation
243 (2015), pp. 191–204.

[43] M. Lohrey and G. Zetzsche. “Knapsack in Graph Groups”. In: Theory
of Computing Systems 62 (2018), pp. 192–246.

[44] M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-
Hall, 1967.

[45] C. H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[46] R. Piskac and V. Kuncak. “Linear Arithmetic with Stars”. In: Computer
Aided Verification, CAV. Vol. 5123. Lect. Notes Comp. Sci. Springer,
2008, pp. 268–280. ISBN: 978-3-540-70543-7.

[47] L. Pottier. “Minimal Solutions of Linear Diophantine Systems: Bounds
and Algorithms”. In: Rewriting Techniques and Applications, RTA.
Vol. 488. Lecture Notes in Computer Science. Springer, 1991, pp. 162–
173.

[48] M. Presburger. “Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Opera-
tion hervortritt”. In: Comptes Rendus du I congres de Mathematiciens
des Pays Slaves. 1929, pp. 92–101.

[49] C. Rackoff. “The Covering and Boundedness Problems for Vector
Addition Systems”. In: Theor. Comput. Sci. 6 (1978), pp. 223–231.

13

3acb2a05 2019-01-12 04:52:29 +0000

https://arxiv.org/abs/1012.1532
https://arxiv.org/abs/1809.07115

[50] K. Reinhardt. “Reachability in Petri Nets with Inhibitor Arcs”.
In: Electronic Notes in Theoretical Computer Science 223 (2008).
Proceedings of the Second Workshop on Reachability Problems in
Computational Models (RP 2008), pp. 239–264.

[51] S. Schmitz. “The complexity of reachability in vector addition systems”.
In: SIGLOG News 3.1 (2016), pp. 4–21.

[52] K. N. Verma, H. Seidl, and T. Schwentick. “On the Complexity
of Equational Horn Clauses”. In: Proc. of the 20th International
Conference on Automated Deduction (CADE-20). 2005, pp. 337–352.

[53] D. Wise. From Riches to Raags: 3-Manifolds, Right-Angled Artin
Groups, and Cubical Geometry. American Mathematical Society, 2012.

[54] D. T. Wise. “Research announcement: the structure of groups with a
quasiconvex hierarchy”. In: Electronic Research Announcements in
Mathematical Sciences 16 (2009), pp. 44–55.

[55] C. Wrathall. “Trace monoids with some invertible generators: two
decision problems”. In: Discrete Applied Mathematics 32.2 (1991),
pp. 211–222.

[56] G. Zetzsche. “Monoids as Storage Mechanisms”. PhD thesis. Technis-
che Universität Kaiserslautern, 2016.

[57] G. Zetzsche. “Silent Transitions in Automata with Storage”. In: Proc.
of the 40th International Colloquium on Automata, Languages and
Programming (ICALP 2013). Ed. by F. V. Fomin, R. Freivalds, M.
Kwiatkowska, and D. Peleg. Vol. 7966. LNCS. Berlin Heidelberg:
Springer, 2013, pp. 434–445.

[58] G. Zetzsche. “The Emptiness Problem for Valence Automata or:
Another Decidable Extension of Petri Nets”. In: Proc. of the 9th
International Workshop on Reachability Problems (RP 2015). Ed. by
M. Bojańczyk, S. Lasota, and I. Potapov. Vol. 9328. LNCS. Berlin
Heidelberg: Springer, 2015, pp. 166–178.

APPENDIX A
MISSING PROOFS FROM SECTION IV

Lemma IV.1. Let M =
⋃
j∈J L(cj , Qj) be a semi-linear set.

Then M∗ =
⋃
K⊆J L(bK , PK), where

bK :=
∑
k∈K

ck CK :=
⋃
k∈K

{ck}

QK :=
⋃
k∈K

Qk PK := CK ∪QK .

Proof. Let v ∈ M∗, by grouping and summing up vectors
according to the linear set they originate from, we can write
v = v1+· · ·+vk such that vi ∈ L∗(cji , Qji) for all 1 ≤ i ≤ k
and indices ji ∈ J . Observe that for a fixed i, we have

vi ∈ cji + L∗(0, {cji} ∪Qji) = cji + L(0, {cji} ∪Qji),

where the last equality follows from Eq. (2). Hence

v ∈
k∑
i=1

(cji + L(0, {cji} ∪Qji))

=

k∑
i=1

ci + L (0, CK ∪QK)

= L

(
k∑
i=1

cji , CK ∪QK

)
= L(bK , PK),

where K := {ji : 1 ≤ i ≤ k}.
Conversely, suppose v ∈ L(bK , PK) for some K =

{j1, . . . , jk}. Then there are λ1, . . . , λk > 0 and γ1, . . . ,γk ≥
0 such that

v =

k∑
i=1

(λi · cji +Qji · γi) ∈
k∑
i=1

λi·L(cji , Qji) ⊆M∗.

Lemma IV.2. Let M =
⋃
j∈J L(cj , Qj) ⊆ Nn be a

semi-linear set, and let c = 2n log(4n‖M‖). Then M∗ =⋃
i∈I L(bi, Pi) such that for every i ∈ I ,
• bi =

∑
k∈K ck for some K ⊆ J with |K| ≤ c,

• Pi ⊆
⋃
j∈J{cj} ∪

⋃
k∈K Qk with |Pi| ≤ c, and

• ‖M∗‖ ≤ c · ‖M‖.

Proof. By Lemma IV.1, we have M∗ =
⋃
K⊆J L(dK , RK)

such that dK =
∑
k∈K ck and RK = CK ∪QK , where CK =⋃

k∈K ck and QK =
⋃
k∈K . By Proposition II.1, for a fixed

K ⊆ J we have

L(dK , RK) =
⋃

h∈HK

L(dK , Sh)

such that Sh ⊆ QK and |Sh| ≤ c for all h ∈ HK . For h ∈ HK ,
let K(Sh) = {k ∈ K : Sh∩QK 6= ∅} and bh =

∑
k∈K(Sh) ck.

We have dK ∈ L(bh, CK), and hence

L(dK , RK) ⊆
⋃

h∈HK

L(bh, Sh ∪ CK) ⊆M∗.

Applying Proposition II.1 once more to every Sh ∪ CK , the
statement follows.

Lemma IV.3. Let Mj = L(cj , Qj) ⊆ Nn such that ‖Mj‖ ≤
s and |Qj | ≤ m, 1 ≤ j ≤ k. Then L :=

⋂
1≤j≤kMj =⋃

i∈I L(bi, P) such that
• ‖L‖ ≤ (k ·m · s+ 1)O(k·n)

• for every bi and 1 ≤ j ≤ k there is some d ≥ 0 such
that bi = cj +Qj · d, and

• for every 1 ≤ j ≤ k there is some non-negative matrix R
such that P = Qj ·R.

Proof. Consider the following system of linear Diophantine
equations S:

c1 +Q1 · λ1 = c2 +Q2 · λ2

c2 +Q2 · λ2 = c3 +Q3 · λ3

...
ck−1 +Qk−1 · λk−1 = ck +Qk · λk

The constraint matrix of S has k · n rows and at most k · n
columns, and ‖S‖ ≤ 2s. According to [10, Prop. 4], we have
JSK = L(E,S) such that ‖L(E,S)‖ ≤ ((k ·m + 3) · ‖S‖ +
1)k·n. For every 1 ≤ j ≤ k, let Dj and Rj be obtained
from the projection of E respectively S onto the components
corresponding to λj . Then as in the proof of [10, Thm. 6], for
any 1 ≤ j ≤ k we have

L = cj + {Qj · γ : γ ∈ L(Dj , Rj)

= L(cj +Qj ·Dj , Qj ·Rj).

A quick inspection reveals

‖Qj ·Rj‖ ≤ ‖cj +Qj ·Dj‖
≤ ‖cj‖+ms((km+ 3) · ‖S‖+ 1)kn

≤ (k ·m · s+ 1)O(k·n)

14

3acb2a05 2019-01-12 04:52:29 +0000

APPENDIX B
MISSING PROOF FROM SECTION VI

Correctness proof for Proposition VI.1. We define the sub-
set A` = {a1, . . . , a`}. Observe that since the [ai]
commute pairwise, we can regard the morphism πA`

as
πA`

: G(A, I) → Z` and shorten it to π`. We claim that for
words w ∈ {b1, . . . , bd}∗ and yi ∈ {a±1

1 , . . . , a±1
d }∗, we have

[xy1b
−1
`1
y2b
−1
`2
· · · ynb`n] = 1 if and only if x = b`n · · · b`1 ,

[y1 · · · yn+1] = 1 and π`i(y1 · · · yi) = 0 for every i ∈ [1, n].
Note that the claim immediately implies that 1 ∈ L(A, q0, q

′)
if and only if (q, 0)→∗V (q′, 0).

For the “if” direction, suppose x = b`n · · · b`1 ,
[y1 · · · yn+1] = 1 and π`i(y1 · · · yi) = 0 for every i ∈ [1, n].
We proceed by induction on n. If n = 0, then the claim is
trivial. Let n ≥ 1. Since the ai commute pairwise, we can
write [y1] = [zz′] with some z ∈ {a±1

1 , . . . , a±1
`1
}∗ and z′ ∈

{a±1
`1+1, . . . , a

±1
d }∗. Moreover, π`1(y1) = 0 implies [z] = 1.

Since b`1 commutes with all the generators a`1+1, . . . , ad, we
have

[xy1b
−1
`1
y2b
−1
`2
· · · ynb−1

`n
yn+1]

=[xzz′b−1
`1
y2b
−1
`2
· · · ynb−1

`n
yn+1]

=[xzb−1
`1
z′y2b

−1
`2
· · · ynb−1

`n
yn+1]

=[b`n · · · b`1zb−1
`1
z′y2b

−1
`2
· · · ynb−1

`n
yn+1]

=[b`n · · · b`2z′y2b
−1
`2
· · · ynb−1

`n
yn+1].

Note that [z] = 1 implies π`i(z
′y2 · · · yi) =

π`i(zz
′y2 · · · yi) = π`i(y1 · · · yi) = 0 for every i ∈ [1, n].

Therefore, we may invoke induction to conclude
that [b`n · · · b`2z′y2b

−1
`2
· · · ynb−1

`n
] = 1 holds and thus

[xy1b
−1
`1
y2b
−1
`2
· · · ynb−1

`n
] = 1.

For the “only if” direction, suppose the word w =
xy1b

−1
`1
y2b
−1
`2
· · · ynb−1

`n
satisfies [w] = 1. We again proceed

by induction and notice that the claim holds vacuously for
n = 0. Now let n ≥ 1. First, observe that [w] = 1 implies
[xb−1

`1
b−1
`2
· · · b−1

`n
] = πB(w) = 1 and thus [x] = [b`n · · · b`1].

Since the bi do not commute with each other, that means
x = b`n · · · b`1 . We can find z ∈ {a±1

1 , . . . , a±1
`1
}∗ and

z′ ∈ {a±1
`1+1, . . . , a

±1
d }∗ such that [y1] = [zz′]. Toward a

contradiction, suppose [z] 6= 1. Then it is easy to see by
induction on the number of applied rewriting steps that any
word w′ ∈ (A±1)∗ with [w′] = [w] has an infix b`1yb

−1
`1

with
π`1(y) = [z] 6= 0: We can certainly not apply any cancellation
rule for a bi; other cancellation rules might be applicable, but
preserve this property; and since b`1 does not commute with
a1, . . . , a`1 , commutation rules preserve this property as well.
Therefore, we would have [w] 6= 1. Thus, we have shown
[z] = 1.

Observe that

[w] = [b`n · · · b`1zz′b−1
`1
y2b
−1
`2
· · · ynb−1

`n
yn+1]

= [b`n · · · b`1zb−1
`1
z′y2b

−1
`2
· · · ynb−1

`n
yn+1]

= [b`n · · · b`2z′y2b
−1
`2
· · · ynb−1

`n
yn+1].

By induction, we may conclude that π`i(z
′y2 · · · yi) = 1 for

every i ∈ [2, n + 1] and [z′y2 · · · yn+1] = 1. Finally, observe

that since [z] = 1, we have π`i(y1 · · · yi) = π`i(zz
′y2 · · · yi) =

π`i(z
′y2 · · · yi) = 0 and for i ∈ [1, n] and [y1 · · · yn+1] =

[zz′y2 · · · yn+1] = 1.

APPENDIX C
MISSING PROOFS FROM SECTION VII

In order to prove Proposition VII.4, we need a simple fact
about free products of groups. Since A = A0] A1, we can
uniquely decompose each u ∈ (A±1)∗ into maximal factors
from (A±1

0)+ ∪ (A±1
1)+. In other words, we decompose u =

u1 · · ·un with n ≥ 0 such that ui ∈ (A±1
0)+ ∪ (A±1

1)+ for
i ∈ [1, n] and ui ∈ (A±1

s)+ if and only if ui+1 ∈ (A±1
1−s)

+ for
i ∈ [1, n− 1] and s ∈ {0, 1}. This is the block decomposition
of u.

Lemma C.1. Let u ∈ (A±1)∗ and let u = u1 · · ·un be its
block decomposition. If [u] = 1, then [ui] = 1 for some i.

Proof. Suppose [ui] 6= 1 for every i ∈ [1, n]. By induction on
the number of rewriting steps, it is easy to see that every word u′

with [u] = [u′] has a block decomposition u′ = u′1 · · ·u′m with
m = n and [u′i] = [ui] for every i ∈ [1, n]. For cancellation
rules, that is trivial. Moreover, commutation rules can only
rearrange symbols within each block (recall that we assumed
that there are no edges between A0 and A1). This implies that
u′ cannot be the empty word and hence [u] 6= 1.

Proposition VII.4. For every p, q ∈ Q, we have L(GA,�qp) =
L(A, p, q).

Proof. The following notation for runs in valence automata
will be convenient: If in a valence A, we have (p, 1, ε) →∗A
(q, [u], v), then we write p

u|v−−→ q.
We begin with the inclusion L(GA,�qp) ⊆ L(A, p, q). We

prove the inclusion by establishing the following claim: For ev-
ery v ∈ (N ∪Σ)∗ with �qp ⇒k v, we have v0�q1p1v1 · · ·�qnpnvn
for some n ≥ 0 and there are runs

p
u0|v0−−−→ p1, q1

u1|v1−−−→ p2, . . . ,

qn−1
un−1|vn−1−−−−−−−→ pn, qn

un|vn−−−−→ q (15)

in A such that [u0 · · ·un] = 1. The claim implies that for every

v ∈ L(GA,�qp), there is a run p
u|v−−→ q with [u] = 1, which

means v ∈ L(A, p, q). We prove the claim by induction on k.
If k = 0, then v = �qp and the claim is trivial. Let k ≥ 1 and

�qp ⇒k−1 v′ ⇒ v. Then we can write v′ = v0�q1p1v1 · · ·�qnpnvn
for some n ≥ 0 and have runs as in Eq. (15). This means v is
obtained from v′ by replacing a nonterminal, say �qipi , by some
word v′′ ∈ L(Aj , pi, qi) for some j ∈ {0, 1}. By definition of
Aj , we have v′′ = v′′0�

q′1
p′1
v′′1 · · ·�

q′m
p′m
v′′m and runs

pi
u′′0 |v

′′
0−−−−→ p′′1 , q

′′
1

u′′1 |v
′′
1−−−−→ p′′2 , . . . ,

q′′m−1

u′′m−1|v
′′
m−1−−−−−−−→ p′′m, q

′′
m

u′′m|v
′′
m−−−−→ qi (16)

15

3acb2a05 2019-01-12 04:52:29 +0000

such that [u′′0 · · ·u′′m] = 1. By inserting the runs in Eq. (16)
into Eq. (15) between pi and qi, we obtain runs

p
u0|v0−−−→ p1, q1

u1|v1−−−→ p2, . . . , qi−2
ui−2|vi−2−−−−−−→ pi−1,

qi−1
ui−1u

′′
0 |vi−1v

′′
0−−−−−−−−−−→ p′′1 , q

′′
1

u′′1 |v
′′
1−−−−→ p′′2 , . . . ,

q′′m−1

u′′m−1|v
′′
m−1−−−−−−−→ p′′m, q

′′
m

u′′mui|v′′mvi−−−−−−−→ pi+1,

qi+1
ui+1|vi+1−−−−−−→ pi+1, . . . ,

qn−1
un−1|vn−1−−−−−−−→ pn, qn

un|vn−−−−→ q. (17)

Since

v = v0�
q1
p1v1 · · ·�qi−1

pi−1
vi−1

(
v′′0�

q′′1
p′′1
v′′1 · · ·�

q′′m
p′′m
v′′m

)
vi�

qi+1
pi+1
· · · vn−1�

qn
pnvn, (18)

this proves the claim for v.
Let us now prove the inclusion L(A, p, q) ⊆ L(GA,�qp). We

claim that for every sequence of runs as in Eq. (15) in A with
[u0 · · ·un] = 1, we have �qp ⇒∗ v0�q1p1v1 · · ·�qnpnvn. Note that
this establishes the inclusion: For each v ∈ L(A, p, q), there is

a run p
u|v−−→ q with [u] = 1. Thus, the claim implies �qp ⇒∗ v,

which means v ∈ L(GA,�qp) because v ∈ Σ∗.
We proceed by induction on the number of blocks in u =

u0 · · ·un. According to Lemma C.1, the block decomposition
of the word u0 · · ·un contains some block w with [w] = 1.
Now w can occur within a single factor ui or span several
factors. We only consider the latter case, the former can be
treated analogously.

Hence, we can find indices i < j and a decomposition ui =
u′iu
′′
i and uj = u′ju

′′
j such that w = u′′i ui+1 · · ·uj−1u

′
j . Since

A reads at most one generator from A±1 in each edge, this
decomposition induces a decomposition of the runs qi

ui|vi−−−→
pi+1 and qj

uj |vj−−−→ pj+1 into

qi
u′i|v

′
i−−−→ p′

u′′i |v
′′
i−−−−→ pi+1 and qj

u′j |v
′
j−−−→ q′

u′′j |v
′′
j−−−−→ pj+1.

Consider the sequence of runs that is obtained from

Eq. (15) by replacing qi
ui|vi−−−→ pi+1 by qi

u′i|v
′
i−−−→ p′ and

replacing qj
uj |vj−−−→ pj+1 by q′

u′′j |v
′′
j−−−−→ pj+1. Then the word

u0 · · ·ui−1u
′
iu
′′
j uj+1 · · ·un has one fewer block than u0 · · ·un.

Hence, by induction, the word

v′ = v0�
q1
p1v1 · · ·�qi−1

pi−1
vi−1�

qi
piv
′
i�

q′

p′v
′′
j�

qj+1
pj+1

vj+1 · · ·�qnpnvn
verifies �qp ⇒∗ v′. On the other hand, since w was chosen
to be a block, we have u′′i ui+1 · · ·uj−1u

′
j = w ∈ (A±1

s)+ for
some s ∈ {0, 1} and therefore runs

p′
u′′i |v

′′
i−−−−→As pi+1, qi+1

ui+1|vi+1−−−−−−→As pi+2, . . . ,

qj−1
uj−1|vj−1−−−−−−→As

pj , qj
u′j |v

′
j−−−→As

q′ (19)

in As. By construction of As, this means we have v′′ =
v′′i �

qi+1
pi+1vi+1 · · ·�

qj−1
pj−1vj−1�

qj
pjv
′
j ∈ L(As, p′, q′). Therefore,

replacing the occurrence of �q
′

p′ in v′ by v′′ yields v, hence
�qp ⇒∗ v′ ⇒ v.

A. Analysis

We now analyze our translation described in Steps I to III.
On one hand, we show that the translation maps RatMPtf

k to
formulas of star-height ≤ k. On the other hand, we show that
it runs in polynomial time.

Concerning the star-height, suppose we are given a transitive
forest (A, I) with β(A, I) = k. Notice that our recursive
algorithm introduces a star only in step Step II: Compared
to the formulas of the automata A0 and A1, it raises the star
height by one. According to the definition of the branching
number, this directly implies that the resulting ∃PA∗ formula
has star-height k.

Let us now show that the construction runs in polynomial
time. It is clear from the construction that computing the
formulas takes time linear in the size of the formulas. Hence,
it suffices to show that they are polynomial in size. Let ΦA
denote the formula computed for each automaton A. Now
suppose the input automaton A has n states and m edges. An
inspection of Steps I to III reveals that there is a polynomial
p(x, y) such that:

1) If (A, I) has a universal vertex, then |ΦA| ≤ |ΦA′ | +
p(n,m).

2) If (A, I) is a disjoint union, then |ΦA| ≤ |ΦA0 |+ |ΦA1 |+
p(n,m).

3) If (A, I) is empty, then |ΦA| ≤ p(n,m).
Note that the length of the formulas may depend on the size
of the alphabet, but that is bounded by the number m of edges.
Of course, we may assume that p has only positive coefficients.

Let us show by induction on |A| that |ΦA| ≤ |A|2p(n,m+
|A|n2) for every A. If (A, I) is empty, then this is clear.
If (A, I) has a universal vertex, then we construct A′ over
(A′, I ′), where A′ has n states and m edges and |A′| = |A|−1.
Therefore:

|ΦA| ≤ |ΦA′ |+ p(|A|, n,m)

≤ (|A| − 1)2p(n,m+ |A|n2) + p(n,m)

≤ |A|2p(n,m+ |A|n2).

Now suppose (A, I) is a disjoint union of (A0, I0) and (A1, I1).
Then we construct A0 and A1. They each have n states and
m+ n2 edges, because we add the edges labeled �qp for each
p, q ∈ Q. Moreover, we have |A0|, |A1| < |A| and thus by
induction

|ΦAi | ≤ |Ai|2p(n,m+n2 + |Ai|n2) ≤ |Ai|2p(n,m+ |A|n2).

That implies

|ΦA| ≤ |ΦA0 |+ |ΦA1 |+ p(n,m)

≤ (|A0|2 + |A1|2)p(n,m+ |A|n2) + p(n,m)

≤ (|A0|2 + |A1|2 + 1)p(n,m+ |A|n2)

≤ |A|2p(n,m+ |A|n2).

Thus, the resulting formulas have polynomial size.

16

3acb2a05 2019-01-12 04:52:29 +0000

	Introduction
	Preliminaries
	General notation
	Semi-linear sets
	Presburger arithmetic with stars
	Rational subsets of graph groups
	Integer VASS with nested zero-tests

	Results
	The complexity of existential Presburger arithmetic with stars
	Properties of the Kleene star on semi-linear sets
	Properties of intersections of linear sets
	Bounds on the semi-linear representation of solutions
	A decision procedure for
	Lower bound

	Translating to
	Translating to
	Translating to
	Universal vertex
	Disjoint union
	Empty graph

	Remaining complexities for
	Appendix A: Missing proofs from Section IV
	Appendix B: Missing proof from sec-zvasshz-ratmpgg
	Appendix C: Missing proofs from Section VII
	Analysis

