Downward Closures of Indexed Languages

Georg Zetzsche

Technische Universität Kaiserslautern

HOPA 2015

Georg Zetzsche (TU KL)

Downward Closures of Indexed Languages

HOPA 2015 1 / 16

• = • •

<ロト <問ト < 目ト < 目ト

<ロト <問ト < 目ト < 目ト

Georg Zetzsche (TUKL)

aabcbbacbbaaab

.∃⇒ ⇒

<u>aabcbbacbbaaab</u>

Downward Closures

- $u \leq v$: *u* is a subsequence of *v*
- $L \downarrow = \{ u \in X^* \mid \exists v \in L \colon u \leq v \}$
- Observer sees precisely $L\downarrow$

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

• • = • • =

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!

★ ∃ ►

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$

- B - - B

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$

• Is a ever executed after b? $(ab \in L\downarrow)$

A B K A B K

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$
- Is a ever executed after b? $(ab \in L\downarrow)$
- Can the system run arbitrarily long? ($L\downarrow$ infinite)

• • = • • = •

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation (K↓ ⊆ L↓)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? $(a^* \subseteq L \downarrow)$
- Is a ever executed after b? $(ab \in L\downarrow)$
- Can the system run arbitrarily long? ($L\downarrow$ infinite)

Problem

- Finite automaton for $L\downarrow$ exists for every L.
- How can we compute it?

< □ > < □ > < □ > < □ > < □ >

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

→ Ξ →

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

Image: A Image: A

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

Context-free rules $A \rightarrow w$, applied as: $Au \Rightarrow uw$

• • = • • = •

4/16

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

Context-free rules $A \rightarrow w$, applied as: $Au \Rightarrow uw$

Theorem (Habermehl, Meyer, Wimmel 2010)

Downward closures are computable for Petri net languages.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

Context-free rules $A \rightarrow w$, applied as: $Au \Rightarrow uw$

Theorem (Habermehl, Meyer, Wimmel 2010)

Downward closures are computable for Petri net languages.

Theorem (Z. 2015)

Downward closures are computable for stacked counter automata.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

Context-free rules $A \rightarrow w$, applied as: $Au \Rightarrow uw$

Theorem (Habermehl, Meyer, Wimmel 2010)

Downward closures are computable for Petri net languages.

Theorem (Z. 2015)

Downward closures are computable for stacked counter automata.

- Weak form of stack nesting
- Adding Counters

Georg Zetzsche (TU KL)

イロト 不得 トイラト イラト 一日

Theorem (Gruber, Holzer, Kutrib 2009)

Downward closures are not computable when infinity or emptiness are undecidable.

Theorem (Mayr 2003)

The reachability set of lossy channel systems is not computable.

• • = • • = •

Theorem (Z. 2015)

Downward closures are computable for indexed languages, i.e. for second-order pushdown automata.

Image: A Image: A

Example (Transducer)

< □ > < □ > < □ > < □ > < □ >

Georg Zetzsche (TU KL)

Example (Transducer)

$$T(A) = \{(x, u \# v \# w) \mid u, v, w, x \in \{a, b\}^*, v \leq x\}$$

< □ > < □ > < □ > < □ > < □ >

Example (Transducer)

$$T(A) = \{(x, u \# v \# w) \mid u, v, w, x \in \{a, b\}^*, v \leq x\}$$

Definition

- Rational transduction: set of pairs given by a finite state transducer.
- For rational transduction $T \subseteq X^* \times Y^*$ and language $L \subseteq Y^*$, let

$$TL = \{ y \in X^* \mid \exists x \in L : (x, y) \in T \}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Fact (Aho 1968)

For every indexed language L and rational transduction T, the language TL is indexed as well.

Theorem (Z. 2015)

Let C be a language class that is closed under rational transductions. Then downward closures are computable for C if and only if the following problem is decidable:

Given A language $L \subseteq a_1^* \cdots a_n^*$ in C

Question Does $L \downarrow$ equal $a_1^* \cdots a_n^*$?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Every language $L\downarrow$ can be written as a finite union of sets of the form

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

"Simple Regular Languages"

• • = • • = •

Every language $L\downarrow$ can be written as a finite union of sets of the form

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

"Simple Regular Languages"

Algorithm

Suppose $L \subseteq X^*$ is given. Enumerate simple regular languages R. Decide whether $L \downarrow = R$:

• • = • • = • =

Every language $L\downarrow$ can be written as a finite union of sets of the form

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

"Simple Regular Languages"

Algorithm

Suppose $L \subseteq X^*$ is given. Enumerate simple regular languages R. Decide whether $L \downarrow = R$:

•
$$L \downarrow \subseteq R$$
 iff $L \downarrow \cap (X^* \backslash R) = \emptyset \rightsquigarrow$ emptiness.

• • = • • = • =

Every language $L\downarrow$ can be written as a finite union of sets of the form

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

"Simple Regular Languages"

AlgorithmObservationSuppose $L \subseteq X^*$ is given. $L \downarrow$ is in C:Enumerate simple regular languages R. $L \downarrow$ is in C:Decide whether $L \downarrow = R$: $\downarrow \subseteq R$ iff $L \downarrow \cap (X^* \backslash R) = \emptyset \rightsquigarrow$ emptiness.• $L \downarrow \subseteq R$ iff $L \downarrow \cap (X^* \backslash R) = \emptyset \rightsquigarrow$ emptiness.

Every language $L\downarrow$ can be written as a finite union of sets of the form

$$Y_0^*\{x_1,\varepsilon\}Y_1^*\cdots\{x_n,\varepsilon\}Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

"Simple Regular Languages"

AlgorithmObservationSuppose $L \subseteq X^*$ is given. $L \downarrow$ is in C:Enumerate simple regular languages R. $L \downarrow$ is in C:Decide whether $L \downarrow = R$: (x, ε) • $L \downarrow \subseteq R$ iff $L \downarrow \cap (X^* \backslash R) = \emptyset \rightsquigarrow$ emptiness. $\bigcap \\ \downarrow \\ (x, x)$

Georg Zetzsche (TU KL)

• It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.

< □ > < 同 > < 回 > < 回 > < 回 >

Georg Zetzsche (TU KL)

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^n$ for every $n \ge 0$.

.

Georg Zetzsche (TU KL)

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^n$ for every $n \ge 0$.

abc abc abc abc abc

.

Georg Zetzsche (TUKL)

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^n$ for every $n \ge 0$.

abc abc abc abc abc

bacca

.

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^n$ for every $n \ge 0$.

abc abc abc abc abc

bacca

A (1) > A (2) > A

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^n$ for every $n \ge 0$.

abc abc abc abc abc

bacca

(日)

Observation

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^n$ for every $n \ge 0$.

abc abc abc abc abc

bacca

 y_i : word containing each letter of Y_i once. Then:

$$T(L{\downarrow}){\downarrow} = a_0^* \cdots a_n^* \quad \text{iff} \quad Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L{\downarrow}$$

(日)

Indexed Grammars

Georg Zetzsche (TU KL)

Idea: Each nonterminal carries a stack.

< □ > < □ > < □ > < □ > < □ > < □ >

Indexed Grammars

Idea: Each nonterminal carries a stack. Tuple G = (N, T, I, P, S), where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol

Georg Zetzsche (TU KL)

★ ∃ ▶

Indexed Grammars

Idea: Each nonterminal carries a stack. Tuple G = (N, T, I, P, S), where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol
- Productions *P* of the form
 - $A \rightarrow Bf$, push index $(f \in I)$
 - $Af \rightarrow B$, pop index $(f \in I)$
 - $A \rightarrow uBv$, generate terminals $(u, v \in T^*)$
 - $A \rightarrow BC$, split and duplicate index word
 - $A \rightarrow w$, generate only terminals $(w \in T^*)$

• • = • • =

Indexed Grammars

Idea: Each nonterminal carries a stack. Tuple G = (N, T, I, P, S), where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol
- Productions *P* of the form
 - $A \rightarrow Bf$, push index $(f \in I)$
 - Af \rightarrow B, pop index ($f \in I$)
 - $A \rightarrow uBv$, generate terminals $(u, v \in T^*)$
 - $A \rightarrow BC$, split and duplicate index word
 - $A \rightarrow w$, generate only terminals ($w \in T^*$)

$$\begin{split} S \to Sf, & S \to Sg, \quad S \to UU, \quad U \to \varepsilon, \\ Uf \to A, & Ug \to B, \quad A \to Ua, \quad B \to Ub. \end{split}$$

 $N = \{S, T, A, B\}, I = \{f, g\}, T = \{a, b\}.$

Idea: Each nonterminal carries a stack. Tuple G = (N, T, I, P, S), where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol
- Productions *P* of the form
 - $A \rightarrow Bf$, push index $(f \in I)$
 - $Af \rightarrow B$, pop index $(f \in I)$
 - $A \rightarrow uBv$, generate terminals $(u, v \in T^*)$
 - $A \rightarrow BC$, split and duplicate index word
 - $A \rightarrow w$, generate only terminals $(w \in T^*)$

$$S \to Sf$$
, $S \to Sg$, $S \to UU$, $U \to \varepsilon$,
 $Uf \to A$, $Ug \to B$, $A \to Ua$, $B \to Ub$

 $N = \{S, T, A, B\}, I = \{f, g\}, T = \{a, b\}.$

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Suppose $L \downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.

Image: A Image: A

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Suppose $L \downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.
- For each a_i , at least one of the following holds:

• • = • • =

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Suppose $L \downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.
- For each *a_i*, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*

.

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Suppose $L \downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.
- For each *a_i*, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

• • = • • =

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Suppose $L \downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.
- For each *a_i*, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset $D \subseteq \{a_1, \ldots, a_n\}$, construct G_D

< □ > < □ > < □ > < □ > < □ > < □ >

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Suppose $L \downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.
- For each *a_i*, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset $D \subseteq \{a_1, \ldots, a_n\}$, construct G_D :

- for $a_i \in D$, instead of deriving whole a_i -subtree, generate one a_i
- for $a_i \notin D$, derive only one of the a_i -subtrees.

< □ > < □ > < □ > < □ > < □ > < □ >

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L \downarrow$.

Observation

- Suppose $L \downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \ge 0$.
- For each *a_i*, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset $D \subseteq \{a_1, \ldots, a_n\}$, construct G_D :

- for $a_i \in D$, instead of deriving whole a_i -subtree, generate one a_i
- for $a_i \notin D$, derive only one of the a_i -subtrees.
- Then, $L(G) \downarrow = a_1^* \cdots a_n^*$ iff $L(G_D) \downarrow = a_1^* \cdots a_n^*$ for some D.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Only obstacle: a_i -subtrees for $a_i \notin D$

A D N A B N A B N A B N

Only obstacle: a_i -subtrees for $a_i \notin D$

• Suppose we did not unfold them

→ Ξ →

Only obstacle: a_i -subtrees for $a_i \notin D$

- Suppose we did not unfold them
- Consider the interval $a_i^* \cdots a_i^*$ for each occurring nonterminal

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Only obstacle: a_i -subtrees for $a_i \notin D$

- Suppose we did not unfold them
- Consider the interval $a_i^* \cdots a_i^*$ for each occurring nonterminal
- Then the nonterminals have pairwise distinct intervals

Only obstacle: a_i -subtrees for $a_i \notin D$

- Suppose we did not unfold them
- Consider the interval $a_i^* \cdots a_i^*$ for each occurring nonterminal
- Then the nonterminals have pairwise distinct intervals
- \Rightarrow Bounded number of occurrences

Only obstacle: a_i -subtrees for $a_i \notin D$

- Suppose we did not unfold them
- Consider the interval $a_i^* \cdots a_i^*$ for each occurring nonterminal
- Then the nonterminals have pairwise distinct intervals
- \Rightarrow Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

Only obstacle: a_i -subtrees for $a_i \notin D$

- Suppose we did not unfold them
- Consider the interval $a_i^* \cdots a_i^*$ for each occurring nonterminal
- Then the nonterminals have pairwise distinct intervals
- \Rightarrow Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

Idea

Instead of unfolding a_i -subtree with root Au, $u \in I^*$, apply transducer to u

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G \colon NI^* \to \mathbb{N}\{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (u, v) \in T\}$$

$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, Au \Rightarrow_G^* v\}$$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G \colon NI^* \to \mathbb{N}\{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (u, v) \in T\}$$

$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, Au \Rightarrow_G^* v\}$$

Proposition

For each indexed grammar G, one can construct a rational transduction T with $f_T \approx f_G$.

 $f \approx g$: f is unnounded on the same subsets as g

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G \colon NI^* \to \mathbb{N}\{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (u, v) \in T\}$$

$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, Au \Rightarrow_G^* v\}$$

Proposition

For each indexed grammar G, one can construct a rational transduction T with $f_T \approx f_G$.

 $f \approx g$: f is unnounded on the same subsets as g

Step 2: Apply transducer

Instead of unfolding a_i-subtrees, a_i ∉ D, apply transducer to index word.

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G \colon NI^* \to \mathbb{N}\{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (u, v) \in T\}$$

$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, Au \Rightarrow_G^* v\}$$

Proposition

For each indexed grammar G, one can construct a rational transduction T with $f_T \approx f_G$.

 $f \approx g$: f is unnounded on the same subsets as g

Step 2: Apply transducer

- Instead of unfolding a_i-subtrees, a_i ∉ D, apply transducer to index word.
- Only one nonterminal occurrence for transducer

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G \colon NI^* \to \mathbb{N}\{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (u, v) \in T\}$$

$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, Au \Rightarrow_G^* v\}$$

Proposition

For each indexed grammar G, one can construct a rational transduction T with $f_T \approx f_G$.

 $f \approx g$: f is unnounded on the same subsets as g

Step 2: Apply transducer

- Instead of unfolding a_i-subtrees, a_i ∉ D, apply transducer to index word.
- Only one nonterminal occurrence for transducer
- $\Rightarrow\,$ Bound on nonterminal occurrences, "breadth-bounded"

Remaining problem

Georg Zetzsche (TU KL)

- Given: Breadth-bounded indexed grammar G, $L(G) \subseteq a_1^* \cdots a_n^*$
- Does $L(G) \downarrow = a_1^* \cdots a_n^*$?

Remaining problem

- Given: Breadth-bounded indexed grammar G, $L(G) \subseteq a_1^* \cdots a_n^*$
- Does $L(G) \downarrow = a_1^* \cdots a_n^*$?

Step 3:

Proposition

Breadth-bounded indexed grammars have effectively semilinear Parikh images.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Remaining problem

- Given: Breadth-bounded indexed grammar G, $L(G) \subseteq a_1^* \cdots a_n^*$
- Does $L(G) \downarrow = a_1^* \cdots a_n^*$?

Step 3:

Proposition

Breadth-bounded indexed grammars have effectively semilinear Parikh images.

Then, it is clearly decidable whether $L(G) \downarrow = a_1^* \cdots a_n^*$.

Thank you for your attention!

A D N A B N A B N A B N