Downward Closures of Indexed Languages

Georg Zetzsche

Technische Universität Kaiserslautern

HOPA 2015
System observers see precisely the downward closures of indexed languages.
Downward Closures

\[u \text{ is a subsequence of } v \]
Downward Closures

\[u \Downarrow v : u \text{ is a subsequence of } v \]

Observer sees precisely \(L \sim_t u \)

\[L \Downarrow_t u \]

Observer sees precisely \(L \sim_t u \)

\[L \Downarrow_t u \]

Observer sees precisely \(L \sim_t u \)

Observer sees precisely \(L \sim_t u \)
Downward Closures

- \(u \preceq v \): \(u \) is a subsequence of \(v \)
- \(L\downarrow = \{ u \in X^* \mid \exists v \in L: u \preceq v \} \)
- Observer sees precisely \(L\downarrow \)
Downward Closures

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L \downarrow$ *is regular.*

Applications

Given an automaton for $L \downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation ($K \subseteq L \downarrow$)
- Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? ($a \in L \downarrow$)
- Is a ever executed after b? ($ab \in L \downarrow$)
- Can the system run arbitrarily long? ($L \downarrow$ infinite)

Problem

Finite automaton for $L \downarrow$ exists for every L.

How can we compute it?
Downward Closures

Theorem (Higman/Haines)

For every language \(L \subseteq X^* \), \(L\downarrow \) is regular.

Applications

Given an automaton for \(L\downarrow \), many things are decidable:
Downward Closures

Theorem (Higman/Haines)

For every language \(L \subseteq X^* \), \(L\downarrow \) is regular.

Applications

Given an automaton for \(L\downarrow \), many things are decidable:

- Inclusion of behavior under lossy observation \((K\downarrow \subseteq L\downarrow)\)
 - Ordinary inclusion almost always undecidable!
Downward Closures

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L\downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation ($K\downarrow \subseteq L\downarrow$)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? ($a^* \subseteq L\downarrow$)
Downward Closures

Theorem (Higman/Haines)

For every language \(L \subseteq X^* \), \(L\downarrow \) is regular.

Applications

Given an automaton for \(L\downarrow \), many things are decidable:

- Inclusion of behavior under lossy observation \((K\downarrow \subseteq L\downarrow)\)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? \((a^* \subseteq L\downarrow)\)
- Is \(a \) ever executed after \(b? \) \((ab \in L\downarrow)\)
Downward Closures

Theorem (Higman/Haines)

For every language \(L \subseteq X^* \), \(L\downarrow \) is regular.

Applications

Given an automaton for \(L\downarrow \), many things are decidable:

- Inclusion of behavior under lossy observation \((K\downarrow \subseteq L\downarrow)\)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? \((a^* \subseteq L\downarrow)\)
- Is \(a \) ever executed after \(b \)? \((ab \in L\downarrow)\)
- Can the system run arbitrarily long? \((L\downarrow \text{ infinite})\)
Downward Closures

Theorem (Higman/Haines)

For every language $L \subseteq X^*$, $L\downarrow$ is regular.

Applications

Given an automaton for $L\downarrow$, many things are decidable:

- Inclusion of behavior under lossy observation ($K\downarrow \subseteq L\downarrow$)
 Ordinary inclusion almost always undecidable!
- Which actions occur arbitrarily often? ($a^* \subseteq L\downarrow$)
- Is a ever executed after b? ($ab \in L\downarrow$)
- Can the system run arbitrarily long? ($L\downarrow$ infinite)

Problem

- Finite automaton for $L\downarrow$ exists for every L.
- How can we compute it?
Positive results

Theorem (van Leeuwen 1978/Courcelle 1991)
Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)
Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

Context-free rules
$A \rightarrow w$, applied as:
$A u \rightarrow u w$

Theorem (Habermehl, Meyer, Wimmel 2010)
Downward closures are computable for Petri net languages.

Theorem (Z. 2015)
Downward closures are computable for stacked counter automata.

Weak form of stack nesting
Adding Counters
Positive results

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

Context-free rules

\[A \xrightarrow{} w, \text{ applied as: } Au \xrightarrow{} uw \]

Theorem (Habermehl, Meyer, Wimmel 2010)

Downward closures are computable for Petri net languages.

Theorem (Z. 2015)

Downward closures are computable for stacked counter automata.

Weak form of stack nesting

Adding Counters
Positive results

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/0L-systems.
Positive results

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/OL-systems.

Context-free rules $A \rightarrow w$, applied as: $Au \Rightarrow uw$
Positive results

Theorem (van Leeuwen 1978/Courcelle 1991)

Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)

Downward closures are computable for context-free FIFO rewriting systems/OL-systems.

Context-free rules $A \rightarrow w$, applied as: $Au \Rightarrow uw$

Theorem (Habermehl, Meyer, Wimmel 2010)

Downward closures are computable for Petri net languages.
Positive results

<table>
<thead>
<tr>
<th>Theorem (van Leeuwen 1978/Courcelle 1991)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downward closures are computable for context-free languages.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Abdulla, Boasson, Bouajjani 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downward closures are computable for context-free FIFO rewriting systems/0L-systems.</td>
</tr>
</tbody>
</table>

Context-free rules $A \rightarrow w$, applied as: $Au \Rightarrow uw$

<table>
<thead>
<tr>
<th>Theorem (Habermehl, Meyer, Wimmel 2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downward closures are computable for Petri net languages.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Z. 2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downward closures are computable for stacked counter automata.</td>
</tr>
</tbody>
</table>
Positive results

Theorem (van Leeuwen 1978/Courcelle 1991)
Downward closures are computable for context-free languages.

Theorem (Abdulla, Boasson, Bouajjani 2001)
Downward closures are computable for context-free FIFO rewriting systems/0L-systems.

Context-free rules $A \rightarrow w$, applied as: $Au \Rightarrow uw$

Theorem (Habermehl, Meyer, Wimmel 2010)
Downward closures are computable for Petri net languages.

Theorem (Z. 2015)
Downward closures are computable for stacked counter automata.

- Weak form of stack nesting
- Adding Counters
Negative results

Theorem (Gruber, Holzer, Kutrib 2009)

Downward closures are not computable when infinity or emptiness are undecidable.

Theorem (Mayr 2003)

The reachability set of lossy channel systems is not computable.
Theorem (Z. 2015)

Downward closures are computable for indexed languages, i.e. for second-order pushdown automata.
Example (Transducer)

\[\varepsilon | a, \varepsilon | b \]

\[\varepsilon | \# \]

\[a | a, b | b \]

\[\varepsilon | \# \]

\[\varepsilon | a, \varepsilon | b \]

\[a | \varepsilon, b | \varepsilon \]
Example (Transducer)

\[T(A) = \{(x, u\#v\#w) \mid u, v, w, x \in \{a, b\}^*, \; v \preceq x\} \]
Example (Transducer)

\[
\begin{align*}
\epsilon | a, \epsilon | b \\
q_0 & \xrightarrow{\epsilon \#} q_1 & \xrightarrow{\epsilon \#} q_2 \\
& \xrightarrow{a|\epsilon, b|\epsilon}
\end{align*}
\]

\[
T(A) = \{(x, u\#v\#w) \mid u, v, w, x \in \{a, b\}^*, \ v \leq x\}
\]

Definition

- **Rational transduction**: set of pairs given by a finite state transducer.
- For rational transduction \(T \subseteq X^* \times Y^*\) and language \(L \subseteq Y^*\), let

\[
TL = \{y \in X^* \mid \exists x \in L : (x, y) \in T\}
\]
Fact (Aho 1968)

For every indexed language L and rational transduction T, the language TL is indexed as well.

Theorem (Z. 2015)

Let C be a language class that is closed under rational transductions. Then downward closures are computable for C if and only if the following problem is decidable:

Given A language $L \subseteq a_1^* \cdot \cdot \cdot a_n^*$ in C

Question Does $L \downarrow$ equal $a_1^* \cdot \cdot \cdot a_n^*$?
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L can be written as a finite union of sets of the form

$$Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

“Simple Regular Languages”
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L can be written as a finite union of sets of the form

$$Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

“Simple Regular Languages”

Algorithm

Suppose $L \subseteq X^*$ is given.
Enumerate simple regular languages R.
Decide whether $L \downarrow = R$:

\Rightarrow
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L can be written as a finite union of sets of the form

$$Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

“Simple Regular Languages”

Algorithm

Suppose $L \subseteq X^*$ is given.
Enumerate simple regular languages R.
Decide whether $L \downarrow = R$:

- $L \downarrow \subseteq R$ iff $L \downarrow \cap (X^* \setminus R) = \emptyset \rightsquigarrow$ emptiness.
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language L can be written as a finite union of sets of the form

$$Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

“Simple Regular Languages”

Algorithm

Suppose $L \subseteq X^*$ is given.

Enumerate simple regular languages R.

Decide whether $L \downarrow = R$:

- $L \downarrow \subseteq R$ iff $L \downarrow \cap (X^* \setminus R) = \emptyset \iff$ emptiness.
Theorem (Jullien 1969, Abdulla et. al. 2004)

Every language $L \subseteq X^*$ can be written as a finite union of sets of the form

$$Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^*,$$

where x_1, \ldots, x_n are letters and Y_0, \ldots, Y_n are alphabets.

“Simple Regular Languages”

Algorithm

Suppose $L \subseteq X^*$ is given.
Enumerate simple regular languages R.
Decide whether $L \downarrow = R$:

- $L \downarrow \subseteq R$ iff $L \downarrow \cap (X^* \setminus R) = \emptyset \rightsquigarrow$ emptiness.
- $R \subseteq L \downarrow \rightsquigarrow Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L \downarrow$

Observation

$L \downarrow$ is in C:

$$(x, \varepsilon)$$

$$(x, x)$$
Observation

- It suffices to check whether $Y_0^* \{x_1, \varepsilon \} Y_1^* \cdots \{x_n, \varepsilon \} Y_n^* \subseteq L\downarrow$.
Observation

- It suffices to check whether $Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L\downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^n$ for every $n \geq 0$.
Observation

- It suffices to check whether $Y_0^*\{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L\downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^n$ for every $n \geq 0$.

$$abc \ abc \ abc \ abc \ abc \ abc$$
Observation

- It suffices to check whether $Y_0^* \{x_1, \varepsilon \} Y_1^* \cdots \{x_n, \varepsilon \} Y_n^* \subseteq L\downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^n$ for every $n \geq 0$.

$abc \ abc \ abc \ abc \ abc \ abc$

$bacca$
Observation

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L'$.
- L' includes $\{a, b, c\}^*$ if and only if it contains $(abc)^n$ for every $n \geq 0$.

```
abc abc abc abc abc
bacca
```
Observation

- It suffices to check whether $Y_0^* \{x_1, \varepsilon\} Y_1^* \cdots \{x_n, \varepsilon\} Y_n^* \subseteq L\downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^n$ for every $n \geq 0$.

$$abc \ abc \ abc \ abc \ abc \ abc \ bacca$$

Transduction T

$y_0 \ | \ a_0$

$q_0 \ x_1 | \varepsilon \rightarrow q_1$

$y_1 \ | \ a_1$

$q_1 \ x_2 | \varepsilon \rightarrow q_2$

\cdots

$y_n | a_n$

$q_n \ x_n | \varepsilon$

y_i: word containing each letter of Y_i once.
Observation

- It suffices to check whether $Y_0^* \{x_1, \varepsilon \} Y_1^* \cdots \{x_n, \varepsilon \} Y_n^* \subseteq L\downarrow$.
- $L\downarrow$ includes $\{a, b, c\}^*$ if and only if it contains $(abc)^n$ for every $n \geq 0$.

$$abc \ abc \ abc \ abc \ abc \ abc \ \ bacca$$

Transduction T

y_i: word containing each letter of Y_i once. Then:

$$T(L\downarrow)\downarrow = a_0^* \cdots a_n^* \text{ iff } Y_0^* \{x_1, \varepsilon \} Y_1^* \cdots \{x_n, \varepsilon \} Y_n^* \subseteq L\downarrow$$
Indexed Grammars

Idea: Each nonterminal carries a stack.
Indexed Grammars

Idea: Each nonterminal carries a stack.

Tuple $G = (N, T, I, P, S)$, where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol
Indexed Grammars

Indexed Grammars

Idea: Each nonterminal carries a stack.
Tuple $G = (N, T, I, P, S)$, where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol
- Productions P of the form
 - $A \rightarrow Bf$, push index ($f \in I$)
 - $Af \rightarrow B$, pop index ($f \in I$)
 - $A \rightarrow uBv$, generate terminals ($u, v \in T^*$)
 - $A \rightarrow BC$, split and duplicate index word
 - $A \rightarrow w$, generate only terminals ($w \in T^*$)
Indexed Grammars

Indexed Grammars

Idea: Each nonterminal carries a stack.

Tuple $G = (N, T, I, P, S)$, where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol
- Productions P of the form
 - $A \rightarrow Bf$, push index ($f \in I$)
 - $Af \rightarrow B$, pop index ($f \in I$)
 - $A \rightarrow uBv$, generate terminals ($u, v \in T^*$)
 - $A \rightarrow BC$, split and duplicate index word
 - $A \rightarrow w$, generate only terminals ($w \in T^*$)

\[
S \rightarrow Sf, \quad S \rightarrow Sg, \quad S \rightarrow UU, \quad U \rightarrow \varepsilon, \\
Uf \rightarrow A, \quad Ug \rightarrow B, \quad A \rightarrow Ua, \quad B \rightarrow Ub.
\]

$N = \{S, T, A, B\}$, $I = \{f, g\}$, $T = \{a, b\}$.
Indexed Grammars

Idea: Each nonterminal carries a stack.

Tuple $G = (N, T, I, P, S)$, where

- N, T, I are nonterminal, terminal, index alphabet,
- $S \in N$ start symbol
- Productions P of the form
 - $A \rightarrow Bf$, push index $(f \in I)$
 - $Af \rightarrow B$, pop index $(f \in I)$
 - $A \rightarrow uBv$, generate terminals $(u, v \in T^*)$
 - $A \rightarrow BC$, split and duplicate index word
 - $A \rightarrow w$, generate only terminals $(w \in T^*)$

$$
S \rightarrow Sf,
S \rightarrow Sg,
S \rightarrow UU,
U \rightarrow \varepsilon,
Uf \rightarrow A,
Ug \rightarrow B,
A \rightarrow Ua,
B \rightarrow Ub.
$$

$N = \{S, T, A, B\}$, $I = \{f, g\}$, $T = \{a, b\}$.
Application to Indexed Languages

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L\downarrow$.

Observation

- Suppose $L\downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \geq 0$.

Application to Indexed Languages

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L\downarrow$.

Observation

- Suppose $L\downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \geq 0$.
- For each a_i, at least one of the following holds:
Application to Indexed Languages

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L\downarrow$.

Observation

- Suppose $L\downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \geq 0$.
- For each a_i, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
Application to Indexed Languages

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L\downarrow$.

Observation

- Suppose $L\downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \geq 0$.
- For each a_i, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length
Application to Indexed Languages

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L\downarrow$.

Observation
- Suppose $L\downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \geq 0$.
- For each a_i, at least one of the following holds:
 - there is an unbounded number of subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters
For each subset $D \subseteq \{a_1, \ldots, a_n\}$, construct G_D
Application to Indexed Languages

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L\downarrow$.

Observation

- Suppose $L\downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \geq 0$.
- For each a_i, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset $D \subseteq \{a_1, \ldots, a_n\}$, construct G_D:

- for $a_i \in D$, instead of deriving whole a_i-subtree, generate one a_i
- for $a_i \notin D$, derive only one of the a_i-subtrees.
Application to Indexed Languages

Given: indexed grammar G with $L = L(G) \subseteq a_1^* \cdots a_n^*$, wlog $L = L\downarrow$.

Observation

- Suppose $L\downarrow = a_1^* \cdots a_n^*$.
- Consider the derivations for $a_1^k \cdots a_n^k$, $k \geq 0$.
- For each a_i, at least one of the following holds:
 - there is an unbounded number subtrees with yield in a_i^*
 - the yields of such subtrees are unbounded in length

Step 1: Direct and indirect letters

For each subset $D \subseteq \{a_1, \ldots, a_n\}$, construct G_D:
- for $a_i \in D$, instead of deriving whole a_i-subtree, generate one a_i
- for $a_i \notin D$, derive only one of the a_i-subtrees.

Then, $L(G)\downarrow = a_1^* \cdots a_n^*$ iff $L(G_D)\downarrow = a_1^* \cdots a_n^*$ for some D.
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for $a_i \notin D$
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for $a_i \notin D$

- Suppose we did not unfold them
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for $a_i \notin D$

- Suppose we did not unfold them
- Consider the interval $a_i^* \cdots a_j^*$ for each occurring nonterminal
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for $a_i \notin D$

- Suppose we did not unfold them
- Consider the interval $a_i^* \cdots a_j^*$ for each occurring nonterminal
- Then the nonterminals have pairwise distinct intervals
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for $a_i \notin D$

- Suppose we did not unfold them
- Consider the interval $a_i^* \cdots a_j^*$ for each occurring nonterminal
- Then the nonterminals have pairwise distinct intervals

\Rightarrow Bounded number of occurrences
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for $a_i \notin D$

- Suppose we did not unfold them
- Consider the interval $a_i^* \cdots a_j^*$ for each occurring nonterminal
- Then the nonterminals have pairwise distinct intervals

\Rightarrow Bounded number of occurrences

Therefore: Replace these subtrees with linear ones
Goal: bound nonterminal occurrences

Only obstacle: a_i-subtrees for $a_i \notin D$

- Suppose we did not unfold them
- Consider the interval $a_i^* \cdots a_j^*$ for each occurring nonterminal
- Then the nonterminals have pairwise distinct intervals

\Rightarrow Bounded number of occurrences

Therefore: Replace these subtrees with linear ones

Idea

Instead of unfolding a_i-subtree with root Au, $u \in l^*$, apply transducer to u
Preserving $L(G)\downarrow = a_1^* \cdots a_n^*$

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G : NI^* \rightarrow \mathbb{N}\{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (u, v) \in T\}$$

$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, \ Au \Rightarrow_G^* v\}$$
Preserving $L(G)\downarrow = a_1^* \cdots a_n^*$

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G : NI^* \rightarrow \mathbb{N}\{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (u, v) \in T\}$$

$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, \ Au \Rightarrow_G^* v\}$$

Proposition

For each indexed grammar G, one can construct a rational transduction T with $f_T \approx f_G$.

$f \approx g$: f is unnounded on the same subsets as g
Preserving $L(G) \downarrow = a_1^* \cdots a_n^*$

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G : NI^* \rightarrow \mathbb{N}\{\infty\}$ be

\[
\begin{align*}
 f_T(Au) &= \sup\{|v| \mid (u, v) \in T\} \\
 f_G(Au) &= \sup\{|v| \mid v \in a_i^*, \ Au \Rightarrow^*_G v\}
\end{align*}
\]

Proposition

For each indexed grammar G, one can construct a rational transduction T with $f_T \approx f_G$.

$f \approx g$: f is unnounded on the same subsets as g

Step 2: Apply transducer

- Instead of unfolding a_i-subtrees, $a_i \notin D$, apply transducer to index word.
Preserving $L(G) \downarrow = a_1^* \cdots a_n^*$

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G : NI^* \rightarrow \mathbb{N}\{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (u, v) \in T\}$$
$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, \ Au \Rightarrow_G^* v\}$$

Proposition

For each indexed grammar G, one can construct a rational transduction T with $f_T \approx f_G$.

$f \approx g$: f is unbounded on the same subsets as g

Step 2: Apply transducer

- Instead of unfolding a_i-subtrees, $a_i \notin D$, apply transducer to index word.
- Only one nonterminal occurrence for transducer
Preserving $L(G) \downarrow = a_1^* \cdots a_n^*$

For transduction $T \subseteq NI^* \times a_i^*$, let $f_T, f_G: NI^* \rightarrow \mathbb{N}\{\infty\}$ be

$$f_T(Au) = \sup\{|v| \mid (u, v) \in T\}$$
$$f_G(Au) = \sup\{|v| \mid v \in a_i^*, Au \Rightarrow_G^* v\}$$

Proposition

For each indexed grammar G, one can construct a rational transduction T with $f_T \approx f_G$.

$f \approx g$: f is unnounded on the same subsets as g

Step 2: Apply transducer

- Instead of unfolding a_i-subtrees, $a_i \notin D$, apply transducer to index word.
- Only one nonterminal occurrence for transducer
- Bound on nonterminal occurrences, “breadth-bounded”
Remaining problem

- Given: Breadth-bounded indexed grammar G, $L(G) \subseteq a_1^* \cdots a_n^*$
- Does $L(G) \downarrow = a_1^* \cdots a_n^*$?
Remaining problem

- Given: Breadth-bounded indexed grammar G, $L(G) \subseteq a_1^* \cdots a_n^*$
- Does $L(G) \downarrow = a_1^* \cdots a_n^*$?

Step 3:

Proposition

Breadth-bounded indexed grammars have effectively semilinear Parikh images.
Remaining problem

- Given: Breadth-bounded indexed grammar G, $L(G) \subseteq a_1^* \cdots a_n^*$
- Does $L(G)\downarrow = a_1^* \cdots a_n^*$?

Step 3:

Proposition

Breadth-bounded indexed grammars have effectively semilinear Parikh images.

Then, it is clearly decidable whether $L(G)\downarrow = a_1^* \cdots a_n^*$.
Thank you for your attention!