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Example (Pushdown automaton)

q0 q1

a, λ,A

b, λ,B

λ, λ, λ

a,A, λ

b,B, λ

L “ tww rev | w P ta, bu˚u

Example (Blind counter automaton)

q0 q1 q2
λ, 0, 0 λ, 0, 0

a, 1, 0 b, 0, 1 c ,´1,´1

L “ tanbncn | n ě 0u
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Example (Partially blind counter automaton)

q0 q1

a, 1

b,´1

λ, 0

λ,´1

L “ tw P ta, bu˚ | |p|a ě |p|b for any prefix p of wu
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Automata models that extend finite automata by some storage
mechanism:

Pushdown automata

Blind counter automata

Partially blind counter automata

Turing machines

Each storage mechanism consists of:

States: set S of states

Operations: partial maps α1, . . . , αn : S Ñ S
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Model States Operations

Pushdown
automata

S “ Γ˚
pusha :w ÞÑ wa, a P Γ

popa :wa ÞÑ w , a P Γ

Blind
counter
automata

S “ Zn
inci :px1, . . . , xnq ÞÑ px1, . . . , xi ` 1, . . . , xnq

deci :px1, . . . , xnq ÞÑ px1, . . . , xi ´ 1, . . . , xnq

Partially
blind
counter
automata

S “ Nn
inci :px1, . . . , xnq ÞÑ px1, . . . , xi ` 1, . . . , xnq

deci :px1, . . . , xnq ÞÑ px1, . . . , xi ´ 1, . . . , xnq

Observation

Here, a sequence β1, . . . , βk of operations is valid if and only if

β1 ˝ ¨ ¨ ¨ ˝ βk “ id
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Definition

A monoid is

a set M together with

an associative binary operation ¨ : M ˆM Ñ M and

a neutral element 1 P M (a1 “ 1a “ a for any a P M).

Storage mechanisms as monoids

Let S be a set of states and α1, . . . , αn : S Ñ S partial maps.

The set of all compositions of α1, . . . , αn is a monoid M.

The identity map is the neutral element of M.

M is a decription of the storage mechanism.
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Valence automata

Common generalization: Valence Automata

Valence automaton over M:

Finite automaton with edges p
w |m
ÝÝÑq, w P Σ˚, m P M.

Run q0
w1|m1
ÝÝÝÑq1

w2|m2
ÝÝÝÑ¨ ¨ ¨

wn|mn
ÝÝÝÝÑqn is accepting for w1 ¨ ¨ ¨wn if

§ q0 is the initial state,
§ qn is a final state, and

§ m1 ¨ ¨ ¨mn “ 1.
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Classical results can now be generalized:

Questions

Which storage mechanisms increase the expressive power?

For which storage mechanisms can we determinize?

For which can we avoid silent transitions?

For which do we have a Parikh theorem?

For which can we compute the downward closure?

For which can we decide, for example, emptiness?
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Deterministic valence automata

A valence automaton is called deterministic, if

every edge is of the form p
a|m
ÝÝÑq with a P Σ.

for each state p P Q and each letter a P Σ, there is at most one edge

p
a|m
ÝÝÑq for some m P M, q P Q.

detVApMq languages accepted by deterministic valence automata over
M.
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Questions

When does VApMq contain non-regular languages?

When does detVApMq “ VApMq?

Theorem

The following statements are equivalent:

1 VApMq “ REG.

2 detVApMq “ VApMq.

3 Every finitely generated submonoid of M possesses only finitely many
right-invertible elements.

(1) ô (3) has been shown independently by Elaine Render in 2010.
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RpMq “ tx P M | Dy P M : xy “ 1u Rpxq “ ty P M | xy “ 1u

LpMq “ tx P M | Dy P M : yx “ 1u Lpxq “ ty P M | yx “ 1u

JpMq “ tx P M | Dy , z P M : yxz “ 1u

Lemma (Dichotomy)

For each monoid M, exactly one of the following holds:

1 RpMq “ LpMq “ JpMq is a finite group.
2 There are infinite subsets S Ď RpMq, S 1 Ď LpMq such that

§ Rpsq X Rptq “ H for any s, t P S and
§ Lpsq X Lptq “ H for any s, t P S 1.
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Silent transitions

Definition

Transitions p
λ|m
ÝÝÑq are called silent or λ-transitions.

VA`pMq Languages accepted without λ-transitions.

Important problem

When can λ-transitions be eliminated?

Without λ-transitions, decide membership using exponential number
of queries to the word problem.

Elimination can be regarded as a precomputation.
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Monoids defined by graphs

By graphs, we mean undirected graphs with loops allowed.

Notation

B: monoid for partially blind counter

Z: monoid for blind counter, i.e. the group of integers

Intuition

To each graph Γ, we associate a monoid MΓ:

For each unlooped vertex, we have a copy of B
For each looped vertex, we have a copy of Z
MΓ consists of sequences of such elements

An edge between vertices means that elements can commute
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Examples

Z3

Blind multicounter

B ˚ B ˚ B

Pushdown

B3

Partially blind multicounter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)
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Theorem

Let Γ be a graph such that

between any two looped vertices, there is an edge and

between any two unlooped vertices, there is no edge.

Then VApMΓq “ VA`pMΓq if and only if Γ does not contain

as an induced subgraph.
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By reduction to an undecidable problem from group theory, we obtain:

Lemma

Let Γ be a graph with

as an induced subgraph. Then VApMΓq contains an undecidable language.
Hence, VA`pMΓq Ĺ VApMΓq.
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Definition

Let C be the smallest class of monoids such that

1 P C
if M P C, then M ˆ Z P C
if M P C, then M ˚ B P C

Lemma

Let Γ be a graph such that
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Definition

Let C be the smallest class of monoids such that

1 P C
if M P C, then M ˆ Z P C
if M P C, then M ˚ B P C

Interpretation of C
C corresponds to the class of storage mechanisms obtained by

adding a blind counter (M ˆ Z) and

building stacks (M ˚ B).
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Proof.

Let Γ “ pV ,E q, V “ LY U, looped and unlooped vertices.

For each x P L, let νpxq “ Npxq X U

and

for x , y P L : x ď y iff νpxq Ď νpyq.

Since is not an induced subgraph, ď is a total preorder.

Let m P L be maximal.

If νpmq “ U, then Γ “ pΓztmuq ˆm.

MΓ –MpΓztmuq ˆ Z.

If νpmq Ĺ U, then Γ “ pΓztuuq ˚ u for some u P U.

MΓ –MpΓztuuq ˚ B.
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Elimination of λ-transitions

Definition

A subset S Ď M is called rational if it is the homomorphic image of a
regular language.

Elimination of λ-transitions

Approach:

Between a given pair of non-λ-transitions, the set of x P M applied in
between is a rational set.

Transform the automaton so as to simulate the application of a
rational set in one step.
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Proof ingredients

Ingredients

Semilinearity of languages in VApMΓq

Normal form for rational subsets of MΓ

Construction for VA`pMΓq “ VApMΓq

Actual construction quite involved.

Stronger claim to make induction work.

Separate constructions for B, M ˆ Z, and M ˚ B.

Representations of rational sets are encoded into the state or the
monoid elements.
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Theorem

Let Γ be a graph such that between any two distinct vertices, there is an
edge.

Then VApMΓq “ VA`pMΓq if and only if the number of unlooped
nodes is ď 1. In other words:

VApBr ˆ Zsq “ VA`pBr ˆ Zsq iff r ď 1.

Observation

VApBˆ Zsq “ VA`pBˆ Zsq already follows from the first theorem.
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More classical results can be generalized:

Work in Progress

For which storage mechanisms do we have a Parikh theorem?

For which can we perform model checking?

For which can we compute the downward closure?
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