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Example (Blind counter automaton)

2,1,0 b,0,1 c,—1,—1

4@ A,0,0 @ A,0,0 ®

L={a"p"c" | n>0}
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Example (Partially blind counter automaton)

a1

A -1

b, —1

L={we {a,b}*

|pla = |p|p for any prefix p of w}
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Automata models that extend finite automata by some storage
mechanism:

@ Pushdown automata

@ Blind counter automata

o Partially blind counter automata
°

Turing machines
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Automata models that extend finite automata by some storage
mechanism:

@ Pushdown automata

@ Blind counter automata

o Partially blind counter automata
°

Turing machines

Each storage mechanism consists of:
@ States: set S of states

o Operations: partial maps ag,...,a,:S —> S
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Model

States | Operations
Pushdown S_* push, :w — wa, ael
automata pop, :wa+—> w, ael
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Model States | Operations

Pushdown S_r* pUSha W wa, a€ r

automata pop, :wa— w, a€ I

Blind

counter S—Zn inC,'Z(Xl,...,Xn)'—>(X1,...,X,'+1,...,Xn)
automata deci (X1, ..y xn) — (X1, ..y xi — 1,000, Xp)
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Model States | Operations

Pushdown S_* push, :w +— wa, ael

automata pop, :wa— w, ael

Blind

counter S _gn inci i(x1,...,xn) = (x1,.. ., % + 1,0, xn)

automata deci (X1, ..y xn) — (X1, ..y xi — 1,000, Xp)

Partially

blind .

, inci (X1, ... xn) = (X1, ., %+ 1,00, xp)

counter S=N

automata deci (X1, .y xn) — (X1, ..y xi — 1,000, xp)
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Model States | Operations

Pushdown S _* pusha W — wa, a€ r

automata pop, :wa— w, ael

Blind

counter S _gn inGj (X1, vy Xn) = (X1, X+ 1,000, Xp)
automata deci (X1, ..y xn) — (X1, ..y xi — 1,000, Xp)
Partially

blind :

counter P inci (X1, ... xn) = (X1, ., %+ 1,00, xp)
automata deci (X1, .y xn) — (X1, ..y xi — 1,000, xp)

Observation

Here, a sequence (1, ...

, Bk of operations is valid if and only if

fro---of=id
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Definition
A monoid is

@ a set M together with

@ an associative binary operation - : M x M — M and

@ a neutral element 1 € M (al = 1a = a for any a€ M).
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Definition
A monoid is
@ a set M together with
@ an associative binary operation - : M x M — M and

@ a neutral element 1 € M (al = 1a = a for any a€ M).

Storage mechanisms as monoids
@ Let S be a set of states and ay,...,a,: S — S partial maps.
@ The set of all compositions of aq, ..., a, is a monoid M.

@ The identity map is the neutral element of M.

@ M is a decription of the storage mechanism.
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Valence automata

Common generalization: Valence Automata

Valence automaton over M:

@ Finite automaton with edges pmq, weX* me M.
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Valence automata

Common generalization: Valence Automata

Valence automaton over M:

@ Finite automaton with edges pmq, weX* meM.

wilmy  wa|mp wn|m

@ Run go >qn is accepting for wy - - - w,, if

qo is the initial state,
gn is a final state, and
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Valence automata

Common generalization: Valence Automata

Valence automaton over M:

@ Finite automaton with edges pmq, weX* meM.

wilmy  wa|mp wn|m

@ Run go >qn is accepting for wy - - - w,, if
qo is the initial state,
gn is a final state, and

my---m, =1.
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Classical results can now be generalized:

Questions
@ Which storage mechanisms increase the expressive power?
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Deterministic valence automata

A valence automaton is called deterministic, if
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Deterministic valence automata
A valence automaton is called deterministic, if

@ every edge is of the form pa|—m>q with a e X.
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Deterministic valence automata

A valence automaton is called deterministic, if

@ every edge is of the form pa|—m>q with a € X.

o for each state p € Q and each letter a € ¥, there is at most one edge

pal—m>q for some me M, g€ Q.
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Deterministic valence automata
A valence automaton is called deterministic, if

@ every edge is of the form pa|—m>q with a e X.
o for each state p € Q and each letter a € ¥, there is at most one edge
alm
p——q for some me M, g € Q.

detVA(M) languages accepted by deterministic valence automata over
M.
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Questions

@ When does VA(M) contain non-regular languages?
@ When does detVA(M) = VA(M)?
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Questions
@ When does VA(M) contain non-regular languages?
@ When does detVA(M) = VA(M)?

Theorem

The following statements are equivalent:
QO VA(M) = REG.
@ detVA(M) = VA(M).

© Every finitely generated submonoid of M possesses only finitely many
right-invertible elements.
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Questions
@ When does VA(M) contain non-regular languages?
@ When does detVA(M) = VA(M)?

Theorem

The following statements are equivalent:
QO VA(M) = REG.
@ detVA(M) = VA(M).

© Every finitely generated submonoid of M possesses only finitely many
right-invertible elements.

(1) < (3) has been shown independently by Elaine Render in 2010.
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RIM)={xeM|IyeM:xy =1} R(x)={yeM|xy=1}
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RIM)={xeM|IyeM:xy =1} R(x)={yeM|xy=1}
LIM)={xeM|JyeM:yx=1}

Lix) ={yeM|yx =1}
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RIM)={xeM|3yeM:xy =1} E(X)z{yeM|xy=1}
LIM)={xeM|IyeM:yx =1} L(x)={yeM|yx=1}

JM)={xeM|3y,ze M :yxz =1}
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RIM)={xeM|3yeM:xy =1} E(x)={yeM|xy=1}
LIM)={xeM|IyeM:yx=1} L(x)={yeM|yx=1}

JM)={xeM|3dy,ze M :yxz =1}

Lemma (Dichotomy)

For each monoid M, exactly one of the following holds:
Q@ R(M) =L(M) = J(M) is a finite group.
@ There are infinite subsets S < R(M), S' < L(M) such that

R(s) nR(t) = & for any s,t € S and

L(s) nL(t) = & for any s,t € S'.
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Silent transitions

Definition

.- Alm . ..
Transitions p——q are called silent or A\-transitions.
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Silent transitions

Definition

.. Alm . ..
Transitions p——q are called silent or A\-transitions.

VAT (M) Languages accepted without A-transitions.

Important problem
@ When can A-transitions be eliminated?

o Without A-transitions, decide membership using exponential number
of queries to the word problem.

@ Elimination can be regarded as a precomputation.
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Monoids defined by graphs

By graphs, we mean undirected graphs with loops allowed.
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By graphs, we mean undirected graphs with loops allowed.

Notation
@ B: monoid for partially blind counter

@ 7Z: monoid for blind counter, i.e. the group of integers
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Monoids defined by graphs

By graphs, we mean undirected graphs with loops allowed.

Notation
@ B: monoid for partially blind counter

@ 7Z: monoid for blind counter, i.e. the group of integers

Intuition

To each graph I', we associate a monoid MI:
@ For each unlooped vertex, we have a copy of B
@ For each looped vertex, we have a copy of Z
@ M consists of sequences of such elements

@ An edge between vertices means that elements can commute
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Examples
Z3
Blind multicounter

B+B=x+B

Pushdown

VAN
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Examples
Z3
Blind multicounter

B+B=x+B

Pushdown

AR
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Examples

73 B+«Bx«B

Blind multicounter Pushdown

AR

Partially blind multicounter
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Examples
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Examples
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Blind multicounter Pushdown
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Examples

73 B+«Bx«B

Blind multicounter Pushdown

ii B3 % (B *B) x (B = B)

Partially blind multicounter
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Examples

[ )
73 B+«Bx«B
[ ] [ ]

Blind multicounter Pushdown

ii B3 % (B *B) x (B = B)

Partially blind multicounter Infinite tape (TM)
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Examples
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Blind multicounter Pushdown

ii B3 (B *B) x (B = B)

Partially blind multicounter Infinite tape (TM)
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Examples

Z3

Blind multicounter

Pushdown

B3

Partially blind multicounter
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Examples

B?’

Partially blind multicounter
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Theorem
Let I be a graph such that
@ between any two looped vertices, there is an edge and

@ between any two unlooped vertices, there is no edge.
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AL

Theorem
Let I be a graph such that
@ between any two looped vertices, there is an edge and
@ between any two unlooped vertices, there is no edge.
Then VA(MT) = VAT (M) if and only if T does not contain

o @ @ o
as an induced subgraph.
v
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By reduction to an undecidable problem from group theory, we obtain:

Lemma
Let ' be a graph with

- @ @

as an induced subgraph. Then VA(MI) contains an undecidable language.
Hence, VA* (M) < VA(MI).
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Definition

Let C be the smallest class of monoids such that
elelC

@ if MeC,then M x ZeC
o if MeC, then MxBeC
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Definition

Let C be the smallest class of monoids such that
eleC
@ if MeC,then M x ZeC
@ if MeC,then MxBe(C

Lemma
Let [ be a graph such that
@ between any two looped vertices, there is an edge
@ between any two unlooped vertices, there is no edge
@ —%—=— does not appear as an induced subgraph
Then, MT e C.

Georg Zetzsche (TU KL) Valence automata

D-CON 2013 17 /23



Definition

Let C be the smallest class of monoids such that
eleC
o if MeC, then M xZ e C
e if MeC, then MxBeC

Interpretation of C

C corresponds to the class of storage mechanisms obtained by
@ adding a blind counter (M x Z) and
@ building stacks (M = B).
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Proof.
o Letl = (V,E), V=Lu U, looped and unlooped vertices.
@ For each xe L, let v(x) = N(x) n U

4
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Proof.
o Letl = (V,E), V=Lu U, looped and unlooped vertices.
@ For each x e L, let v(x) = N(x) n U and
forx,yel: x<y iff v(x)<v(y).

@ Since is not an induced subgraph, < is a total preorder.

@ Let me L be maximal.
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Proof.
o Letl = (V,E), V=Lu U, looped and unlooped vertices.
e For each x e L, let v(x) = N(x) n U and

forx,yel: x<y iff v(x)<v(y).

Since is not an induced subgraph, < is a total preorder.
Let m e L be maximal.
If v(m) = U, then I = (M\{m}) x m.
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Proof.
o Letl = (V,E), V=Lu U, looped and unlooped vertices.
e For each x e L, let v(x) = N(x) n U and

forx,yel: x<y iff v(x)<v(y).

Since is not an induced subgraph, < is a total preorder.
Let m e L be maximal.
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Proof.
o Letl = (V,E), V=Lu U, looped and unlooped vertices.
@ For each x e L, let v(x) = N(x) n U and

forx,yel: x<y iff v(x)<v(y).

Since is not an induced subgraph, < is a total preorder.
Let m e L be maximal.

If v(m) = U, then T = (M\{m}) x m. MI' = M(M"\{m}) x Z.
If v(m) < U, then T = (M'\{u}) % u for some v € U.
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Proof.
o Letl = (V,E), V=Lu U, looped and unlooped vertices.
@ For each x e L, let v(x) = N(x) n U and

forx,yel: x<y iff v(x)<v(y).

Since is not an induced subgraph, < is a total preorder.
Let m e L be maximal.
If v(m) = U, then T = (M\{m}) x m. MI' = M(M"\{m}) x Z.

If v(m) < U, then T = (M'\{u}) % u for some v € U.
Ml =~ M(IM\{u}) = B.
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Elimination of \-transitions

Definition
A subset S © M is called rational if it is the homomorphic image of a
regular language.

Elimination of A-transitions
Approach:

@ Between a given pair of non-A-transitions, the set of x € M applied in
between is a rational set.

@ Transform the automaton so as to simulate the application of a
rational set in one step.
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Proof ingredients

Ingredients
@ Semilinearity of languages in VA(MI)

@ Normal form for rational subsets of M

Construction for VAT (M) = VA(MT)
@ Actual construction quite involved.
@ Stronger claim to make induction work.
@ Separate constructions for B, M x Z, and M = B.

@ Representations of rational sets are encoded into the state or the
monoid elements.
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Theorem

edge.

Let ' be a graph such that between any two distinct vertices, there is an
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Theorem

edge.

Let ' be a graph such that between any two distinct vertices, there is an
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A,

Theorem

Let ' be a graph such that between any two distinct vertices, there is an

edge. Then VA(MTI) = VAT (M) if and only if the number of unlooped
nodes is < 1.

=] =
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Theorem

Let ' be a graph such that between any two distinct vertices, there is an

edge. Then VA(MTI) = VAT (M) if and only if the number of unlooped
nodes is < 1.
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Theorem

Let ' be a graph such that between any two distinct vertices, there is an

edge. Then VA(MTI) = VAT (M) if and only if the number of unlooped
nodes is < 1. In other words:

VA(B" x Z°) = VAT (B" x Z°) iff r < 1.
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L@ ‘

Theorem

Let ' be a graph such that between any two distinct vertices, there is an
edge. Then VA(MTI) = VAT (M) if and only if the number of unlooped
nodes is < 1. In other words:

VA(B" x Z°) = VAT (B" x Z°) iff r < 1.

Observation
VA(B x Z°) = VAT (B x Z°) already follows from the first theorem.
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More classical results can be generalized:

Work in Progress

@ For which storage mechanisms do we have a Parikh theorem?
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More classical results can be generalized:

Work in Progress
@ For which storage mechanisms do we have a Parikh theorem?
@ For which can we perform model checking?

@ For which can we compute the downward closure?
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