
Semilinearity and Context-Freeness of
Languages Accepted by Valence Automata?

P. Buckheister and Georg Zetzsche

Fachbereich Informatik, Technische Universität Kaiserslautern

Abstract. Valence automata are a generalization of various models of
automata with storage. Here, each edge carries, in addition to an in-
put word, an element of a monoid. A computation is considered valid if
multiplying the monoid elements on the visited edges yields the identity
element. By choosing suitable monoids, a variety of automata models
can be obtained as special valence automata. This work is concerned
with the accepting power of valence automata. Specifically, we ask for
which monoids valence automata can accept only context-free languages
or only languages with semilinear Parikh image, respectively. First, we
present a characterization of those graph products (of monoids) for which
valence automata accept only context-free languages. Second, we provide
a necessary and sufficient condition for a graph product of copies of the
bicyclic monoid and the integers to yield only languages with semilinear
Parikh image when used as a storage mechanism in valence automata.
Third, we show that all languages accepted by valence automata over
torsion groups have a semilinear Parikh image.

1 Introduction

A valence automaton is a finite automaton in which each edge carries, in addition
to an input word, an element of a monoid. A computation is considered valid if
multiplying the monoid elements on the visited edges yields the identity element.
By choosing suitable monoids, one can obtain a wide range of automata with
storage mechanisms as special valence automata. Thus, they offer a framework
for generalizing insights about automata with storage. For examples of automata
as valence automata, see [4,19].

In this work, we are concerned with the accepting power of valence automata.
That is, we are interested in relationships between the structure of the monoid
representing the storage mechanism and the class of languages accepted by the
corresponding valence automata. On the one hand, we address the question for
which monoids valence automata accept only context-free languages. Since the
context-free languages constitute a very well-understood class, insights in this
direction promise to shed light on the acceptability of languages by transferring
results about context-free languages.

A very well-known result on context-free languages is Parikh’s Theorem,
which states that the Parikh image (that is, the image under the canonical

? The full version of this work is available at http://arxiv.org/abs/1306.3260.

c66c2006 2013-06-17 14:52:26 +0200

http://arxiv.org/abs/1306.3260

morphism onto the free commutative monoid) of each context-free language is
semilinear (in this case, the language itself is also called semilinear). It has
various applications in proving that certain languages are not context-free and
its effective nature (one can actually compute the semilinear representation)
allows it to be used in decision procedures for numerous problems (see [15] for
an example from group theory and [10] for others). It is therefore our second
goal to gain understanding about which monoids cause the corresponding valence
automata to accept only languages with a semilinear Parikh image.

Our contribution is threefold. First, we obtain a characterization of those
graph products (of monoids) whose corresponding valence automata accept only
context-free languages. Graph products are a generalization of the free and the
direct product in the sense that for each pair of participating factors, it can be
specified whether they should commute in the product. Since valence automata
over a group accept only context-free languages if and only if the group’s word
problem (and hence the group itself) can be described by a context-free grammar,
such a characterization had already been available for groups in a result by
Lohrey and Sénizergues [13]. Therefore, our characterization is in some sense an
extension of Lohrey and Sénizergues’ to monoids.

Second, we present a necessary and sufficient condition for a graph product
of copies of the bicyclic monoid and the integers to yield, when used in va-
lence automata, only languages with semilinear Parikh image. Although this is a
smaller class of monoids than arbitrary graph products, it still covers a number
of storage mechanisms found in the literature, such as pushdown automata, blind
multicounter automata, and partially blind multicounter automata (see [19] for
more information). Hence, our result is a generalization of various semilinearity
results about these types of automata.

Third, we show that every language accepted by a valence automaton over a
torsion group has a semilinear Parikh image. On the one hand, this is particularly
interesting because of a result by Render [16], which states that for every monoid
M , the languages accepted by valence automata over M either (1) coincide with
the regular languages, (2) contain the blind one-counter languages, (3) contain
the partially blind one-counter languages, or (4) are those accepted by valence
automata over an infinite torsion group (which is not locally finite). Hence, our
result establishes a strong language theoretic property in the fourth case and
thus contributes to completing the picture of language classes that can arise
from valence automata.

On the other hand, Lohrey and Steinberg [15] have used the fact that for
certain groups, valence automata accept only semilinear languages (in different
terms, however) to obtain decidability of the rational subset membership prob-
lem. However, their procedures require that the semilinear representation can be
obtained effectively. Since there are torsion groups where even the word problem
is undecidable [1], our result yields examples of groups that have the semilin-
earity property but which do not permit the computation of a corresponding
representation. Our proof is based on well-quasi-orderings (see, e.g., [11]).

c66c2006 2013-06-17 14:52:26 +0200

2 Basic notions

In this section, we will fix some notation and introduce basic concepts.
A monoid is a set M together with an associative operation and a neutral

element. Unless defined otherwise, we will denote the neutral element of a monoid
by 1 and its operation by juxtaposition. That is, for a monoid M and elements
a, b ∈M , ab ∈M is their product. In each monoid M , we have the submonoids
R(M) = {a ∈ M | ∃b ∈ M : ab = 1} and, L(M) = {a ∈ M | ∃b ∈ M : ba = 1}.
When using a monoid M as part of a control mechanism, the subset J(M) =
{a ∈M | ∃b, c ∈M : bac = 1} plays an important role1. A subgroup of a monoid
is a subset that is closed under the operation and is a group.

For an alphabet X, we will write X∗ for the set of words over X. The empty
word is denoted by λ ∈ X∗. Given alphabets X and Y , subsets of X∗ and
X∗ × Y ∗ are called languages and transductions, respectively. A family is a set
of languages that is closed under isomorphism and contains at least one non-
trivial member. For a transduction T ⊆ X∗ × Y ∗ and a language L ⊆ X∗, we
write T (L) = {v ∈ Y ∗ | ∃u ∈ L : (u, v) ∈ T}. For any finite subset S ⊆ M of a
monoid, let XS be an alphabet in bijection with S. Let ϕS : X∗S → M be the
morphism extending this bijection. Then the set {w ∈ X∗S | ϕS(w) = 1} is called
the identity language of M with respect to S.

Let F be a family of languages. An F-grammar is a quadrupleG = (N,T, P, S)
where N and T are disjoint alphabets and S ∈ N . P is a finite set of pairs
(A,M) with A ∈ N and M ⊆ (N ∪ T)∗, M ∈ F . A pair (A,M) ∈ P will also
be denoted by A → M . We write x ⇒G y if x = uAv and y = uwv for some
u, v, w ∈ (N ∪ T)∗ and (A,M) ∈ P with w ∈ M . The language generated by
G is L(G) = {w ∈ T ∗ | S ⇒∗G w}. Languages generated by F-grammars are
called algebraic over F . The family of all languages that are algebraic over F
is called the algebraic extension of F . The algebraic extension of the family of
finite languages is denoted CF, its members are called context-free.

Given an alphabet X, we write X⊕ for the set of maps α : X → N. Elements
of X⊕ are called multisets. By way of pointwise addition, written α+β, X⊕ is a
monoid. The Parikh mapping is the mapping Ψ : X∗ → X⊕ such that Ψ(w)(x)
is the number of occurrences of x in w for every w ∈ X∗ and x ∈ X.

Let A be a (not necessarily finite) set of symbols and R ⊆ A∗ × A∗. The
pair (A,R) is called a (monoid) presentation. The smallest congruence of A∗

containing R is denoted by ≡R and we will write [w]R for the congruence class
of w ∈ A∗. The monoid presented by (A,R) is defined as A∗/≡R. Note that since
we did not impose a finiteness restriction on A, every monoid has a presentation.
By B, we denote the monoid presented by (A,R) withA = {x, x̄} andR = (xx̄, λ)
and called bicyclic monoid. The elements [x]R and [x̄]R are called its positive and
negative generator, respectively. The set D1 of all w ∈ {x, x̄}∗ with [w]R = [λ]R
is called the Dyck language. The group of integers is denoted Z. We call 1 ∈ Z
its positive and −1 ∈ Z its negative generator.

1 Note that R(M), L(M), and J(M) are the R-, L-, and J -class, respectively, of the
identity and hence are important concepts in the theory of semigroups [7].

c66c2006 2013-06-17 14:52:26 +0200

Let M be a monoid. An automaton over M is a tuple A = (Q,M,E, q0, F),
in which Q is a finite set of states, E is a finite subset of Q×M×Q called the set
of edges, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. The step
relation ⇒A of A is a binary relation on Q×M , for which (p, a)⇒A (q, b) if and
only if there is an edge (p, c, q) such that b = ac. The set generated by A is then
S(A) = {a ∈M | ∃q ∈ F : (q0, 1)⇒∗A (q, a)}. A set R ⊆M is called rational if it
can be written as R = S(A) for some automaton A over M . Rational languages
are also called regular, the corresponding class is denoted REG. A class C for
which L ∈ C implies T (L) ∈ C for rational transductions T is called a full trio.

For n ∈ N and α ∈ X⊕, we use nα to denote α + · · · + α (n summands).
A subset S ⊆ X⊕ is linear if there are elements α0, . . . , αn such that S =
{α0 +

∑n
i=1miαi | mi ∈ N, 1 ≤ i ≤ n}. A set S ⊆ C is called semilinear if it

is a finite union of linear sets. In slight abuse of terminology, we will sometimes
call a language L semilinear if the set Ψ(L) is semilinear.

A valence automaton over M is an automaton A over X∗ ×M , where X
is an alphabet. Instead of A = (Q,X∗ ×M,E, q0, F), we then also write A =
(Q,X,M,E, q0, F) and for an edge (p, (w,m), q) ∈ E, we also write (p, w,m, q).
The language accepted by A is defined as L(A) = {w ∈ X∗ | (w, 1) ∈ S(A)}. The
class of languages accepted by valence automata over M is denoted by VA(M).
It is well-known that VA(M) is the smallest full trio containing every identity
language of M (see, for example, [9]).

A graph is a pair Γ = (V,E) where V is a finite set and E ⊆ {S ⊆ V |
1 ≤ |S| ≤ 2}. The elements of V are called vertices and those of E are called
edges. If {v} ∈ E for some v ∈ V , then v is called a looped vertex, otherwise it
is unlooped. A subgraph of Γ is a graph (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. Such
a subgraph is called induced (by V ′) if E′ = {S ∈ E | S ⊆ V ′}, i.e. E′ contains
all edges from E incident to vertices in V ′. By Γ \ {v}, for v ∈ V , we denote
the subgraph of Γ induced by V \ {v}. Given a graph Γ = (V,E), its underlying
loop-free graph is Γ ′ = (V,E′) with E′ = E ∩ {S ⊆ V | |S| = 2}. For a vertex
v ∈ V , the elements of N(v) = {w ∈ V | {v, w} ∈ E} are called neighbors of v.
Moreover, a clique is a graph in which any two distinct vertices are adjacent. A
simple path of length n is a sequence x1, . . . , xn of pairwise distinct vertices such
that {xi, xi+1} ∈ E for 1 ≤ i < n. If, in addition, we have {xn, x1} ∈ E, it is
called a cycle. Such a cycle is called induced if {xi, xj} ∈ E implies |i− j| = 1 or
{i, j} = {1, n}. A loop-free graph Γ = (V,E) is chordal if it does not contain an
induced cycle of length ≥ 4. It is well-known that every chordal graph contains a
vertex whose neighborhood is a clique [3]. By C4 and P4, we denote the cycle of
length 4 and the simple path of length 4, respectively. A loop-free graph is called
a transitive forest if it is the disjoint union of comparability graphs of rooted
trees. A result by Wolk [17] states that a loop-free graph is a transitive forest if
and only if it contains neither C4 nor P4 as an induced subgraph.

Let Γ = (V,E) be a loop-free graph and Mv a monoid for each v ∈ V with
a presentation (Av, Rv) such that the Av are pairwise disjoint. Then the graph
product M = M(Γ, (Mv)v∈V) is the monoid given by the presentation (A,R),
where A =

⋃
v∈V Av and R = {(ab, ba) | a ∈ Av, b ∈ Aw, {v, w} ∈ E}∪

⋃
v∈V Rv.

c66c2006 2013-06-17 14:52:26 +0200

Note that for each v ∈ V , there is a map ϕv : M → Mv such that ϕv is the
identity map on Mv. When V = {0, 1} and E = ∅, we also write M0 ∗M1 for M
and call this the free product of M0 and M1. Given a subset U ⊆ V , we write
M�U for the product M(Γ ′, (Mv)v∈U), where Γ ′ is the subgraph induced by U .

Let Γ = (V,E) be a (not necessarily loop-free) graph. Furthermore, for each
v ∈ V , let Mv be a copy of B if v is an unlooped vertex and a copy of Z if
v is looped. If Γ− is obtained from Γ by removing all loops, we write MΓ for
the graph product M(Γ−, (Mv)v∈V). For information on valence automata over
monoids MΓ , see [19]. For i ∈ {0, 1}, let Mi be a monoid and let ϕi : N → Mi

be an injective morphism. Let ≡ be the smallest congruence in M0 ∗M1 such
that ϕ0(a) ≡ ϕ1(a) for every a ∈ N . Then the monoid (M0 ∗M1)/ ≡ is denoted
by M0 ∗N M1 and called a free product with amalgamation.

3 Auxiliary Results

In this section, we present auxiliary results that are used in later sections. In
the following, we will call a monoid M an FRI-monoid (or say that M has the
FRI-property) if for every finitely generated submonoid N of M , the set R(N)
is finite. In [16] and independently in [18], the following was shown.

Theorem 1. VA(M) = REG if and only if M is an FRI-monoid.

The first lemma states a well-known fact from semigroup theory.

Lemma 1. For each monoid M , exactly one of the following holds: Either J(M)
is a group or M contains a copy of B as a submonoid.

We will employ a result by van Leeuwen [12] stating that semilinearity of all
languages is preserved by building the algebraic extension of a language family.

Theorem 2. Let F be a family of semilinear languages. Then every language
that is algebraic over F is also semilinear.

In light of the previous theorem, the following implies that the class of
monoids M for which VA(M) contains only semilinear languages is closed under
taking free products with amalgamation over a finite identified subgroup that
contains the identity of each factor. In the case where the factors are residually
finite groups, this was already shown in [15, Lemma 8] (however, for a more
general operation than free products with amalgamation). The following also
implies that if VA(Mi) contains only context-free languages for i ∈ {0, 1}, then
this is also true for VA(M0 ∗F M1).

Theorem 3. For each i ∈ {0, 1}, let Mi be a finitely generated monoid and F
be a subgroup that contains Mi’s identity. Every language in VA(M0 ∗F M1) is
algebraic over VA(M0) ∪ VA(M1).

Proof. Since the algebraic extension of a full trio is again a full trio, it suffices
to show that with respect to some generating set S ⊆ M0 ∗F M1, the identity
language of M0 ∗F M1 is algebraic over VA(M0) ∪ VA(M1).

c66c2006 2013-06-17 14:52:26 +0200

For i ∈ {0, 1}, let Si ⊆Mi be a finite generating set for Mi such that F ⊆ Si.
Furthermore, let Xi be an alphabet in bijection with Si and let ϕi : X∗i →Mi be
the morphism extending this bijection. Moreover, let Yi ⊆ Xi be the subset with
ϕi(Yi) = F . Let ψi : Mi → M0 ∗F M1 be the canonical morphism. Since F is a
subgroup of M0 and M1, ψ0 and ψ1 are injective (see e.g. [7, Theorem 8.6.1]).
Let X = X0 ∪X1 and let ϕ : X∗ →M0 ∗F M1 be the morphism extending ψ0ϕ0

and ψ1ϕ1. Then the identity language of M0 ∗F M1 is ϕ−1(1) and we shall prove
the theorem by showing that ϕ−1(1) is algebraic over VA(M0)∪VA(M1). We will
make use of the following fact about free products with amalgamation of monoids
with a finite identified subgroup. Let s1, . . . , sn, s

′
1, . . . , s

′
m ∈ (X∗0 \ ϕ−10 (F)) ∪

(X∗1 \ ϕ−11 (F)), such that sj ∈ X∗i if and only if sj+1 ∈ X∗1−i for 1 ≤ j < n,
i ∈ {0, 1} and s′j ∈ X∗i if and only if s′j+1 ∈ X∗1−i for 1 ≤ j < m, i ∈ {0, 1}. Then
the equality ϕ(s1 · · · sn) = ϕ(s′1 · · · s′m) implies n = m. A stronger statement was
shown in [14, Lemma 10]. We will refer to this as the syllable property.

For each i ∈ {0, 1} and f ∈ F , we define Li,f = ϕ−1i (f) and write yf for
the symbol in Yi with ϕi(yf) = f−1. Then clearly Li,1 ∈ VA(Mi). Furthermore,
since Li,f = {w ∈ X∗i | yfw ∈ Li,1}, (here we again use that F is a group) we
can obtain Li,f from Li,1 by a rational transduction and hence Li,f ∈ VA(Mi).

Let F = VA(M0)∪VA(M1). Since for each F-grammar G, it is clearly possible
to construct an F-grammar G′ such that L(G′) consists of all sentential forms
of G, it suffices to construct an F-grammar G = (N,T, P, S) with N ∪ T = X
and S ⇒∗G w if and only if ϕ(w) = 1 for w ∈ X∗. We construct G = (N,T, P, S)
as follows. Let N = Y0 ∪ Y1 and T = (X0 ∪ X1) \ (Y0 ∪ Y1). As productions,
we have y → L1−i,f for each y ∈ Yi where f = ϕi(y). Since 1 ∈ F , we have an
ei ∈ Yi with ϕi(ei) = 1. As the start symbol, we choose S = e0. We claim that
for w ∈ X∗, we have S ⇒∗G w if and only if ϕ(w) = 1.

The “only if” is clear. Let w ∈ X∗ with ϕ(w) = 1. Write w = w1 · · ·wn such
that wj ∈ X∗0∪X∗1 for all 1 ≤ j ≤ n such that wj ∈ X∗i if and only if wj+1 ∈ X∗1−i
for i ∈ {0, 1} and 1 ≤ j < n. We show by induction on n that S ⇒∗G w. For
n ≤ 1, we have w ∈ X∗i for some i ∈ {0, 1}. Since 1 = ϕ(w) = ψi(ϕi(w)) and ψi

is injective, we have ϕi(w) = 1 and hence w ∈ Li,1. This means S = e0 ⇒G w
or S = e0 ⇒G e1 ⇒G w, depending on whether i = 1 or i = 0.

Now let n ≥ 2. We claim that there is a 1 ≤ j ≤ n with ϕ(wj) ∈ F . Indeed,
if ϕ(wj) /∈ F for all 1 ≤ j ≤ n and since ϕ(w1 · · ·wn) = 1 = ϕ(λ), the syllable
property implies n = 0, against our assumption. Hence, let f = ϕ(wj) ∈ F .
Furthermore, let wj ∈ X∗i and choose y ∈ Y1−i so that ϕ1−i(y) = f . Then
ψi(ϕi(wj)) = ϕ(wj) = f and the injectivity of ψi yields ϕi(wj) = f . Hence,
wj ∈ Li,f and thus w′ = w1 · · ·wj−1ywj+1 · · ·wn ⇒G w. For w′ the induction
hypothesis holds, meaning S ⇒∗G w′ and thus S ⇒∗G w. ut

4 Context-Freeness

In this section, we are concerned with the context-freeness of languages accepted
by valence automata over graph products. The first lemma is a simple observation
and we will not provide a proof. In the case of groups, it appeared in [5].

c66c2006 2013-06-17 14:52:26 +0200

Lemma 2. Let Γ = (V,E) and M = M(Γ, (Mv)v∈V) be a graph product. Then
for each v ∈ V , we have M ∼= (M�V \{v}) ∗M�N(v)

(M�N(v) ×Mv).

The following is a result by Lohrey and Sénizergues [13].

Theorem 4. Let Gv be a non-trivial group for each v ∈ V . Then M(Γ, (Gv)v∈V)
is virtually free if and only if (1) for each v ∈ V , Gv is virtually free, (2) if Gv

and Gw are infinite and v 6= w, then {v, w} /∈ E, (3) if Gv is infinite, Gu and
Gw are finite and {v, u}, {v, w} ∈ E, then {u,w} ∈ E, and (4) Γ is chordal.

Aside from Theorem 3, the following is the key tool to prove our result on
context-freeness. We call a monoid M context-free if VA(M) ⊆ CF.

Lemma 3. The direct product of monoids M0 and M1 is context-free if and only
if for some i ∈ {0, 1}, Mi is context-free and M1−i is an FRI-monoid.

Proof. Suppose Mi is context-free and M1−i is an FRI-monoid. Then each lan-
guage L ∈ VA(Mi×M1−i) is contained in VA(Mi×N) for some finitely generated
submonoid N of M1−i. Since M1−i is an FRI-monoid, N has finitely many right-
invertible elements and hence J(N) is a finite group. Since no element outside
of J(N) can appear in a product yielding the identity, we may assume that
L ∈ VA(Mi × J(N)). This means, however, that L can be accepted by a valence
automaton over Mi by keeping the right component of the storage monoid in
the state of the automaton. Hence, L ∈ VA(Mi) is context-free.

Suppose VA(M0×M1) ⊆ CF. Then certainly VA(Mi) ⊆ CF for each i ∈ {0, 1}.
This means we have to show that at least one of the monoids M0 and M1 is an
FRI-monoid and thus, toward a contradiction, assume that none of them is.2

By Lemma 1, for each i, either J(Mi) is a subgroup of Mi or Mi contains a
copy of B as a submonoid. Since every infinite virtually free group contains an
element of infinite order, we have that for each i, either (1) J(Mi) is an infinite
group and hence contains a copy of Z or (2) Mi contains a copy of B. In any case,
VA(M0 ×M1) contains {anbmcndm | n,m ≥ 0}, which is not context-free. ut

We are now ready to prove our main result on context-freeness. Since for a
graph product M = M(Γ, (Mv)v∈V), there is a morphism ϕv : M →Mv for each
v ∈ V that restricts to the identity on Mv, we have J(M) ∩Mv = J(Mv): While
the inclusion “⊇” is true for any submonoid, given b ∈ J(M)∩Mv with abc = 1,
a, c ∈ M , we also have ϕv(a)bϕv(c) = ϕv(abc) = 1 and hence b ∈ J(Mv). This
means no element of Mv \ J(Mv) can appear in a product yielding the identity.
In particular, removing a vertex v with J(Mv) = {1} will not change VA(M).
Hence, our requirement that J(Mv) 6= {1} is not a serious restriction.

Theorem 5. Let Γ = (V,E) and let J(Mv) 6= {1} for any v ∈ V . M =
M(Γ, (Mv)v∈V) is context-free if and only if
(1) for each v ∈ V , Mv is context-free,

2 In the full version, we have a second proof for the fact that VA(M0 ×M1) contains
non-context-free languages in this case. It is elementary in the sense that it does not
invoke the fact that context-free groups are virtually free.

c66c2006 2013-06-17 14:52:26 +0200

(2) if Mv and Mw are not FRI-monoids and v 6= w, then {v, w} /∈ E,
(3) if Mv is not an FRI-monoid, Mu and Mw are FRI-monoids and {v, u}, {v, w} ∈

E, then {u,w} ∈ E, and
(4) the graph Γ is chordal.

Proof. First, we show that conditions (1)–(4) are necessary. For (1), this is im-
mediate and for (2), this follows from Lemma 3. If (3) is violated then for some
u, v, w ∈ V , Mv × (Mu ∗ Mw) is a submonoid of M such that Mu and Mw

are FRI-monoids and Mv is not. Since Mu and Mw contain non-trivial (finite)
subgroups, Mu ∗Mw contains an infinite group and is thus not an FRI-monoid,
meaning Mv × (Mu ∗Mw) is not context-free by Lemma 3.

Suppose (4) is violated for context-free M . By (2) and (3), any induced
cycle of length at least four involves only vertices with FRI-monoids. Each of
these, however, contains a non-trivial finite subgroup. This means M contains an
induced cycle graph product of non-trivial finite groups, which is not virtually
free by Theorem 4 and hence has a non-context-free identity language.

In order to prove the other direction, we note that VA(M) ⊆ CF follows if
VA(M ′) ⊆ CF for every finitely generated submonoid M ′ ⊆M . Since every such
submonoid is contained in a graph product N = M(Γ, (Nv)v∈V) where each Nv

is a finitely generated submonoid of Mv, it suffices to show that for such graph
products, we have VA(N) ⊆ CF. This means whenever Mv is an FRI-monoid, Nv

has finitely many right-invertible elements. Moreover, since Nv ∩ J(N) = J(Nv),
no element of Nv \ J(Nv) can appear in a product yielding the identity. Hence,
if Nv is generated by S ⊆ Nv, replacing Nv by the submonoid generated by
S ∩ J(Nv) does not change the identity languages of the graph product. Thus,
we assume that each Nv is generated by a finite subset of J(Nv). Therefore,
whenever Mv is an FRI-monoid, Nv is a finite group.

We first establish sufficiency in the case that Mv is an FRI-monoid for every
v ∈ V and proceed by induction on |V |. This means that Nv is a finite group
for every v ∈ V . Since Γ is chordal, there is a v ∈ V whose neighborhood is a
clique. This means N�N(v) is a finite group and hence N�N(v)×Nv context-free
by Lemma 3. Since N�V \{v} is context-free by induction, Theorem 3 and Lemma
2 imply that N is context-free.

To complete the proof, suppose there are n vertices v ∈ V for which Mv is not
an FRI-monoid. We proceed by induction on n. The case n = 0 is treated above.
Choose v ∈ V such that Mv is not an FRI-monoid. For each u ∈ N(v), Mu

is an FRI-monoid by condition (2), and hence Nu a finite group. Furthermore,
condition (3) guarantees that N(v) is a clique and hence N�N(v) is a finite group.
As above, Theorem 3 and Lemma 2 imply that N is context-free. ut

5 Semilinearity

A well-known theorem by Chomsky and Schützenberger [2] was re-proved and
phrased in terms of valence automata in the following way by Kambites [9].

Theorem 6. VA(Z ∗ Z) = CF.

c66c2006 2013-06-17 14:52:26 +0200

Using standard methods of formal language theory, one can show:

Lemma 4 ([15,19]). If every language in VA(M) is semilinear, then so is every
language in VA(M × Z).

The following is a consequence of the results of Greibach [6] and Jantzen [8].

Lemma 5. VA(B× B) contains a non-semilinear language.

The next result also appears in [19], where, however, it was not made explicit
that the language is unary. A proof can be found in the full version.

Lemma 6. If Γ ’s underlying loop-free graph contains P4 as an induced sub-
graph, then VA(MΓ) contains an undecidable unary language.

We are now ready to show the first main result of this section. Note that
the first condition of the following theorem is similar to conditions (2) and (3)
in Theorem 5 (and 4): we have looped vertices instead of FRI-monoids (finite
groups) and unlooped vertices instead of non-FRI-monoids (infinite groups).

Theorem 7. All languages in VA(MΓ) are semilinear if and only if (1) Γ con-
tains neither nor as an induced subgraph and (2) Γ ’s underlying
loop-free graph contains neither C4 nor P4 as an induced subgraph.

Proof. First, observe that if VA(Ni) ⊆ VA(Mi) for i = 0, 1 then VA(N0 ×N1) ⊆
VA(M0×M1). Let Γ = (V,E). Suppose conditions 1 and 2 hold. We proceed by
induction on |V |. 2 implies that Γ ’s underlying loop-free graph is a transitive
forest. If Γ is not connected, then MΓ is a free product of graph products MΓ1

and MΓ2, for which VA(MΓi) contains only semilinear languages by induction.
Hence, by Theorems 2 and 3, every language in VA(MΓ) is semilinear. If Γ is
connected, there is a vertex v ∈ V that is adjacent to every vertex other than
itself. We distinguish two cases.

If v is a looped vertex, then VA(MΓ) = VA(Z×M(Γ \ {v})), which contains
only semilinear languages by induction and Lemma 4. If v is an unlooped vertex,
then by 1, V \ {v} induces a clique of looped vertices. Thus, MΓ ∼= B× Z|V |−1,
meaning VA(MΓ) contains only semilinear languages by Lemma 4.

We shall now prove the other direction. If Γ contains as an induced
subgraph, then VA(B × B) is included in VA(MΓ) and the former contains a
non-semilinear language by Lemma 5. If Γ contains , then MΓ contains
a copy of B×(Z∗Z) as a submonoid. By Theorem 6, we have VA(B) ⊆ VA(Z∗Z)
and hence the observation above implies VA(B× B) ⊆ VA(B× (Z ∗ Z)).

Suppose Γ ’s underlying loop-free graph contains C4 as an induced subgraph.
Since we have already shown that the presence of or as an induced
subgraph guarantees a non-semilinear language in VA(MΓ), we may assume
that all four participating vertices are looped. Hence, MΓ contains a copy of
(Z ∗Z)× (Z ∗Z). By Theorem 6 and the observation above, this means VA(B×
B) ⊆ VA(MΓ). Thus, VA(MΓ) contains non-semilinear languages. Finally, if
Γ ’s underlying loop-free graph contains P4 as an induced subgraph, Lemma 6
provides the existence of an undecidable unary language in VA(MΓ). Since such
a language cannot be semilinear, the lemma is proven. ut

c66c2006 2013-06-17 14:52:26 +0200

Torsion groups A torsion group is a group G in which for each g ∈ G,
there is a k ∈ N \ {0} with gk = 1. In the following, we show that for torsion
groups G, all languages in VA(G) are semilinear. The key ingredient in our proof
is showing that a certain set of multisets is upward closed with respect to a
well-quasi-ordering. A well-quasi-ordering on A is a reflexive transitive relation
≤ on A such that for every infinite sequence (an)n∈N, an ∈ A, there are indices
i < j with ai ≤ aj . We call a subset B ⊆ A upward closed if a ∈ B and a ≤ b
imply b ∈ B. A basic observation about well-quasi-ordered sets states that for
each upward closed set B ⊆ A, the set of its minimal elements is finite and B is
the set of those a ∈ A with m ≤ a for some minimal m ∈ B (see [11]).

Given multisets α, β ∈ X⊕ and k ∈ N, we write α ≡k β if α(x) ≡ β(x)
(mod k) for each x ∈ X. We write α ≤k β if α ≤ β and α ≡k β. Clearly, ≤k

is a well-quasi-ordering on X⊕: Since ≡k has finite index in X⊕, we find in any
infinite sequence α1, α2, . . . ∈ X⊕ an infinite subsequence α′1, α

′
2, . . . ∈ X⊕ of ≡k-

equivalent multisets. Furthermore, ≤ is well-known to be a well-quasi-ordering
and yields indices i < j with α′i ≤ α′j and hence α′i ≤k α

′
j . If S ⊆ X⊕ is upward

closed with respect to ≤k, we also say S is k-upward-closed. The observation
above means in particular that every k-upward-closed set is semilinear.

Theorem 8. For every torsion group G, the languages in VA(G) are semilinear.

Proof. Let G be a torsion group and K be accepted by the valence automaton
A = (Q,X,G,E, q0, F). We regard the finite set E as an alphabet and define
the automaton Â = (Q,E,G, Ê, q0, F) such that Ê = {(p, (p, w, g, q), g, q) |
(p, w, g, q) ∈ E}. Let K̂ = L(Â). Clearly, in order to prove Theorem 8, it suffices
to show that K̂ is semilinear.

For a word w ∈ E∗, w = (p1, x1, g1, q1) · · · (pn, xn, gn, qn), we write σ(w) for
the set {pi, qi | 1 ≤ i ≤ n}. w is called a p, q-computation if p1 = p, qn = q, and
qi = pi+1 for 1 ≤ i < n. A q, q-computation is also called a q-loop. Moreover, a
q-loop w is called simple if qi 6= qj for i 6= j.

For each S ⊆ Q, let FS be the set of all words w ∈ E∗ with σ(w) = S and for
which there is a q ∈ F such that w is a q0, q-computation and |w| ≤ |Q|·(2|Q|+1).
Let LS ⊆ E∗ consist of all w ∈ E∗ such that w is a simple q-loop for some q ∈ S
and σ(w) ⊆ S. Note that LS is finite, which allows us to define the alphabet
YS so as to be in bijection with LS . Let ϕ : YS → LS be this bijection and let
ϕ̃ : Y ⊕S → E⊕ be the morphism with ϕ̃(y) = Ψ(ϕ(y)) for y ∈ YS .

For p, q-computations v, w ∈ E∗, we write v ` w if σ(v) = σ(w) and w = rst
such that r is a p, q′-computation, s is a simple q′-loop, t is a q′, q-computation,
and v = rt. Moreover, let � be the reflexive transitive closure of `. In other
words, v � w means that w can be obtained from v by inserting simple q-loops
for states q ∈ Q without increasing the set of visited states. For each v ∈ FS , we
define

Uv = {µ ∈ Y ⊕S | ∃w ∈ K̂ : v � w, Ψ(w) = Ψ(v) + ϕ̃(µ)}
(note that there is only one S ⊆ Q with v ∈ FS). We claim that

Ψ(K̂) =
⋃
S⊆Q

⋃
v∈FS

Ψ(v) + ϕ̃(Uv). (∗)

c66c2006 2013-06-17 14:52:26 +0200

The inclusion “⊇” holds by definition. For the other direction, we show by induc-
tion on n that for any qf ∈ F and any q0, qf -computation w ∈ E∗, |w| = n, there
is a v ∈ FS for S = σ(w) and a µ ∈ Y ⊕S with v � w and Ψ(w) = Ψ(v) + ϕ̃(µ).
If |w| ≤ |Q| · (2|Q| + 1), this is satisfied by v = w and µ = 0. Therefore, as-
sume |w| > |Q| · (2|Q| + 1) and write w = (p1, x1, g1, q1) · · · (pn, xn, gn, qn). Since
n = |w| > |Q| · (2|Q|+ 1), there is a q ∈ Q that appears more than 2|Q|+ 1 times
in the sequence q1, . . . , qn. Therefore, we can write

w = w0(p′1, x
′
1, g
′
1, q)w1 · · · (p′m, x′m, g′m, q)wm

withm > 2|Q|+1. Observe that for each 1 ≤ i < m, the word wi(p
′
i+1, x

′
i+1, g

′
i+1, q)

is a q-loop. Since m − 1 > 2|Q|, there are indices 1 ≤ i < j < m with
σ(wi(p

′
i+1, x

′
i+1, g

′
i+1, q)) = σ(wj(p

′
j+1, x

′
j+1, g

′
j+1, q)). Furthermore, we can find

a simple q-loop ` as a subword of wi(p
′
i+1, x

′
i+1, g

′
i+1, q). This means for the

word w′ ∈ E∗, which is obtained from w by removing `, we have σ(w′) = σ(w)
and thus w′ ` w. Moreover, with S = σ(w) and ϕ(y) = `, y ∈ YS , we have
Ψ(w) = Ψ(w′) + ϕ̃(y). Finally, since |w′| < |w|, the induction hypothesis guar-
antees a v ∈ FS and a µ ∈ Y ⊕S with v � w′ and Ψ(w′) = Ψ(v) + ϕ̃(µ). We have
v � w and Ψ(w) = Ψ(v) + ϕ̃(µ + y) and the induction is complete. In order
to prove “⊆” of (∗), suppose w ∈ K̂. Since w is a q0, qf -computation for some
qf ∈ F , we can find the above v ∈ FS , S = σ(w), and µ ∈ Y ⊕S with v � w and
Ψ(w) = Ψ(v) + ϕ̃(µ). This means µ ∈ Uv and hence Ψ(w) is contained in the
right hand side of (∗). This proves (∗).

By (∗) and since FS is finite for each S ⊆ Q, it suffices to show that Uv is
semilinear for each v ∈ FS and S ⊆ Q. Let γ : E∗ → G be the morphism with
γ((p, x, g, q)) = g for (p, x, g, q) ∈ E. Since G is a torsion group, the finiteness of
LS permits us to choose a k ∈ N such that γ(`)k = 1 for any ` ∈ LS . We claim
that Uv is k-upward-closed. It suffices to show that for µ ∈ Uv, we also have
µ+k ·y ∈ Uv for any y ∈ YS . Hence, let µ ∈ Uv with w ∈ K̂ such that v � w and
Ψ(w) = Ψ(v)+ ϕ̃(µ) and let µ′ = µ+k ·y. Let ` = ϕ(y) ∈ LS be a simple q-loop.
Then q ∈ S and since σ(w) = σ(v) = S, we can write w = r(q1, x1, g1, q)s,
r, s ∈ E∗. The fact that w ∈ K̂ means in particular γ(w) = 1. Thus, the word
w′ = r(q1, x1, g1, q)`

ks is a q0, qf -computation for some qf ∈ F with γ(w′) = 1

since γ(`)k = 1. This means w′ ∈ K̂ and Ψ(w′) = Ψ(w)+k ·Ψ(`) = Ψ(v)+ ϕ̃(µ+
k · y). We also have σ(`) ⊆ S and hence v � w � w′. Thus, µ′ = µ+ k · y ∈ Uv.
This proves Uv to be k-upward-closed and thus semilinear. ut

Render [16] proved that for every monoid M , the class VA(M) either (1) co-
incides with the regular languages, (2) contains the blind one-counter languages,
(3) contains the partially blind one-counter languages, or (4) consists of those
accepted by valence automata over an infinite torsion group. Hence, we obtain:

Corollary 1. For each monoid M , at least one of the following holds:
(1) VA(M) contains only semilinear languages. (2) VA(M) contains the lan-
guages of blind one-counter automata. (3) VA(M) contains the languages of par-
tially blind one-counter automata.

There are torsion groups with an undecidable word problem [1], hence:

c66c2006 2013-06-17 14:52:26 +0200

Corollary 2. There is a group G with an undecidable word problem such that
all languages in VA(G) are semilinear.

As another application, we can show that the one-sided Dyck language is not
accepted by any valence automaton over G× Zn where G is a torsion group.

Corollary 3. For torsion groups G and n ∈ N, we have D1 /∈ VA(G× Zn).

Acknowledgements We are indebted to one of the anonymous referees, who
pointed out a misuse of terminology in a previous version of Theorem 3.

References

1. Adian, S.I.: The Burnside problem and related topics. Russian Mathematical Sur-
veys 65(5), 805–855 (2010)

2. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages.
In: Computer Programming and Formal Systems, pp. 118–161. North-Holland,
Amsterdam (1963)

3. Dirac, G.: On rigid circuit graphs. Abhandlungen aus dem Mathematischen Semi-
nar der Universität Hamburg 25(1-2), 71–76 (1961)

4. Gilman, R.H.: Formal Languages and Infinite Groups, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 25, pp. 27–51. American
Mathematical Society (1996)

5. Green, R.E.: Graph Products of Groups. Ph.D. thesis, University of Leeds (1990)
6. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter ma-

chines. Theoretical Computer Science 7(3), 311–324 (1978)
7. Howie, J.M.: Fundamentals of Semigroup Theory. Clarendon Press, Oxford (1995)
8. Jantzen, M.: Eigenschaften von Petrinetzsprachen. Ph.D. thesis, Universität Ham-

burg (1979)
9. Kambites, M.: Formal languages and groups as memory. Communications in Al-

gebra 37, 193–208 (2009)
10. Kopczynski, E., To, A.: Parikh images of grammars: Complexity and applications.

In: Proceedings of LICS 2010. pp. 80–89 (2010)
11. Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept.

Journal of Combinatorial Theory, Series A 13(3), 297–305 (1972)
12. van Leeuwen, J.: A generalisation of Parikh’s theorem in formal language theory.

In: ICALP 1974, LNCS, vol. 14, pp. 17–26. Springer (1974)
13. Lohrey, M., Sénizergues, G.: When is a graph product of groups virtually-free?

Communications in Algebra 35(2), 617–621 (2007)
14. Lohrey, M., Sénizergues, G.: Rational subsets in HNN-extensions and amalgamated

products. Internat. J. Algebra Comput. 18(01), 111–163 (2008)
15. Lohrey, M., Steinberg, B.: The submonoid and rational subset membership prob-

lems for graph groups. J. Algebra 320(2), 728–755 (2008)
16. Render, E.: Rational Monoid and Semigroup Automata. Ph.D. thesis, University

of Manchester (2010)
17. Wolk, E.S.: A note on ”the comparability graph of a tree”. Proceedings of the

American Mathematical Society 16(1), 17–20 (1965)
18. Zetzsche, G.: On the capabilities of grammars, automata, and transducers con-

trolled by monoids. In: ICALP 2011. LNCS, vol. 6756, pp. 222–233. Springer (2011)
19. Zetzsche, G.: Silent transitions in automata with storage (2013), to appear in

Proceedings of ICALP 2013. Available at http://arxiv.org/abs/1302.3798.

c66c2006 2013-06-17 14:52:26 +0200

http://arxiv.org/abs/1302.3798

	Semilinearity and Context-Freeness of Languages Accepted by Valence Automata

