Of stacks (of stacks (...) with blind counters) with blind counters

Georg Zetzsche

Technische Universität Kaiserslautern

Algorithmics on Infinite State Systems 2014

Georg Zetzsche (TU KL)

Valence Automata

AISS 2014 1 / 22

(4) (3) (4) (4) (4)

< □ > < □ > < □ > < □ > < □ >

$$L = \{ww^{\mathsf{rev}} \mid w \in \{a, b\}^*\}$$

< □ > < □ > < □ > < □ > < □ >

Georg Zetzsche (TU KL)

$$L = \{ww^{\mathsf{rev}} \mid w \in \{a, b\}^*\}$$

< □ > < □ > < □ > < □ > < □ >

Example (Blind counter automaton)

$$L = \{ww^{\mathsf{rev}} \mid w \in \{a, b\}^*\}$$

< □ > < □ > < □ > < □ > < □ >

Example (Blind counter automaton)

 $L = \{a^n b^n c^n \mid n \ge 0\}$

Example (Partially blind counter automaton)

Georg Zetzsche (TU KL)

< □ > < □ > < □ > < □ > < □ >

Example (Partially blind counter automaton)

 $L = \{w \in \{a, b\}^* \mid |p|_a \ge |p|_b \text{ for each prefix } p \text{ of } w\}$

Georg Zetzsche (TU KL)

< □ > < □ > < □ > < □ > < □ >

Automata models that extend finite automata by some storage mechanism:

- Pushdown automata
- Blind counter automata
- Partially blind counter automata
- Turing machines

Automata models that extend finite automata by some storage mechanism:

- Pushdown automata
- Blind counter automata
- Partially blind counter automata
- Turing machines

Each storage mechanism consists of:

- States: set S of states
- Operations: partial maps $\alpha_1, \ldots, \alpha_n \colon S \to S$

Model	States	Operations
Pushdown automata	<i>S</i> = Γ*	$push_a: w \mapsto wa, a \in \Gamma$ $pop_a: wa \mapsto w, a \in \Gamma$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Model	States	Operations
Pushdown automata	<i>S</i> = Γ*	$push_a: w \mapsto wa, a \in \Gamma$ $pop_a: wa \mapsto w, a \in \Gamma$
Blind counter automata	$S = \mathbb{Z}^n$	$inc_i: (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i + 1, \dots, x_n)$ $dec_i: (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i - 1, \dots, x_n)$

・ロト・西ト・モン・ビー シック

Model	States	Operations
Pushdown automata	<i>S</i> = Γ*	push _a : $w \mapsto wa, a \in \Gamma$ pop _a : $wa \mapsto w, a \in \Gamma$
Blind counter automata	$S = \mathbb{Z}^n$	$inc_i: (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i + 1, \dots, x_n)$ $dec_i: (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i - 1, \dots, x_n)$
Partially blind counter automata	$S = \mathbb{N}^n$	$inc_i \colon (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i + 1, \dots, x_n)$ $dec_i \colon (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i - 1, \dots, x_n)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Model	States	Operations
Pushdown automata	<i>S</i> = Γ*	$push_a: w \mapsto wa, a \in \Gamma$ $pop_a: wa \mapsto w, a \in \Gamma$
Blind counter automata	$S = \mathbb{Z}^n$	$inc_i: (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i + 1, \dots, x_n)$ $dec_i: (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i - 1, \dots, x_n)$
Partially blind counter automata	$S = \mathbb{N}^n$	$inc_i: (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i + 1, \dots, x_n)$ $dec_i: (x_1, \dots, x_n) \mapsto (x_1, \dots, x_i - 1, \dots, x_n)$

Observation

Here, a sequence β_1,\ldots,β_k of operations is valid if and only if

 $\beta_1 \circ \cdots \circ \beta_k = \mathsf{id}$

Definition

A monoid is

- a set *M* together with
- an associative binary operation $\cdot: M \times M \to M$ and
- a neutral element $1 \in M$ (a1 = 1a = a for any $a \in M$).

(4) (5) (4) (5)

Definition

A monoid is

- a set *M* together with
- an associative binary operation $\cdot: M \times M \to M$ and
- a neutral element $1 \in M$ (a1 = 1a = a for any $a \in M$).

Storage mechanisms as monoids

- Let S be a set of states and $\alpha_1, \ldots, \alpha_n \colon S \to S$ partial maps.
- The set of all compositions of $\alpha_1, \ldots, \alpha_n$ is a monoid M.
- The identity map is the neutral element of *M*.
- *M* is a decription of the storage mechanism.

(4) (3) (4) (4) (4)

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• • = • • =

Common generalization: Valence Automata

Valence automaton over M:

- Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.
- Run $q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$ is accepting for $w_1 \cdots w_n$ if
 - q_0 is the initial state,
 - q_n is a final state, and

(4) (3) (4) (4) (4)

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges $p \xrightarrow{w|m} q$, $w \in \Sigma^*$, $m \in M$.

• Run
$$q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$$
 is accepting for $w_1 \cdots w_n$ if

- q_0 is the initial state,
- *q_n* is a final state, and

$$m_1\cdots m_n=1.$$

• • = • • =

Common generalization: Valence Automata

Valence automaton over M:

• Finite automaton with edges
$$p \xrightarrow{w|m} q$$
, $w \in \Sigma^*$, $m \in M$.

• Run
$$q_0 \xrightarrow{w_1|m_1} q_1 \xrightarrow{w_2|m_2} \cdots \xrightarrow{w_n|m_n} q_n$$
 is accepting for $w_1 \cdots w_n$ if

$$q_0$$
 is the initial state,

$$q_n$$
 is a final state, and

$$m_1\cdots m_n=1.$$

Language class

VA(M) languages accepted by valence automata over M.

< □ > < □ > < □ > < □ > < □ > < □ >

Questions

• For which storage mechanisms can we avoid silent transitions?

Questions

- For which storage mechanisms can we avoid silent transitions?
- For which do we have semilinearity of all languages?

< ∃ > < ∃

Questions

- For which storage mechanisms can we avoid silent transitions?
- For which do we have semilinearity of all languages?
- For which is the language class, for example, Boolean closed?

Questions

- For which storage mechanisms can we avoid silent transitions?
- For which do we have semilinearity of all languages?
- For which is the language class, for example, Boolean closed?
- For which can we decide, for example, emptiness?

By graphs, we mean undirected graphs with loops allowed.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{\nu}, \bar{a}_{\nu} \mid \nu \in V\}$$

< □ > < 同 > < 回 > < 回 > < 回 >

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{v}, \bar{a}_{v} \mid v \in V\}$$
$$R_{\Gamma} = \{a_{v}\bar{a}_{v} = \varepsilon \mid v \in V\}$$

< □ > < 同 > < 回 > < 回 > < 回 >

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{v}, \bar{a}_{v} \mid v \in V\}$$
$$R_{\Gamma} = \{a_{v}\bar{a}_{v} = \varepsilon \mid v \in V\}$$
$$\cup \{xy = yx \mid x \in \{a_{u}, \bar{a}_{u}\}, y \in \{a_{v}, \bar{a}_{v}\}, \{u, v\} \in E\}$$

< □ > < 同 > < 回 > < 回 > < 回 >

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{v}, \bar{a}_{v} \mid v \in V\}$$

$$R_{\Gamma} = \{a_{v}\bar{a}_{v} = \varepsilon \mid v \in V\}$$

$$\cup \{xy = yx \mid x \in \{a_{u}, \bar{a}_{u}\}, y \in \{a_{v}, \bar{a}_{v}\}, \{u, v\} \in E\}$$

$$\mathbb{M}\Gamma = X_{\Gamma}^{*}/R_{\Gamma}$$

イロト イポト イヨト イヨト

By graphs, we mean undirected graphs with loops allowed. Let $\Gamma = (V, E)$ be a graph. Let

$$X_{\Gamma} = \{a_{v}, \bar{a}_{v} \mid v \in V\}$$

$$R_{\Gamma} = \{a_{v}\bar{a}_{v} = \varepsilon \mid v \in V\}$$

$$\cup \{xy = yx \mid x \in \{a_{u}, \bar{a}_{u}\}, y \in \{a_{v}, \bar{a}_{v}\}, \{u, v\} \in E\}$$

$$\mathbb{M}\Gamma = X_{\Gamma}^{*}/R_{\Gamma}$$

Intuition

- \mathbb{B} : bicyclic monoid, $\mathbb{B} = \{a, \bar{a}\}^* / \{a\bar{a} = \varepsilon\}$.
- \mathbb{Z} : group of integers
- $\bullet\,$ For each unlooped vertex, we have a copy of $\mathbb B$
- \bullet For each looped vertex, we have a copy of $\mathbb Z$
- $\bullet~\ensuremath{\mathbb{M}\Gamma}$ consists of sequences of such elements
- An edge between vertices means that elements can commute

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

Blind counter

<ロト <問ト < 目と < 目と

Blind counter

<ロト <問ト < 目と < 目と

 $\mathbb{B} * \mathbb{B} * \mathbb{B}$

<ロト <問ト < 目と < 目と

Blind counter

Blind counter

Pushdown

< □ > < □ > < □ > < □ > < □ >

Blind counter

Pushdown

< □ > < □ > < □ > < □ > < □ >

Blind counter

Pushdown

< □ > < □ > < □ > < □ > < □ >

Blind counter

Partially blind counter

Blind counter

Partially blind counter

Blind counter

Partially blind counter

Blind counter

A D N A B N A B N A B N

Partially blind counter

Blind counter

A D N A B N A B N A B N

Partially blind counter

Infinite tape (TM)

Georg Zetzsche (TU KL)

Valence Automata

▲ E ► E つくC AISS 2014 10/22

Blind counter

14 10/22

Silent Transitions

A transition that reads no input is called *silent transition* or ε -transition.

• • = • • =

Silent Transitions

A transition that reads no input is called *silent transition* or ε -transition.

Important problem

- When can silent transitions be eliminated?
- Without silent transitions, membership in NP.
- Elimination can be regarded as a precomputation.

< ∃ > <

Silent Transitions

A transition that reads no input is called *silent transition* or ε -transition.

Important problem

- When can silent transitions be eliminated?
- Without silent transitions, membership in NP.
- Elimination can be regarded as a precomputation.

Question

For which storage mechanisms can we avoid silent transitions?

★ ∃ ►

- Let Γ be a graph such that
 - any two looped vertices are adjacent,
 - no two unlooped vertices are adjacent.

・ 山 ・ ・ ・ ・ ・

< 157 ▶

< ∃ >

Theorem (Z., ICALP 2013)

- Let Γ be a graph such that
 - any two looped vertices are adjacent,
 - no two unlooped vertices are adjacent.

- Let Γ be a graph such that
 - any two looped vertices are adjacent,
 - no two unlooped vertices are adjacent.

Then the following conditions are equivalent:

- Silent transitions can be avoided over ML.
- Γ does not contain
 · · · · as an induced subgraph.

- Let Γ be a graph such that
 - any two looped vertices are adjacent,
 - no two unlooped vertices are adjacent.

Then the following conditions are equivalent:

- Silent transitions can be avoided over MF.
- Γ does not contain
 · · · · as an induced subgraph.

- Let Γ be a graph such that
 - any two looped vertices are adjacent,
 - no two unlooped vertices are adjacent.

Then the following conditions are equivalent:

- Silent transitions can be avoided over ML.
- Γ does not contain
 ··· ··· as an induced subgraph.
- $\mathbb{M}\Gamma \in StCtr$

Positive case

Definition (Stacked counters)

Let StCtr be the smallest class of monoids such that

- $1 \in StCtr$
- if $M \in StCtr$, then $M \times \mathbb{Z} \in StCtr$
- if $M \in StCtr$, then $M * \mathbb{B} \in StCtr$

(4) (3) (4) (4) (4)

Positive case

Definition (Stacked counters)

Let StCtr be the smallest class of monoids such that

- $1 \in StCtr$
- if $M \in StCtr$, then $M \times \mathbb{Z} \in StCtr$
- if $M \in StCtr$, then $M * \mathbb{B} \in StCtr$

Interpretation of StCtr

StCtr corresponds to the class of storage mechanisms obtained by

- adding a blind counter $(M \times \mathbb{Z})$:
 - States: (c, z), c an old state, $z \in \mathbb{Z}$.
 - Operations: old operations; increment, decrement for counter

Positive case

Definition (Stacked counters)

Let StCtr be the smallest class of monoids such that

- $1 \in StCtr$
- if $M \in \mathsf{StCtr}$, then $M \times \mathbb{Z} \in \mathsf{StCtr}$
- if $M \in StCtr$, then $M * \mathbb{B} \in StCtr$

Interpretation of StCtr

StCtr corresponds to the class of storage mechanisms obtained by

- adding a blind counter $(M \times \mathbb{Z})$:
 - States: (c, z), c an old state, $z \in \mathbb{Z}$.
 - Operations: old operations; increment, decrement for counter
- building stacks (M * B)
 - States: sequences $\Box c_1 \Box c_2 \Box \cdots \Box c_n$, c_i old states
 - Operations: push separator, pop if empty, manipulate topmost entry

イロト イポト イヨト イヨト

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

For which monoids M are all languages in VA(M) semilinear?

- Parikh's Theorem: Pushdown automata
- Ibarra + Greibach: Blind counter automata

• • = • • =

For which monoids M are all languages in VA(M) semilinear?

- Parikh's Theorem: Pushdown automata
- Ibarra + Greibach: Blind counter automata

Theorem (Buckheister, Z., MFCS 2013)

Let Γ be a graph. The following conditions are equivalent:

- All languages in VA(MΓ) are semilinear.
- Γ satisfies:

 - ② Γ, minus loops, is a transitive forest.

(4) (3) (4) (4) (4)

For which monoids M are all languages in VA(M) semilinear?

- Parikh's Theorem: Pushdown automata
- Ibarra + Greibach: Blind counter automata

Theorem (Buckheister, Z., MFCS 2013)

Let Γ be a graph. The following conditions are equivalent:

- All languages in VA(MΓ) are semilinear.
- Γ satisfies:

 - Ω Γ, minus loops, is a transitive forest.

For which monoids M are all languages in VA(M) semilinear?

- Parikh's Theorem: Pushdown automata
- Ibarra + Greibach: Blind counter automata

Theorem (Buckheister, Z., MFCS 2013)

Let Γ be a graph. The following conditions are equivalent:

- All languages in VA(MΓ) are semilinear.
- Γ satisfies:
 - C contains neither nor • as an induced subgraph and
 Γ, minus loops, is a transitive forest.
- $VA(M\Gamma) \subseteq VA(M)$ for some $M \in StCtr.$ (NP-membership!)

Algebraic extensions

Let \mathcal{F} be a language class. An \mathcal{F} -grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in \mathcal{F}$

• • = • • = •

Algebraic extensions

Let \mathcal{F} be a language class. An \mathcal{F} -grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in \mathcal{F}$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

A B A A B A

Algebraic extensions

Let \mathcal{F} be a language class. An \mathcal{F} -grammar G consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in \mathcal{F}$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

• Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Algebraic extensions

Let ${\mathcal F}$ be a language class. An ${\mathcal F}\mbox{-}grammar\;G$ consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in \mathcal{F}$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

- Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.
- Such languages are *algebraic over* \mathcal{F} , class denoted Alg (\mathcal{F}) .

(4) (5) (4) (5)

Algebraic extensions

Let ${\mathcal F}$ be a language class. An ${\mathcal F}\mbox{-}grammar\;G$ consists of

- Nonterminals N, terminals T, start symbol $S \in N$
- Productions $A \rightarrow L$ with $L \subseteq (N \cup T)^*$, $L \in \mathcal{F}$

 $uAv \Rightarrow uwv$ whenever $w \in L$.

- Generated language: $\{w \in T^* \mid S \Rightarrow^* w\}$.
- Such languages are *algebraic over* \mathcal{F} , class denoted Alg (\mathcal{F}) .

Presburger constraints

For each language class $\mathcal F,\,\mathsf{SLI}(\mathcal F)$ denotes the class of languages

 $h(L \cap \Psi^{-1}(S))$

for some $L \in \mathcal{F}$, a homomorphism h and a semilinear set S.

・ロト ・四ト ・ヨト ・ヨト

Hierarchy

 $F_0 = \text{finite languages}, \\$

$$G_i = Alg(F_i),$$
 $F_{i+1} = SLI(G_i),$ $F = \bigcup_{i \ge 0} F_i.$

< □ > < □ > < □ > < □ > < □ >

Hierarchy

 $F_0 = \text{finite languages}, \\$

$$G_i = Alg(F_i),$$
 $F_{i+1} = SLI(G_i),$ $F = \bigcup F_i.$

In particular: $G_0 = CF$.

i≥0

< □ > < □ > < □ > < □ > < □ >

Hierarchy

 $F_0 = \text{finite languages}, \\$

 $G_i = Alg(F_i),$ $F_{i+1} = SLI(G_i),$ $F = \bigcup_{i \ge 0} F_i.$

In particular: $G_0 = CF$.

 $F_0\subseteq G_0\subseteq F_1\subseteq G_1\subseteq \cdots\subseteq F$

イロト イポト イヨト イヨト 二日

Hierarchy

 $F_0 = finite \ languages,$

 $G_i = Alg(F_i),$ $F_{i+1} = SLI(G_i),$ $F = \bigcup F_i.$

In particular: $G_0 = CF$.

 $F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Theorem

 $\mathsf{VA}(\mathbb{B} * \mathbb{B} * M) = \mathsf{Alg}(\mathsf{VA}(M))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの
A hierarchy of language classes

Hierarchy

 $F_0 = finite \ languages,$

 $G_i = Alg(F_i),$ $F_{i+1} = SLI(G_i),$ $F = \bigcup F_i.$

In particular: $G_0 = CF$.

 $F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \cdots \subseteq F$

Theorem

 $VA(\mathbb{B} * \mathbb{B} * M) = Alg(VA(M)), \bigcup_{i \ge 0} VA(M \times \mathbb{Z}^i) = SLI(VA(M)).$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

A hierarchy of language classes

Hierarchy

 $F_0 = finite \ languages,$

$$G_i = Alg(F_i),$$
 $F_{i+1} = SLI(G_i),$ $F = \bigcup F_i.$

In particular: $G_0 = CF$.

 $F_0 \subseteq G_0 \subseteq F_1 \subseteq G_1 \subseteq \dots \subseteq F$

Theorem

$$VA(\mathbb{B} * \mathbb{B} * M) = Alg(VA(M)), \bigcup_{i \ge 0} VA(M \times \mathbb{Z}^i) = SLI(VA(M)).$$

Corollary

Stacked counter automata accept precisely the languages in F.

Georg Zetzsche (TU KL)

i≥0

 $u \leq v$: *u* is obtained from *v* by arbitrarily deleting symbols

 $u \leq v$: *u* is obtained from *v* by arbitrarily deleting symbols

Theorem (Higman)

For every language $L \subseteq X^*$, the set $L \downarrow = \{u \in X^* \mid u \le v \text{ for some } v \in L\}$ is regular.

 $u \leq v$: *u* is obtained from *v* by arbitrarily deleting symbols

Theorem (Higman)

For every language $L \subseteq X^*$, the set $L \downarrow = \{u \in X^* \mid u \le v \text{ for some } v \in L\}$ is regular.

Applications

• $L\downarrow$ is observed through a lossy channel.

• • = • • = •

 $u \leq v$: *u* is obtained from *v* by arbitrarily deleting symbols

Theorem (Higman)

For every language $L \subseteq X^*$, the set $L \downarrow = \{u \in X^* \mid u \le v \text{ for some } v \in L\}$ is regular.

Applications

• $L\downarrow$ is observed through a lossy channel. Decidability for REG!

• • = • • = •

 $u \leq v$: *u* is obtained from *v* by arbitrarily deleting symbols

Theorem (Higman)

For every language $L \subseteq X^*$, the set $L \downarrow = \{u \in X^* \mid u \le v \text{ for some } v \in L\}$ is regular.

Applications

- L↓ is observed through a lossy channel. Decidability for REG!
- Decide reversal boundedness. \triangle : up, ∇ : down; $(\triangle \nabla)^* \subseteq L \downarrow$?

.

 $u \leq v$: *u* is obtained from *v* by arbitrarily deleting symbols

Theorem (Higman)

For every language $L \subseteq X^*$, the set $L \downarrow = \{u \in X^* \mid u \le v \text{ for some } v \in L\}$ is regular.

Applications

- L↓ is observed through a lossy channel. Decidability for REG!
- Decide reversal boundedness. \triangle : up, ∇ : down; $(\triangle \nabla)^* \subseteq L \downarrow$?

Computability

For which systems can we compute $L\downarrow$?

< □ > < 同 > < 回 > < 回 > < 回 >

 $u \leq v$: *u* is obtained from *v* by arbitrarily deleting symbols

Theorem (Higman)

For every language $L \subseteq X^*$, the set $L \downarrow = \{u \in X^* \mid u \le v \text{ for some } v \in L\}$ is regular.

Applications

- L↓ is observed through a lossy channel. Decidability for REG!
- Decide reversal boundedness. \triangle : up, ∇ : down; $(\triangle \nabla)^* \subseteq L \downarrow$?

Computability

For which systems can we compute $L\downarrow$?

• for $\mathsf{Alg}(\mathcal{F})$ whenever computable for \mathcal{F} (van Leeuwen 1978)

< □ > < □ > < □ > < □ > < □ >

 $u \leq v$: *u* is obtained from *v* by arbitrarily deleting symbols

Theorem (Higman)

For every language $L \subseteq X^*$, the set $L \downarrow = \{u \in X^* \mid u \le v \text{ for some } v \in L\}$ is regular.

Applications

- L↓ is observed through a lossy channel. Decidability for REG!
- Decide reversal boundedness. \triangle : up, ∇ : down; $(\triangle \nabla)^* \subseteq L \downarrow$?

Computability

For which systems can we compute $L\downarrow$?

- for $\mathsf{Alg}(\mathcal{F})$ whenever computable for \mathcal{F} (van Leeuwen 1978)
- for Petri net languages (Habermehl, Meyer, Wimmel, ICALP 2010)

イロト イヨト イヨト 一日

Theorem

For stacked counter automata, downward closures can be computed.

• = • •

Theorem

For stacked counter automata, downward closures can be computed.

Problem

 \bullet Computability preserved by $\mathsf{Alg}(\cdot)$

(3)

Theorem

For stacked counter automata, downward closures can be computed.

Problem

- \bullet Computability preserved by $\mathsf{Alg}(\cdot)$
- Preservation not clear for $SLI(\cdot)$ (probably not true)

< ∃ > < ∃

Theorem

For stacked counter automata, downward closures can be computed.

Problem

- Computability preserved by $\mathsf{Alg}(\cdot)$
- Preservation not clear for $SLI(\cdot)$ (probably not true)
- Hence: Stronger invariant

< ∃ > < ∃

Theorem

For stacked counter automata, downward closures can be computed.

Problem

- Computability preserved by $\mathsf{Alg}(\cdot)$
- Preservation not clear for $SLI(\cdot)$ (probably not true)
- Hence: Stronger invariant

Parikh annotations

- New language in the same class
- Additional symbols encode decomposition of Parikh image into constant and period vectors
- Adding period vectors by inserting at designated positions

A D F A B F A B F A B

Example

Parikh image: $(c + (a + b)^{\oplus} + a^{\oplus}) \cup (d + (a + b)^{\oplus} + b^{\oplus}).$

 $L = (ab)^* (ca^* \cup db^*)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

 $L = (ab)^* (ca^* \cup db^*)$ Parikh image: $(c + (a + b)^{\oplus} + a^{\oplus}) \cup (d + (a + b)^{\oplus} + b^{\oplus}).$

$$P = \{p, q, r, s\}$$
$$C = \{e, f\},$$
$$P_e = \{p, q\},$$
$$P_f = \{r, s\},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

$$L = (ab)^+ (ca^+ \cup db^+)$$

Parikh image: $(c + (a + b)^{\oplus} + a^{\oplus}) \cup (d + (a + b)^{\oplus} + b^{\oplus}).$

1 \ * /

*

$$\begin{array}{ll} P = \{p, q, r, s\}, \\ C = \{e, f\}, & \varphi(e) = c, & \varphi(f) = d, \\ P_e = \{p, q\}, & \varphi(p) = a + b, & \varphi(q) = a, \\ P_f = \{r, s\}, & \varphi(r) = a + b, & \varphi(s) = b, \end{array}$$

11 * \

<ロト < 四ト < 三ト < 三ト

Example

$$L = (ab)^{+} (ca^{+} \cup db^{+})$$

Parikh image: $(c + (a + b)^{\oplus} + a^{\oplus}) \cup (d + (a + b)^{\oplus} + b^{\oplus}).$

1 \ * /

*

$$\begin{split} P &= \{p, q, r, s\}, \\ C &= \{e, f\}, \\ P_e &= \{p, q\}, \\ P_f &= \{r, s\}, \\ \end{split} \qquad \begin{array}{ll} \varphi(e) &= c, \\ \varphi(p) &= a + b, \\ \varphi(p) &= a + b, \\ \varphi(r) &= a + b, \\ \varphi(s) &= b, \\ \end{array} \qquad \begin{array}{ll} \varphi(f) &= d, \\ \varphi(q) &= a, \\ \varphi(s) &= b, \\ \varphi(s) &= b, \\ \end{array} \end{split}$$

11 * \

<ロト < 四ト < 三ト < 三ト

Example

$$L = (ab)^+ (ca^+ \cup db^+)$$

Parikh image: $(c + (a + b)^{\oplus} + a^{\oplus}) \cup (d + (a + b)^{\oplus} + b^{\oplus}).$

1 \ * /

*

$$\begin{split} P &= \{p, q, r, s\}, \\ C &= \{e, f\}, \\ P_e &= \{p, q\}, \\ P_f &= \{r, s\}, \\ \end{split} \qquad \begin{array}{ll} \varphi(e) &= c, \\ \varphi(p) &= a + b, \\ \varphi(q) &= a, \\ \varphi(r) &= a + b, \\ \varphi(s) &= b, \\ \end{array} \end{split}$$

11 * \

<ロト < 四ト < 三ト < 三ト

Example

$$L = (ab)^* (ca^* \cup db^*)$$

Parikh image: $(c + (a + b)^{\oplus} + a^{\oplus}) \cup (d + (a + b)^{\oplus} + b^{\oplus}).$

$$P = \{p, q, r, s\},$$

$$C = \{e, f\}, \qquad \varphi(e) = c, \qquad \varphi(f) = d,$$

$$P_e = \{p, q\}, \qquad \varphi(p) = a + b, \qquad \varphi(q) = a,$$

$$P_f = \{r, s\}, \qquad \varphi(r) = a + b, \qquad \varphi(s) = b,$$

$$K = e \diamond (pab)^* c \diamond (qa)^* \qquad \cup \qquad f \diamond (rab)^* d \diamond (sb)^*$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

$$L = (ab)^* (ca^* \cup db^*)$$

Parikh image: $(c + (a + b)^{\oplus} + a^{\oplus}) \cup (d + (a + b)^{\oplus} + b^{\oplus}).$

$$P = \{p, q, r, s\},\$$

$$C = \{e, f\},\qquad \varphi(e) = c,\qquad \varphi(f) = d,\$$

$$P_e = \{p, q\},\qquad \varphi(p) = a + b,\qquad \varphi(q) = a,\$$

$$P_f = \{r, s\},\qquad \varphi(r) = a + b,\qquad \varphi(s) = b,\$$

$$K = e \diamond (pab)^* c \diamond (qa)^* \quad \cup \quad f \diamond (rab)^* d \diamond (sb)^*$$

• Makes Parikh decomposition accessible to transducers

Georg Zetzsche	(TU KL)
----------------	---------

A D N A B N A B N A B N

Example

$$L = (ab)^* (ca^* \cup db^*)$$

Parikh image: $(c + (a + b)^{\oplus} + a^{\oplus}) \cup (d + (a + b)^{\oplus} + b^{\oplus}).$

$$P = \{p, q, r, s\},\$$

$$C = \{e, f\}, \qquad \varphi(e) = c, \qquad \varphi(f) = d,\$$

$$P_e = \{p, q\}, \qquad \varphi(p) = a + b, \qquad \varphi(q) = a,\$$

$$P_f = \{r, s\}, \qquad \varphi(r) = a + b, \qquad \varphi(s) = b,\$$

$$K = e \diamond (pab)^* c \diamond (qa)^* \quad \cup \quad f \diamond (rab)^* d \diamond (sb)^*$$

- Makes Parikh decomposition accessible to transducers
- Pumping lemma described by a language

Georg Zetzsche (TU KL)

Valence Automata

▲ ■ ▶ ■ の Q C AISS 2014 20 / 22

A D N A B N A B N A B N

For each level F_i , one can compute Parikh annotations in F_i .

< □ > < □ > < □ > < □ > < □ >

For each level F_i , one can compute Parikh annotations in F_i .

Computing downward closures

Recursively with respect to the hierarchy level:

• For $G_i = Alg(F_i)$, use van Leeuwen's algorithm

For each level F_i , one can compute Parikh annotations in F_i .

Computing downward closures

Recursively with respect to the hierarchy level:

- For $G_i = Alg(F_i)$, use van Leeuwen's algorithm
- For $L \in F_i = SLI(G_{i-1})$

For each level F_i , one can compute Parikh annotations in F_i .

Computing downward closures

Recursively with respect to the hierarchy level:

- For $G_i = Alg(F_i)$, use van Leeuwen's algorithm
- For $L \in F_i = SLI(G_{i-1})$, write $L = h(L' \cap \Psi^{-1}(S))$, $L' \in G_{i-1}$

For each level F_i , one can compute Parikh annotations in F_i .

Computing downward closures

Recursively with respect to the hierarchy level:

- For $G_i = Alg(F_i)$, use van Leeuwen's algorithm
- For $L \in F_i = SLI(G_{i-1})$, write $L = h(L' \cap \Psi^{-1}(S))$, $L' \in G_{i-1}$
- Construct Parikh annotation $A \in G_{i-1}$ for L'

(4) (3) (4) (4) (4)

For each level F_i , one can compute Parikh annotations in F_i .

Computing downward closures

Recursively with respect to the hierarchy level:

- For $G_i = Alg(F_i)$, use van Leeuwen's algorithm
- For $L \in F_i = SLI(G_{i-1})$, write $L = h(L' \cap \Psi^{-1}(S))$, $L' \in G_{i-1}$
- Construct Parikh annotation $A \in G_{i-1}$ for L'
- From A, compute $M \in G_{i-1}$ with $L \subseteq M \subseteq L \downarrow$

For each level F_i , one can compute Parikh annotations in F_i .

Computing downward closures

Recursively with respect to the hierarchy level:

- For $G_i = Alg(F_i)$, use van Leeuwen's algorithm
- For $L \in F_i = SLI(G_{i-1})$, write $L = h(L' \cap \Psi^{-1}(S))$, $L' \in G_{i-1}$
- Construct Parikh annotation $A \in G_{i-1}$ for L'
- From A, compute $M \in G_{i-1}$ with $L \subseteq M \subseteq L \downarrow$, hence $M \downarrow = L \downarrow$.

• • = • • = •

For each level F_i , one can compute Parikh annotations in F_i .

Computing downward closures

Recursively with respect to the hierarchy level:

- For $G_i = Alg(F_i)$, use van Leeuwen's algorithm
- For $L \in F_i = SLI(G_{i-1})$, write $L = h(L' \cap \Psi^{-1}(S))$, $L' \in G_{i-1}$
- Construct Parikh annotation $A \in G_{i-1}$ for L'
- From A, compute $M \in G_{i-1}$ with $L \subseteq M \subseteq L \downarrow$, hence $M \downarrow = L \downarrow$.

Other applications of Parikh annotations include:

Theorem

For each
$$i \ge 0$$
: $F_i \subsetneq G_i \subsetneq F_{i+1}$.

イロト 不得 トイヨト イヨト 二日

• Silent transitions avoidable, non-uniform membership in NP

★ Ξ >

- Silent transitions avoidable, non-uniform membership in NP
- Parikh's Theorem holds

• = • •

- Silent transitions avoidable, non-uniform membership in NP
- Parikh's Theorem holds
- Downward closure computable

• = • •

- Silent transitions avoidable, non-uniform membership in NP
- Parikh's Theorem holds
- Downward closure computable
- Strict hierarchy of language classes

∃ >

- Silent transitions avoidable, non-uniform membership in NP
- Parikh's Theorem holds
- Downward closure computable
- Strict hierarchy of language classes

More classical results can be generalized:

Ongoing work

• Uniform word problem, connections to group theory
Conclusion

- Silent transitions avoidable, non-uniform membership in NP
- Parikh's Theorem holds
- Downward closure computable
- Strict hierarchy of language classes

More classical results can be generalized:

Ongoing work

- Uniform word problem, connections to group theory
- Decidability of logics over reachability graphs

Conclusion

- Silent transitions avoidable, non-uniform membership in NP
- Parikh's Theorem holds
- Downward closure computable
- Strict hierarchy of language classes

More classical results can be generalized:

Ongoing work

- Uniform word problem, connections to group theory
- Decidability of logics over reachability graphs
- pre*/post* computation

< ∃ > <

Conclusion

- Silent transitions avoidable, non-uniform membership in NP
- Parikh's Theorem holds
- Downward closure computable
- Strict hierarchy of language classes

More classical results can be generalized:

Ongoing work

- Uniform word problem, connections to group theory
- Decidability of logics over reachability graphs
- pre*/post* computation
- Decidability of questions for Büchi variants