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Example (Pushdown automaton)

q0 q1

a, ε,A

b, ε,B

ε, ε, ε

a,A, ε

b,B, ε

L “ tww rev | w P ta, bu˚u

Example (Blind counter automaton)

q0 q1 q2
ε, 0, 0 ε, 0, 0

a, 1, 0 b,´1,´1 c , 0, 1

L “ tanbncn | n ě 0u
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Example (Partially blind counter automaton)

q0 q1

a, 1

b,´1

ε, 0

ε,´1

L “ tw P ta, bu˚ | |p|a ě |p|b for each prefix p of wu
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Automata models that extend finite automata by some storage
mechanism:

Pushdown automata

Blind counter automata

Partially blind counter automata

Turing machines

Each storage mechanism consists of:

States: set S of states

Operations: partial maps α1, . . . , αn : S Ñ S
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Model States Operations

Pushdown
automata

S “ Γ˚
pusha : w ÞÑ wa, a P Γ

popa : wa ÞÑ w , a P Γ

Blind
counter
automata

S “ Zn
inci : px1, . . . , xnq ÞÑ px1, . . . , xi ` 1, . . . , xnq

deci : px1, . . . , xnq ÞÑ px1, . . . , xi ´ 1, . . . , xnq

Partially
blind
counter
automata

S “ Nn
inci : px1, . . . , xnq ÞÑ px1, . . . , xi ` 1, . . . , xnq

deci : px1, . . . , xnq ÞÑ px1, . . . , xi ´ 1, . . . , xnq

Observation

Here, a sequence β1, . . . , βk of operations is valid if and only if

β1 ˝ ¨ ¨ ¨ ˝ βk “ id
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Definition

A monoid is

a set M together with

an associative binary operation ¨ : M ˆM Ñ M and

a neutral element 1 P M (a1 “ 1a “ a for any a P M).

Storage mechanisms as monoids

Let S be a set of states and α1, . . . , αn : S Ñ S partial maps.

The set of all compositions of α1, . . . , αn is a monoid M.

The identity map is the neutral element of M.

M is a decription of the storage mechanism.
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Valence automata

Common generalization: Valence Automata

Valence automaton over M:

Finite automaton with edges p
w |m
ÝÝÑq, w P Σ˚, m P M.

Run q0
w1|m1
ÝÝÝÑq1

w2|m2
ÝÝÝÑ¨ ¨ ¨

wn|mn
ÝÝÝÝÑqn is accepting for w1 ¨ ¨ ¨wn if

§ q0 is the initial state,
§ qn is a final state, and

§ m1 ¨ ¨ ¨mn “ 1.

Language class

VApMq languages accepted by valence automata over M.
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Classical results can now be generalized:

Questions

For which storage mechanisms can we avoid silent transitions?

For which do we have semilinearity of all languages?

For which is the language class, for example, Boolean closed?

For which can we decide, for example, emptiness?
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Monoids defined by graphs
By graphs, we mean undirected graphs with loops allowed.

Let Γ “ pV ,E q be a graph. Let

XΓ “ tav , āv | v P V u

RΓ “ tav āv “ ε | v P V u

Y txy “ yx | x P tau, āuu, y P tav , āvu, tu, vu P Eu

MΓ “ X ˚Γ {RΓ

Intuition

B: bicyclic monoid, B “ ta, āu˚{taā “ εu.

Z: group of integers

For each unlooped vertex, we have a copy of B
For each looped vertex, we have a copy of Z
MΓ consists of sequences of such elements

An edge between vertices means that elements can commute
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RΓ “ tav āv “ ε | v P V u
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MΓ “ X ˚Γ {RΓ

Intuition

B: bicyclic monoid, B “ ta, āu˚{taā “ εu.
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Examples

Z3

Blind counter

B ˚ B ˚ B

Pushdown

B3

Partially blind counter

pB ˚ Bq ˆ pB ˚ Bq

Infinite tape (TM)

pB ˚ Bq ˆ Bˆ B

Pushdown + partially blind counters
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Silent Transitions

A transition that reads no input is called silent transition or ε-transition.

Important problem

When can silent transitions be eliminated?

Without silent transitions, membership in NP.

Elimination can be regarded as a precomputation.

Question

For which storage mechanisms can we avoid silent transitions?
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Theorem (Z., ICALP 2013)

Let Γ be a graph such that

any two looped vertices are adjacent,

no two unlooped vertices are adjacent.

Then the following conditions are equivalent:

Silent transitions can be avoided over MΓ.

Γ does not contain as an induced subgraph.

MΓ P StCtr
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Positive case

Definition (Stacked counters)

Let StCtr be the smallest class of monoids such that

1 P StCtr

if M P StCtr, then M ˆ Z P StCtr

if M P StCtr, then M ˚ B P StCtr

Interpretation of StCtr

StCtr corresponds to the class of storage mechanisms obtained by

adding a blind counter (M ˆ Z):
§ States: pc , zq, c an old state, z P Z.
§ Operations: old operations; increment, decrement for counter

building stacks (M ˚ B)
§ States: sequences lc1lc2l ¨ ¨ ¨lcn, ci old states
§ Operations: push separator, pop if empty, manipulate topmost entry
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Semilinearity
For which monoids M are all languages in VApMq semilinear?

Parikh’s Theorem: Pushdown automata
Ibarra + Greibach: Blind counter automata

Theorem (Buckheister, Z., MFCS 2013)

Let Γ be a graph. The following conditions are equivalent:

All languages in VApMΓq are semilinear.

Γ satisfies:
1 Γ contains neither nor as an induced subgraph and
2 Γ, minus loops, is a transitive forest.

VApMΓq Ď VApMq for some M P StCtr. (NP-membership!)
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Expressiveness

Algebraic extensions

Let F be a language class. An F-grammar G consists of

Nonterminals N, terminals T , start symbol S P N

Productions AÑ L with L Ď pN Y T q˚, L P F

uAv ñ uwv whenever w P L.

Generated language: tw P T ˚ | S ñ˚ wu.

Such languages are algebraic over F , class denoted AlgpFq.

Presburger constraints

For each language class F , SLIpFq denotes the class of languages

hpLXΨ´1pSqq

for some L P F , a homomorphism h and a semilinear set S .
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A hierarchy of language classes

Hierarchy

F0 “ finite languages,

Gi “ AlgpFi q, Fi`1 “ SLIpGi q, F “
ď

iě0

Fi .

In particular: G0 “ CF.

F0 Ď G0 Ď F1 Ď G1 Ď ¨ ¨ ¨ Ď F

Theorem

VApB ˚ B ˚Mq “ AlgpVApMqq

,
Ť

iě0 VApM ˆ Zi q “ SLIpVApMqq.

Corollary

Stacked counter automata accept precisely the languages in F.
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Downward closures

u ĺ v : u is obtained from v by arbitrarily deleting symbols

Theorem (Higman)

For every language L Ď X ˚, the set LÓ “ tu P X ˚ | u ĺ v for some v P Lu
is regular.

Applications

LÓ is observed through a lossy channel.

Decidability for REG!

Decide reversal boundedness. M: up, O: down; pMOq˚ Ď LÓ?

Computability

For which systems can we compute LÓ?

for AlgpFq whenever computable for F (van Leeuwen 1978)

for Petri net languages (Habermehl, Meyer, Wimmel, ICALP 2010)
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Computing the downward closure

Theorem

For stacked counter automata, downward closures can be computed.

Problem

Computability preserved by Algp¨q

Preservation not clear for SLIp¨q (probably not true)

Hence: Stronger invariant

Parikh annotations

New language in the same class

Additional symbols encode decomposition of Parikh image into
constant and period vectors

Adding period vectors by inserting at designated positions

Georg Zetzsche (TU KL) Valence Automata AISS 2014 19 / 22



Computing the downward closure

Theorem

For stacked counter automata, downward closures can be computed.

Problem

Computability preserved by Algp¨q

Preservation not clear for SLIp¨q (probably not true)

Hence: Stronger invariant

Parikh annotations

New language in the same class

Additional symbols encode decomposition of Parikh image into
constant and period vectors

Adding period vectors by inserting at designated positions

Georg Zetzsche (TU KL) Valence Automata AISS 2014 19 / 22



Computing the downward closure

Theorem

For stacked counter automata, downward closures can be computed.

Problem

Computability preserved by Algp¨q

Preservation not clear for SLIp¨q (probably not true)

Hence: Stronger invariant

Parikh annotations

New language in the same class

Additional symbols encode decomposition of Parikh image into
constant and period vectors

Adding period vectors by inserting at designated positions

Georg Zetzsche (TU KL) Valence Automata AISS 2014 19 / 22



Computing the downward closure

Theorem

For stacked counter automata, downward closures can be computed.

Problem

Computability preserved by Algp¨q

Preservation not clear for SLIp¨q (probably not true)

Hence: Stronger invariant

Parikh annotations

New language in the same class

Additional symbols encode decomposition of Parikh image into
constant and period vectors

Adding period vectors by inserting at designated positions

Georg Zetzsche (TU KL) Valence Automata AISS 2014 19 / 22



Computing the downward closure

Theorem

For stacked counter automata, downward closures can be computed.

Problem

Computability preserved by Algp¨q

Preservation not clear for SLIp¨q (probably not true)

Hence: Stronger invariant

Parikh annotations

New language in the same class

Additional symbols encode decomposition of Parikh image into
constant and period vectors

Adding period vectors by inserting at designated positions

Georg Zetzsche (TU KL) Valence Automata AISS 2014 19 / 22



Parikh annotations

Example

L “ pabq˚pca˚ Y db˚q

Parikh image:
`

c ` pa` bq‘ ` a‘
˘

Y
`

d ` pa` bq‘ ` b‘
˘

.

P “ tp, q, r , su,

C “ te, f u, ϕpeq “ c , ϕpf q “ d ,

Pe “ tp, qu, ϕppq “ a` b, ϕpqq “ a,

Pf “ tr , su, ϕprq “ a` b, ϕpsq “ b,

K “ e ˛ ppabq˚c ˛ pqaq˚ Y f ˛ prabq˚d ˛ psbq˚

Makes Parikh decomposition accessible to transducers

Pumping lemma described by a language
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Theorem

For each level Fi , one can compute Parikh annotations in Fi .

Computing downward closures

Recursively with respect to the hierarchy level:

For Gi “ AlgpFi q, use van Leeuwen’s algorithm

For L P Fi “ SLIpGi´1q

, write L “ hpL1 XΨ´1pSqq, L1 P Gi´1

Construct Parikh annotation A P Gi´1 for L1

From A, compute M P Gi´1 with L Ď M Ď LÓ

, hence MÓ “ LÓ.

Other applications of Parikh annotations include:

Theorem

For each i ě 0: Fi Ĺ Gi Ĺ Fi`1.
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